Clinical Reviews in Allergy & Immunology

, Volume 44, Issue 2, pp 173–182

Cytokine-Based Therapy in Psoriasis

  • Anupam Mitra
  • Robyn S. Fallen
  • Hermenio Cavalcante Lima
Article

Abstract

Psoriasis and psoriatic arthritis are chronic inflammatory diseases of unknown etiology, affecting 2–3% of the world population. Initially, psoriasis was thought to be a hyper-proliferation disorder of keratinocytes only, but as time passed, the role of immune system became more evident and now both diseases are considered autoimmune disorders. In last few years, the discovery of interleukin (IL)-23/Th17 axis in pathophysiology of psoriatic diseases shifts the cytokine paradigm from Th1 to Th17 cytokines, focused mainly on IL-17 and IL-22. Therapeutic experiences strongly support the use of cytokine antagonists as an important modality in the treatment of psoriatic arthritis and plaque psoriasis. Studies examining these therapeutic agents which target different steps of the psoriatic inflammatory cascade have also shown significant efficacy. The relatively new IL-23/Th17 axis in psoriatic diseases got more importance with the success of ustekinumab, a new monoclonal antibody against IL-12 and IL-23. In IL-17 and IL-22 knock-out and transgenic mouse models, it has been found that recombinant IL-23 fails to produce epidermal hyperplasia which resembles psoriasis. Also, some success in animal models of psoriasis was found with anti IL-17A and anti IL-22. More studies are needed to validate the efficacy and safety of these cytokine antagonists in psoriatic diseases. Using a historical perspective and a chess game as an analogy, the main objective of this review is to summarize the central role of some of these cytokines in psoriasis pathophysiology and to develop a strategic approach to new therapeutic weapons within the armamentarium of psoriasis treatment.

Keywords

Psoriasis Biological treatment IL-12 IL-23 IL-17 IL-22 

References

  1. 1.
    Liu Y, Krueger JG, Bowcock AM (2007) Psoriasis: genetic associations and immune system changes. Genes Immun 8:1–12PubMedCrossRefGoogle Scholar
  2. 2.
    Farber EM, Nail L (1998) Epidemiology: natural history and genetics. In: Roenigk HR Jr, Maibach HI (eds) Psoriasis, 3rd edn. Marcel Dekker, New York, pp 107–157Google Scholar
  3. 3.
    Raychaudhuri SP, Gross JA (2000) A comparative study of pediatric onset psoriasis with adult onset psoriasis. Pediatr Dermatol 17:174–178PubMedCrossRefGoogle Scholar
  4. 4.
    Raychaudhuri SP, Farber EM (2001) The prevalence of psoriasis in the world. JEADV 15:16–17PubMedGoogle Scholar
  5. 5.
    Rahman P, Elder JT (2005) Genetic epidemiology of psoriasis and psoriatic arthritis. Ann Rheum Dis 64:ii37–ii39PubMedCrossRefGoogle Scholar
  6. 6.
    Chandran V, Raychaudhuri SP (2010) Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J Autoimmun 34:J314–J321PubMedCrossRefGoogle Scholar
  7. 7.
    Lima XT, Seidler EM, Lima HC, Kimball AB (2009) Long-term safety of biologics in dermatology. Dermatol Ther 22:2–21PubMedCrossRefGoogle Scholar
  8. 8.
    Feldmann M, Brennan FM, Maini R (1998) Cytokines in autoimmune disorders. Int Rev Immunol 17:217–228PubMedCrossRefGoogle Scholar
  9. 9.
    Squire B (1873) The etiology of psoriasis. Br Med J 1:141PubMedCrossRefGoogle Scholar
  10. 10.
    Heaney JH (1927) The etiology and treatment of psoriasis. Br Med J 2:1136–1137PubMedCrossRefGoogle Scholar
  11. 11.
    Ingram JT (1953) The approach to psoriasis. Br Med J 2:591–594PubMedCrossRefGoogle Scholar
  12. 12.
    Harber LC, March C, Ovary Z (1962) Lack of passive cutaneous anaphylaxis in psoriasis. Arch Dermatol 85:716–719PubMedCrossRefGoogle Scholar
  13. 13.
    Aswaq M, Farber EM, Moreci AP, Raffel S (1960) Immunologic reactions in psoriasis. Arch Dermatol 82:663–666PubMedCrossRefGoogle Scholar
  14. 14.
    Landau J, Gross BG, Newcomer VD, Wright ET (1965) Immunologic response of patients with psoriasis. Arch Dermatol 91:607–610PubMedCrossRefGoogle Scholar
  15. 15.
    Harris CC (1971) Malignancy during methotrexate and steroid therapy for psoriasis. Arch Dermatol 103:501–504PubMedCrossRefGoogle Scholar
  16. 16.
    Shuster S (1971) Research into psoriasis—the last decade. Br Med J 3:236–239PubMedCrossRefGoogle Scholar
  17. 17.
    Hunter JA, Ryan TJ, Savin JA (1974) Diseases of the skin. Present and future trends in approaches to skin disease. Br Med J 1:283–284PubMedCrossRefGoogle Scholar
  18. 18.
    Braun-Falco O, Christophers E (1974) Structural aspects of initial psoriatic lesions. Arch Dermatol Forsch 251:95–110PubMedCrossRefGoogle Scholar
  19. 19.
    Krueger GG, Jederberg WW, Ogden BE, Reese DL (1978) Inflammatory and immune cell function in psoriasis: II. Monocyte function, lymphokine production. J Invest Dermatol 71:195–201PubMedCrossRefGoogle Scholar
  20. 20.
    Krueger GG, Jederberg WW (1980) Alteration of HeLa cell growth equilibrium by supernatants of peripheral blood mononuclear cells from normal and psoriatic subjects. J Invest Dermatol 74:148–153PubMedCrossRefGoogle Scholar
  21. 21.
    Champion RH (1981) Psoriasis and its treatment. Br Med J (Clin Res Ed) 282:343–346CrossRefGoogle Scholar
  22. 22.
    Bos JD, Hulsebosch HJ, Krieg SR, Bakker PM, Cormane RH (1983) Immunocompetent cells in psoriasis. In situ immunophenotyping by monoclonal antibodies. Arch Dermatol Res 275:181–189PubMedCrossRefGoogle Scholar
  23. 23.
    Baker BS, Swain AF, Griffiths CE, Leonard JN, Fry L, Valdimarsson H (1985) The effects of topical treatment with steroids or dithranol on epidermal T lymphocytes and dendritic cells in psoriasis. Scand J Immunol 22(47):1–477Google Scholar
  24. 24.
    Bos JD, Krieg SR (1985) Psoriasis infiltrating cell immunophenotype: changes induced by PUVA or corticosteroid treatment in T-cell subsets, Langerhans’ cells and interdigitating cells. Acta Derm Venereol 65:390–397PubMedGoogle Scholar
  25. 25.
    Lieden G, Skogh M (1986) Plasma exchange and leukapheresis in psoriasis—no effect? Arch Dermatol Res 278:437–440PubMedCrossRefGoogle Scholar
  26. 26.
    Valdimarsson H, Bake BS, Jónsdótdr I, Fry L (1986) Psoriasis: a disease of abnormal keratinocyte proliferation induced by T lymphocytes. Immunol Today 7:256–259CrossRefGoogle Scholar
  27. 27.
    Schlaak JF, Buslau M, Jochum W, Hermann E, Girndt M, Gallati H, Meyer zum Büschenfelde KH, Fleischer B (1994) T cells involved in psoriasis vulgaris belong to the Th1 subset. J Invest Dermatol 102:145–149PubMedCrossRefGoogle Scholar
  28. 28.
    Mosmann TR, Cherwinski H, Bond MA, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357PubMedGoogle Scholar
  29. 29.
    Austin LM, Ozawa M, Kikuchi T, Walters IB, Krueger JG (1999) The majority of epidermal T cells in psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J Invest Dermatol 113:752–759PubMedCrossRefGoogle Scholar
  30. 30.
    Kagami S, Rizzo HL, Kurtz SE, Miller LS, Blauvelt A (2010) IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol 185:5453–5462PubMedCrossRefGoogle Scholar
  31. 31.
    Abdi K (2002) IL-12: the role of p40 versus p75. Scand J Immunol 56:1–11PubMedCrossRefGoogle Scholar
  32. 32.
    Vanaudenaerde BM, Verleden SE, Vos R, De Vleeschauwer SI, Willems-Widyastuti A, Geenens R, Van Raemdonck DE, Dupont LJ, Verbeken EK, Meyts I (2011) Innate and adaptive IL-17 producing lymphocytes in chronic inflammatory lung disorders. Am J Respir Crit Care Med 183:977–986PubMedCrossRefGoogle Scholar
  33. 33.
    Kraan MC, van Kuijk AW, Dinant HJ, Goedkoop AY, Smeets TJ, de Rie MA, Dijkmans BA, Vaishnaw AK, Bos JD, Tak PP (2002) Alefacept treatment in psoriatic arthritis: reduction of the effector T cell population in peripheral blood and synovial tissue is associated with improvement of clinical signs of arthritis. Arthritis Rheum 46:2776–2784PubMedCrossRefGoogle Scholar
  34. 34.
    Kalliolias GD, Gordon RA, Ivashkiv LB (2010) Suppression of TNF-alpha and IL-1 signaling identifies a mechanism of homeostatic regulation of macrophages by IL-27. J Immunol 185:7047–7056PubMedCrossRefGoogle Scholar
  35. 35.
    Philipp S, Wolk K, Kreutzer S, Wallace E, Ludwig N, Roewert J, Höflich C, Volk HD, Sterry W, Sabat R (2006) The evaluation of psoriasis therapy with biologics leads to a revision of the current view of the pathogenesis of this disorder. Expert Opin Ther Targets 10:817–831PubMedCrossRefGoogle Scholar
  36. 36.
    Sobell JM, Kalb RE, Weinberg JM (2009) Management of moderate to severe plaque psoriasis (part 2): clinical update on T-cell modulators and investigational agents. J Drugs Dermatol 8:230–238PubMedGoogle Scholar
  37. 37.
    Albanesi C, Scarponi C, Giustizieri ML, Girolomoni G (2005) Keratinocytes in inflammatory skin diseases. Curr Drug Targets Inflamm Allergy 4:329–334PubMedCrossRefGoogle Scholar
  38. 38.
    Lowes MA, Bowcock AM, Krueger JG (2007) Pathogenesis and therapy of psoriasis. Nature 445:866–873PubMedCrossRefGoogle Scholar
  39. 39.
    Schon MP, Boehncke WH (2005) Psoriasis. N Engl J Med 352:1899–1912PubMedCrossRefGoogle Scholar
  40. 40.
    Nickoloff BJ, Schröder JM, von den Driesch P, Raychaudhuri SP, Farber EM, Boehncke WH, Morhenn VB, Rosenberg EW, Schön MP, Holick MF (2000) Is psoriasis a T-cell disease? Exp Dermatol 9:359–375PubMedCrossRefGoogle Scholar
  41. 41.
    Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K et al (1995) Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378:88–91PubMedCrossRefGoogle Scholar
  42. 42.
    Biedermann T, Rocken M, Carballido JM (2004) TH1 and TH2 lymphocyte development and regulation of TH cell-mediated immune responses of the skin. J Investig Dermatol Symp Proc 9:5–14PubMedCrossRefGoogle Scholar
  43. 43.
    Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh CS, Culpepper JA, Wysocka M, Trinchieri G, Murphy KM, O’Garra A (1995) Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 154:5071–5079PubMedGoogle Scholar
  44. 44.
    Trinchieri G (1998) Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol 70:83–243PubMedCrossRefGoogle Scholar
  45. 45.
    Hong K, Berg EL, Ehrhardt RO (2001) Persistence of pathogenic CD4+ Th1-like cells in vivo in the absence of IL-12 but in the presence of autoantigen. J Immunol 166:4765–4772PubMedGoogle Scholar
  46. 46.
    Hong K, Chu A, Ludviksson BR, Berg EL, Ehrhardt RO (1999) IL-12, independently of IFNgamma, plays a crucial role in the pathogenesis of a murine psoriasis-like skin disorder. J Immunol 162:7480–7491PubMedGoogle Scholar
  47. 47.
    Monteleone I, Pallone F, Monteleone G (2009) Interleukin-23 and Th17 cells in the control of gut inflammation. Mediat Inflamm 2009:297645CrossRefGoogle Scholar
  48. 48.
    Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu Y, Abrams JS, Moore KW, Rennick D, de WaalMalefyt R, Hannum C, Bazan JF, Kastelein RA (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725PubMedCrossRefGoogle Scholar
  49. 49.
    Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, Dhodapkar M, Krueger JG (2004) Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med 199:125–130PubMedCrossRefGoogle Scholar
  50. 50.
    Toichi E, Torres G, McCormick TS, Chang T, Mascelli MA, Kauffman CL, Aria N, Gottlieb AB, Everitt DE, Frederick B, Pendley CE, Cooper KD (2006) An anti-IL-12p40 antibody down-regulates type 1 cytokines, chemokines, and IL-12/IL-23 in psoriasis. J Immunol 177:4917–4926PubMedGoogle Scholar
  51. 51.
    Piskin G, Sylva-Steenland RM, Bos JD, Teunissen MB (2006) In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin. J Immunol 176:1908–1915PubMedGoogle Scholar
  52. 52.
    Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, Lecron JC, Kastelein RA, Cua DJ, McClanahan TK, Bowman EP, de Waal MR (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–957PubMedCrossRefGoogle Scholar
  53. 53.
    Lillis JV, Guo CS, Lee JJ, Blauvelt A (2010) Increased IL-23 expression in palmoplantar psoriasis and hyperkeratotic hand dermatitis. Arch Dermatol 146:918–919PubMedCrossRefGoogle Scholar
  54. 54.
    Capon F, Di Meglio P, Szaub J, Prescott NJ, Dunster C, Baumber L, Timms K, Gutin A, Abkevic V, Burden AD, Lanchbury J, Barker JN, Trembath RC, Nestle FO (2007) Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum Genet 122:201–206PubMedCrossRefGoogle Scholar
  55. 55.
    Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, Matsunami N, Ardlie KG, Civello D, Catanese JJ, Leong DU, Panko JM, McAllister LB, Hansen CB, Papenfuss J, Prescott SM, White TJ, Leppert MF, Krueger GG, Begovich AB (2007) A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 80:273–290PubMedCrossRefGoogle Scholar
  56. 56.
    Nair RP, Ding J, Duffin KC, Helms C, Voorhees JJ, Krueger GG, Bowcock AM, Abeçasis GR, Elder JT (2009) Psoriasis bench to bedside: genetics meets immunology. Arch Dermatol 145:462–464PubMedCrossRefGoogle Scholar
  57. 57.
    Tonel G, Conrad C, Laggner U, Di Meglio P, Grys K, McClanahan TK, Blumenschein WM, Qin JZ, Xin H, Oldham E, Kastelein R, Nickoloff BJ, Nestle FO (2010) Cutting edge: a critical functional role for IL-23 in psoriasis. J Immunol 185:5688–5691PubMedCrossRefGoogle Scholar
  58. 58.
    Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278:1910–1914PubMedCrossRefGoogle Scholar
  59. 59.
    Miossec P, Korn T, Kuchroo VK (2009) Interleukin-17 and type 17 helper T cells. N Engl J Med 361:888–898PubMedCrossRefGoogle Scholar
  60. 60.
    Romagnani S, Maggi E, Liotta F, Cosmi L, Annunziato F (2009) Properties and origin of human Th17 cells. Mol Immunol 47:3–7PubMedCrossRefGoogle Scholar
  61. 61.
    KornT BE, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27(485–5):17Google Scholar
  62. 62.
    Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, Ouyang W (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–651PubMedCrossRefGoogle Scholar
  63. 63.
    Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, Ramos HL, Wei L, Davidson TS, Bouladoux N, Grainger JR, Chen Q, Kanno Y, Watford WT, Sun HW, Eberl G, Shevach EM, Belkaid Y, Cua DJ, Chen W, O’Shea JJ (2010) Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467:967–971PubMedCrossRefGoogle Scholar
  64. 64.
    Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupé P, Barillot E, Soumelis V (2008) A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 9:650–657PubMedCrossRefGoogle Scholar
  65. 65.
    Infante-Duarte C, Horton HF, Byrne MC, Kamradt T (2000) Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 165:6107–6115PubMedGoogle Scholar
  66. 66.
    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132PubMedCrossRefGoogle Scholar
  67. 67.
    Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suárez-Fariñas M, Fuentes-Duculan J, Novitskaya I, Khatcherian A, Bluth MJ, Lowes MA, Krueger JG (2007) Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med 204:3183–3194PubMedCrossRefGoogle Scholar
  68. 68.
    Harper EG, Guo C, Rizzo H, Lillis JV, Kurtz SE, Skorcheva I, Purdy D, Fitch E, Iordanov M, Blauvelt A (2009) Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J Invest Dermatol 129:2175–2183PubMedCrossRefGoogle Scholar
  69. 69.
    Johansen C, Usher PA, Kjellerup RB, Lundsgaard D, Iversen L, Kragballe K (2009) Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol 160:319–324PubMedCrossRefGoogle Scholar
  70. 70.
    Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS, Bowman EP, Krueger JG (2008) Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol 128(1207–12):11Google Scholar
  71. 71.
    Boniface K, Guignouard E, Pedretti N, Garcia M, Delwail A, Bernard FX, Nau F, Guillet G, Dagregorio G, Yssel H, Lecron JC, Morel F (2007) A role for T cell-derived interleukin 22 in psoriatic skin inflammation. Clin Exp Immunol 150:407–415PubMedCrossRefGoogle Scholar
  72. 72.
    Nograles KE, Zaba LC, Guttman-Yassky E, Fuentes-Duculan J, Suárez-Fariñas M, Cardinale I, Khatcherian A, Gonzalez J, Pierson KC, White TR, Pensabene C, Coats I, Novitskaya I, Lowes MA, Krueger JG (2008) Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br J Dermatol 159:1092–1102PubMedGoogle Scholar
  73. 73.
    Albanesi C, Scarponi C, Cavani A, Federici M, Nasorri F, Girolomoni G (2000) Interleukin-17 is produced by both Th1 and Th2 lymphocytes, and modulates interferon-gamma- and interleukin-4-induced activation of human keratinocytes. J Invest Dermatol 115:81–87PubMedCrossRefGoogle Scholar
  74. 74.
    Wolk K, Witte E, Wallace E, Döcke WD, Kunz S, Asadullah K, Volk HD, Sterry W, Sabat R (2006) IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 36:1309–1323PubMedCrossRefGoogle Scholar
  75. 75.
    Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279PubMedCrossRefGoogle Scholar
  76. 76.
    Sa SM, Valdez PA, Wu J, Jung K, Zhong F, Hall L, Kasman I, Winer J, Modrusan Z, Danilenko DM, Ouyang W (2007) The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol 178:2229–2240PubMedGoogle Scholar
  77. 77.
    Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S, Lucian L, Geissler R, Brodie S, Kimball AB, Gorman DM, Smith K, de Waal MR, Kastelein RA, McClanahan TK, Bowman EP (2006) IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 203:2577–2587PubMedCrossRefGoogle Scholar
  78. 78.
    Kopp T, Lenz P, Bello-Fernandez C, Kastelein RA, Kupper TS, Stingl G (2003) IL-23 production by cosecretion of endogenous p19 and transgenic p40 in keratin 14/p40 transgenic mice: evidence for enhanced cutaneous immunity. J Immunol 170:5438–5444PubMedGoogle Scholar
  79. 79.
    Rizzo HL, Kagami S, Phillips KG, Kurtz SE, Jacques SL, Blauvelt A (2011) IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol 186:1495–1502PubMedCrossRefGoogle Scholar
  80. 80.
    Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. N Engl J Med 361:496–509PubMedCrossRefGoogle Scholar
  81. 81.
    Watanabe H, Kawaguchi M, Fujishima S, Ogura M, Matsukura S, Takeuchi H, Ohba M, Sueki H, Kokubu F, Hizawa N, Adachi M, Huang SK, Iijima M (2009) Functional characterization of IL-17F as a selective neutrophil attractant in psoriasis. J Invest Dermatol 129:650–656PubMedCrossRefGoogle Scholar
  82. 82.
    Yeilding N, Szapary P, Brodmerkel C, Benson J, Plotnick M, Zhou H, Goyal K, Schenkel B, Giles-Komar J, Mascelli MA, Guzzo C (2011) Development of the IL-12/23 antagonist ustekinumab in psoriasis: past, present, and future perspectives. Ann N Y Acad Sci 1222:30–39PubMedCrossRefGoogle Scholar
  83. 83.
    Lima XT, Abuabara K, Kimball AB, Lima HC (2009) Briakinumab. Expert Opin Biol Ther 9:1107–1113PubMedCrossRefGoogle Scholar
  84. 84.
    Leonardi CL, Kimball AB, Papp KA, Yeilding N, Guzzo C, Wang Y, Li S, Dooley LT, Gordon KB, PHOENIX 1 study investigators (2008) Efficacy and safety of ustekinumab, a human interleukin12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371:1665–1674PubMedCrossRefGoogle Scholar
  85. 85.
    Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, Pflanz S, Zhang R, Singh KP, Vega F, To W, Wagner J, O’Farrell AM, McClanahan T, Zurawski S, Hannum C, Gorman D, Rennick DM, Kastelein RA, de Waal MR, Moore KW (2002) A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168:5699–5708PubMedGoogle Scholar
  86. 86.
    Trinchieri G, Pflanz S, Kastelein RA (2003) The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19:641–644PubMedCrossRefGoogle Scholar
  87. 87.
    Becher B, Durell BG, Noelle RJ (2002) Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest 110:493–497PubMedGoogle Scholar
  88. 88.
    Liu J, Marino MW, Wong G, Grail D, Dunn A, Bettadapura J, Slavin AJ, Old L, Bernard CC (1998) TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat Med 4:78–83PubMedCrossRefGoogle Scholar
  89. 89.
    Ramos-Casals M, Brito-Zeron P, Soto MJ, Cuadrado MJ, Khamashta MA (2008) Autoimmune diseases induced by TNF-targeted therapies. Best Pract Res Clin Rheumatol 22:847–861PubMedCrossRefGoogle Scholar
  90. 90.
    Dinarello CA (2003) Anti-cytokine therapeutics and infections. Vaccine 21:S24–S34PubMedCrossRefGoogle Scholar
  91. 91.
    MacLennan C, Fieschi C, Lammas DA, Picard C, Dorman SE, Sanal O, MacLennan JM, Holland SM, Ottenhoff TH, Casanova JL, Kumararatne DS (2004) Interleukin (IL)-12 and IL-23 are key cytokines for immunity against Salmonella in humans. J Infect Dis 190:1755–1757PubMedCrossRefGoogle Scholar
  92. 92.
    Rudner XL, Happel KI, Young EA, Shellito JE (2007) Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect Immun 75:3055–3061PubMedCrossRefGoogle Scholar
  93. 93.
    Shear NH, Prinz J, Papp K, Langley RG, Gulliver WP (2008) Targeting the interleukin-12/23 cytokine family in the treatment of psoriatic disease. J Cutan Med Surg 12:S1–S10PubMedGoogle Scholar
  94. 94.
    Chackerian AA, Chen SJ, Brodie SJ, Mattson JD, McClanahan TK, Kastelein RA, Bowman EP (2006) Neutralization or absence of the interleukin-23 pathway does not compromise immunity to mycobacterial infection. Infect Immun 74:6092–6099PubMedCrossRefGoogle Scholar
  95. 95.
    Dumoutier L, Louahed J, Renauld JC (2000) Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 164:1814–1819PubMedGoogle Scholar
  96. 96.
    Wolk K, Kunz S, Asadullah K, Sabat R (2002) Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol 168:5397–5402PubMedGoogle Scholar
  97. 97.
    Nograles KE, Zaba LC, Shemer A, Fuentes-Duculan J, Cardinale I, Kikuchi T, Ramon M, Bergman R, Krueger JG, Guttman-Yassky E (2009) IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol 123:1244–1252PubMedCrossRefGoogle Scholar
  98. 98.
    Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F (2009) Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol 10:857–863PubMedCrossRefGoogle Scholar
  99. 99.
    Wolk K, Haugen HS, Xu W, Witte E, Waggie K, Anderson M, Vom Baur E, Witte K, Warszawska K, Philipp S, Johnson-Leger C, Volk HD, Sterry W, Sabat R (2009) IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not. J Mol Med 87:523–536PubMedCrossRefGoogle Scholar
  100. 100.
    Wolk K, Witte E, Warszawska K, Schulze-Tanzil G, Witte K, Philipp S, Kunz S, Döcke WD, Asadullah K, Volk HD, Sterry W, Sabat R (2009) The Th17 cytokine IL-22 induces IL-20 production in keratinocytes: a novel immunological cascade with potential relevance in psoriasis. Eur J Immunol 39(3570–358):1Google Scholar
  101. 101.
    Sabat R, Wolk K (2011) Research in practice: IL-22 and IL-20: significance for epithelial homeostasis and psoriasis pathogenesis. J Dtsch Dermatol Ges (in press)Google Scholar
  102. 102.
    Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F (2005) IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol 174:3695–3702PubMedGoogle Scholar
  103. 103.
    Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R (2004) IL-22 increases the innate immunity of tissues. Immunity 21:241–254PubMedCrossRefGoogle Scholar
  104. 104.
    Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP, Pestka S (2001) Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10R beta) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J Biol Chem 276:2725–2732PubMedCrossRefGoogle Scholar
  105. 105.
    Savan R, McFarland AP, Reynolds DA, Feigenbaum L, Ramakrishnan K, Karwan M, Shirota H, Klinman DM, Dunleavy K, Pittaluga S, Anderson SK, Donnelly RP, Wilson WH, Young HA (2011) A novel role for IL-22R1 as a driver of inflammation. Blood 117:575–584PubMedCrossRefGoogle Scholar
  106. 106.
    Jones BC, Logsdon NJ, Walter MR (2008) Structure of IL-22 bound to its high-affinity IL-22R1 chain. Structure 16:1333–1344PubMedCrossRefGoogle Scholar
  107. 107.
    Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld JC (2002) Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. J Biol Chem 277:33676–33682PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Anupam Mitra
    • 1
  • Robyn S. Fallen
    • 2
  • Hermenio Cavalcante Lima
    • 3
  1. 1.Department of Dermatology, VA Medical Centre, SacramentoUniversity of California, DavisSacramentoUSA
  2. 2.Michael G. DeGroote School of Medicine, Waterloo Regional CampusMcMaster UniversityHamiltonCanada
  3. 3.Division of Dermatology, Department of Medicine, Michael G. DeGroote School of MedicineMcMaster UniversityHamiltonCanada

Personalised recommendations