Clinical Reviews in Allergy & Immunology

, Volume 42, Issue 1, pp 71–78 | Cite as

Leaky Gut and Autoimmune Diseases

Article

Abstract

Autoimmune diseases are characterized by tissue damage and loss of function due to an immune response that is directed against specific organs. This review is focused on the role of impaired intestinal barrier function on autoimmune pathogenesis. Together with the gut-associated lymphoid tissue and the neuroendocrine network, the intestinal epithelial barrier, with its intercellular tight junctions, controls the equilibrium between tolerance and immunity to non-self antigens. Zonulin is the only physiologic modulator of intercellular tight junctions described so far that is involved in trafficking of macromolecules and, therefore, in tolerance/immune response balance. When the zonulin pathway is deregulated in genetically susceptible individuals, autoimmune disorders can occur. This new paradigm subverts traditional theories underlying the development of these diseases and suggests that these processes can be arrested if the interplay between genes and environmental triggers is prevented by re-establishing the zonulin-dependent intestinal barrier function. Both animal models and recent clinical evidence support this new paradigm and provide the rationale for innovative approaches to prevent and treat autoimmune diseases.

Keywords

Antigens Autoimmunity Gut permeability Immune response Tight junctions Zonulin 

References

  1. 1.
    Perl A (2004) Pathogenesis and spectrum of autoimmunity. Methods Mol Med 102:1–8PubMedGoogle Scholar
  2. 2.
    Christen U, von Herrath MG (2004) Induction, acceleration or prevention of autoimmunity by molecular mimicry. Mol Immunol 40:1113–1120PubMedCrossRefGoogle Scholar
  3. 3.
    Fasano A (2001) Pathological and therapeutic implications of macromolecule passage through the tight junction. In Tight Junctions. CRC Press, Inc, Boca Raton, pp 697–722Google Scholar
  4. 4.
    Yu QH, Yang Q (2009) Diversity of tight junctions (TJs) between gastrointestinal epithelial cells and their function in maintaining the mucosal barrier. Cell Biol Int 33:78–82PubMedCrossRefGoogle Scholar
  5. 5.
    Fasano A (2001) Intestinal zonulin: open sesame! Gut 49:159–162PubMedCrossRefGoogle Scholar
  6. 6.
    Fasano A, Shea-Donohue T (2005) Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroneterol Hepatol 2:416–422CrossRefGoogle Scholar
  7. 7.
    Plenge RM (2010) Unlocking the pathogenesis of celiac disease. Nat Genet 42:281–282PubMedCrossRefGoogle Scholar
  8. 8.
    Drago S, El Asmar R, De Pierro M et al (2006) Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 41:408–419PubMedCrossRefGoogle Scholar
  9. 9.
    Madara JL, Trier JS (1980) Structural abnormalities of jejunal epithelial cell membranes in celiac sprue. Lab Inves 43:254–261Google Scholar
  10. 10.
    Szakál DN, Gyorffy H, Arató A et al (2010) Mucosal expression of claudins 2, 3 and 4 in proximal and distal part of duodenum in children with coeliac disease. Virchows Arch 456:245–250PubMedCrossRefGoogle Scholar
  11. 11.
    Tripathi A, Lammers KM, Goldblum S et al (2009) Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci U S A 106:16799–16804PubMedCrossRefGoogle Scholar
  12. 12.
    Wolters VM, Alizadeh BZ, Weijerman ME et al (2010) Intestinal barrier gene variants may not explain the increased levels of antigliadin antibodies, suggesting other mechanisms than altered permeability. Hum Immunol 71:392–396PubMedCrossRefGoogle Scholar
  13. 13.
    Mäkelä M, Vaarala O, Hermann R et al (2006) Enteral virus infections in early childhood and an enhanced type 1 diabetes-associated antibody response to dietary insulin. J Autoimmun 27:54–61PubMedCrossRefGoogle Scholar
  14. 14.
    Mojibian M, Chakir H, Lefebvre DE, Crookshank JA, Sonier B, Keely E, Scott FW (2009) Diabetes-specific HLA-DR-restricted proinflammatory T-cell response to wheat polypeptides in tissue transglutaminase antibody-negative patients with type 1 diabetes. Diabetes 58:1789–1796PubMedCrossRefGoogle Scholar
  15. 15.
    Westall FC (2007) Abnormal hormonal control of gut hydrolytic enzymes causes autoimmune attack on the CNS by production of immune-mimic and adjuvant molecules: a comprehensive explanation for the induction of multiple sclerosis. Med Hypotheses 68:364–369PubMedCrossRefGoogle Scholar
  16. 16.
    Yokote H, Miyake S, Croxford JL, Oki S, Mizusawa H, Yamamura T (2008) NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol 173:1714–1723PubMedCrossRefGoogle Scholar
  17. 17.
    Edwards CJ (2008) Commensal gut bacteria and the etiopathogenesis of rheumatoid arthritis. J Rheumatol 35:1477–14797PubMedGoogle Scholar
  18. 18.
    Abreu MT (2010) Toll-like receptor signaling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 10:131–144PubMedCrossRefGoogle Scholar
  19. 19.
    Fasano A (2008) Physiological, pathological, and therapeutic implications of zonulin-mediated intestinal barrier modulation: living life on the edge of the wall. Am J Pathol 173:1243–1252PubMedCrossRefGoogle Scholar
  20. 20.
    Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124:3–20PubMedCrossRefGoogle Scholar
  21. 21.
    Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 91:151–175PubMedCrossRefGoogle Scholar
  22. 22.
    Cereijido M (1992) Evolution of ideas on the tight junction. In Tight Junction. CRC Press, Inc., Boca Raton, p 1Google Scholar
  23. 23.
    Fasano A, Baudry B, Pumplin DW et al (1991) Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci U S A 88:5242–5246PubMedCrossRefGoogle Scholar
  24. 24.
    Wang W, Uzzau S, Goldblum SE et al (2000) Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci 113:4435–4440PubMedGoogle Scholar
  25. 25.
    Fasano A, Not T, Wang W et al (2000) Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 358:1518–1519CrossRefGoogle Scholar
  26. 26.
    El Asmar R, Panigrahi P, Bamford P et al (2002) Host-dependent activation of the zonulin system is involved in the impairment of the gut barrier function following bacterial colonization. Gastroenterology 123:1607–1615PubMedCrossRefGoogle Scholar
  27. 27.
    Branski D, Fasano A, Troncone R (2006) Latest developments in the pathogenesis and treatment of celiac disease. J Pediatr 149:295–300PubMedCrossRefGoogle Scholar
  28. 28.
    Fasano A (2009) Surprises from celiac disease. Sci Am 301:54–61PubMedCrossRefGoogle Scholar
  29. 29.
    Lammers KM, Lu R, Brownley J et al (2008) Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 135:194–204PubMedCrossRefGoogle Scholar
  30. 30.
    Thomas KE, Fasano A, Vogel SN (2006) Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in Celiac disease. J Immunol 176:2512–2521PubMedGoogle Scholar
  31. 31.
    Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799–809PubMedCrossRefGoogle Scholar
  32. 32.
    Jabri B, Sollid LM (2009) Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol 9:858–870PubMedCrossRefGoogle Scholar
  33. 33.
    Maki M, Huupponen T, Holm K, Hallstrom O (1995) Seroconversion of reticulin autoantibodies predicts coeliac disease in insulin dependent diabetes mellitus. Gut 36:239–242PubMedCrossRefGoogle Scholar
  34. 34.
    Collin P, Salmi J, Hallstrom O (1989) High frequency of coeliac disease in adult patients with type 1 diabetes. Scand J Gastroenterol 24:81–88PubMedCrossRefGoogle Scholar
  35. 35.
    Fasano A (2001) Pathological and therapeutical implications of macromolecule passage through the tight junction. In Tight junctions. CRC Press, Inc., Boca Raton, pp 697–722Google Scholar
  36. 36.
    Carratù R, Secondulfo M, de Magistris L et al (1999) Altered intestinal permeability to mannitol in diabetes mellitus type I. J Pediatr Gastroenterol Nutr 28:264–271PubMedCrossRefGoogle Scholar
  37. 37.
    Meddings JB, Jarand J, Urbanski SJ et al (1999) Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat. Am J Physiol 276:G951–G957PubMedGoogle Scholar
  38. 38.
    Watts T, Berti I, Sapone A, Gerarduzzi T, Not T, Zielke R, Fasano A (2005) Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc Natl Acad Sci U S A 102:2916–2921PubMedCrossRefGoogle Scholar
  39. 39.
    Sapone A, de Magistris L, Pietzak M et al (2006) Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 55:1443–1449PubMedCrossRefGoogle Scholar
  40. 40.
    Scott FW, Cloutier HE, Kleeman R et al (1997) Potential mechanisms by which certain foods promote or inhibit the development of spontaneous diabetes in BB rats. Dose, timing, early effect on islet area, and switch in infiltrate from Th1 to Th2 cells. Diabetes 46:589–598PubMedCrossRefGoogle Scholar
  41. 41.
    Visser J, Rozing J, Sapone A, Lammers K, Fasano A (2009) Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms. Ann N Y Acad Sci 1165:195–205PubMedCrossRefGoogle Scholar
  42. 42.
    Visser JT, Lammers K, Hoogendijk A et al (2010) Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat. Diabetologia 53:2621–2628PubMedCrossRefGoogle Scholar
  43. 43.
    Simpson M, Mojibian M, Barriga K, Scott F, Fasano A, Rewers M, Norris J (2009) An exploration of Glo-3A antibody levels in children at increased risk for type 1 diabetes mellitus. Pediatr Diabetes 10:563–572PubMedCrossRefGoogle Scholar
  44. 44.
    Hijazi Z, Molla AM, Al-Habashi H et al (2004) Intestinal permeability is increased in bronchial asthma. Arch Dis Child 89:227–229PubMedCrossRefGoogle Scholar
  45. 45.
    Yacyshyn B, Meddings J, Sadowski D, Bowen-Yacyshyn MB (1996) Multiple sclerosis patients have peripheral blood CD45RO+ B cells and increased intestinal permeability. Dig Dis Sci 41:2493–2501PubMedCrossRefGoogle Scholar
  46. 46.
    Yacyshyn BR, Meddings JB (1995) CD45RO expression on circulating CD19+ B cells in Crohn’s disease correlates with intestinal permeability. Gastroenterology 108:132–138PubMedCrossRefGoogle Scholar
  47. 47.
    Schmitz H, Barmeyer C, Fromm M et al (1999) Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology 116:301–307PubMedCrossRefGoogle Scholar
  48. 48.
    Weber CR, Turner JR (2007) Inflammatory bowel disease: is it really just another break in the wall? Gut 56:6–8PubMedCrossRefGoogle Scholar
  49. 49.
    Wang F, Schwarz BT, Graham WV et al (2006) IFN-gamma-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroenterology 131:1153–1163PubMedCrossRefGoogle Scholar
  50. 50.
    Wendling D, Bidet A, Guidet M (1992) Evaluation de la perméabilité intestinale au cours de la spondylarthrite ankylosante par le test au 51Cr-EDTA. Rev Esp Reumatol 19:253–256Google Scholar
  51. 51.
    Martinez-Gonzalez O, Cantero-Hinojosa J, Paule-Sastre P, Gomez-Magan JC, Salvtierra-Rios D (1994) Intestinal permeability in patients with ankylosing spondylitis and their healthy relatives. Br J Rheumatol 33:644–648PubMedCrossRefGoogle Scholar
  52. 52.
    Vaile JH, Meddings JB, Yacyshyn BR, Russell AS, Maksymowych WP (1999) Bowel permeability and CD45RO expression on circulating CD20+ B cells in patients with ankylosing spondylitis and their relatives. J Rheumatol 26:128–133PubMedGoogle Scholar
  53. 53.
    Liu J, Zhu P, Peng J, Li K, Du J, Gu J, Ou Y (2007) Identification of disease-associated proteins by proteomic approach in ankylosing spondylitis. Biochem Biophys Res Commun 357:531–536PubMedCrossRefGoogle Scholar
  54. 54.
    Paterson BM, Lammers KM, Arrieta MC, Fasano A, Meddings JB (2007) The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in celiac disease subjects: a proof of concept study. Aliment Pharmacol Ther 26:757–766PubMedCrossRefGoogle Scholar
  55. 55.
    Kelly CP, Green PH, Murray JA et al (2009) Safety, tolerability and effects on intestinal permeability of larazotide acetate in celiac disease: results of a phase IIB 6-week gluten-challenge clinical trial. Gastroenterology 136(Supplement 1):A-474CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Mucosal Biology Research CenterUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations