Clinical Reviews in Allergy & Immunology

, Volume 41, Issue 2, pp 126–138 | Cite as

Recent Concepts of Autoimmune Pancreatitis and IgG4-Related Disease

  • Kazuichi Okazaki
  • Kazushige Uchida
  • Hideaki Miyoshi
  • Tsukasa Ikeura
  • Makoto Takaoka
  • Akiyoshi Nishio
Article

Abstract

Recent studies suggested the existence of two subtypes of autoimmune pancreatitis (AIP): type 1 related with IgG4 (lymphoplasmacytic sclerosing pancreatitis; LPSP) and type 2 related with a granulocytic epithelial lesion (idiopathic duct-centric chronic pancreatitis; IDCP). Apart from type 2 AIP, the pathological features of type 1 AIP with increased serum IgG4/IgE levels, abundant infiltration of IgG4+ plasmacytes and lymphocytes, fibrosis, and steroid responsiveness are suggestive of abnormal immunity such as allergy or autoimmunity. Moreover, the patients with type 1 AIP often have extrapancreatic lesions such as sclerosing cholangitis, sclerosing sialadenitis, or retroperitoneal fibrosis showing similar pathological features. Based on these findings, many synonyms have been proposed for these conditions, such as “multifocal idiopathic fibrosclerosis”, “IgG4-related autoimmune disease”, “IgG4-related sclerosing disease”, “IgG4-related plasmacytic disease”, and “IgG4-related multiorgan lymphoproliferative syndrome”, all of which may refer to the same conditions. Therefore, the Japanese Research Committee for “Systemic IgG4-related Sclerosing Disease” proposed a disease concept and clinical diagnostic criteria based on the concept of multifocal fibrosclerosis in 2009, in which the term “IgG4-related disease” was appointed as a minimal consensus on these conditions. Although the significance of IgG4 in the development of “IgG4-related disease” remains unclear, we have proposed a hypothesis for the development of type 1 AIP, one of the IgG4-related disease. The concept and diagnostic criteria of “IgG4-related disease” will be changed in accordance with future studies.

Keywords

IgG4 IgG4-related disease Autoimmune pancreatitis Mikulicz disease Regulatory T cell (Treg) 

Abbreviations

AIP

Autoimmune pancreatitis

ANA

Anti-nuclear antibody

CA-II

Carbonic anhydrase-II

CTLA-4

Cytotoxic T lymphocyte antigen-4

ERCP

Endoscopic retrograde cholangiopancreatography

FCRL

Fc-receptor-like

IFN-γ

Interferon-γ

IL-4

Interleukin-4

LF

Lactoferrin

LPSP

Lymphoplasmacytic sclerosing pancreatitis

MD

Mikulicz disease

MHC

Major histocompatibility complex

MOLPS

Multiorgan lymphoproliferative disease

PBP

Plasminogen-binding protein

SjS

Sjögren’s syndrome

PSC

Primary sclerosing cholangitis

RF

Rheumatoid factor

SIPS

IgG4-systemic plasmacytic syndrome

SLE

Systemic lupus erythematosus

Treg

Regulatory T cell

UBR2

Ubiquitin-protein ligase E3 component n-recognin 2

Notes

Acknowledgment

This study was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Culture and Science of Japan (20590810) and a Grant-in-Aid for “Research for Intractable Disease” Program from the Ministry of Health, Labor and Welfare of Japan.

References

  1. 1.
    Sarles H, Sarles JC, Muratore R, Guien C (1961) Chronic inflammatory sclerosis of the pancreas—an autonomous pancreatic disease? Am J Dig Dis 6:688–698PubMedCrossRefGoogle Scholar
  2. 2.
    Yoshida K, Toki F, Takeuchi T, Watanabe S, Shiratori K, Hayashi N (1995) Chronic pancreatitis caused by an autoimmune abnormality. Proposal of the concept of autoimmune pancreatitis. Dig Dis Sci 40:1561–1568PubMedCrossRefGoogle Scholar
  3. 3.
    Hamano H, Kawa S, Horiuchi A et al (1995) High serum IgG4 concentrations in patients with sclerosing pancreatitis. New Engl J Med 344:732–738CrossRefGoogle Scholar
  4. 4.
    Okazaki K, Uchida K, Chiba T (2001) Recent concept of autoimmune-related pancreatitis. J Gastroenterol 36:293–302PubMedCrossRefGoogle Scholar
  5. 5.
    Okazaki K (2006) Autoimmune pancreatitis—recent concept. In: Parviz M (ed) Target organ toxicology series, Toxicology of the pancreas. Taylor & Francis, Boca Raton, pp 59–73Google Scholar
  6. 6.
    Pickartz T, Mayerle J, Lerch M (2007) Autoimmune pancreatitis. Nat Clin Pract Gastroenterol Hepatol 4:314–323PubMedCrossRefGoogle Scholar
  7. 7.
    Kawaguchi K, Koike M, Tsuruta K, Okamoto A, Tabata I, Fujita N (1991) Lymphoplasmacytic sclerosing pancreatitis with cholangitis: a variant of primary sclerosing cholangitis extensively involving pancreas. Hum Pathol 22:387–395PubMedCrossRefGoogle Scholar
  8. 8.
    Kamisawa T, Funata N, Hayashi Y et al (2003) A new clinicopathological entity of IgG4-related autoimmune disease. J Gastroenterol 38:982–984PubMedCrossRefGoogle Scholar
  9. 9.
    Comings DE et al (1967) Familial multifocal fibrosclerosis. Ann Intern Med 66:884–892PubMedGoogle Scholar
  10. 10.
    Chari ST, Kloeppel G, Zhang L et al (2010) Histopathologic and clinical subtypes of autoimmune pancreatitis: the Honolulu consensus document. Pancreas 39:549–554PubMedCrossRefGoogle Scholar
  11. 11.
    Mikulicz J (1892) Über eine eigenartige symmetrishe Erkrankung der Tränen und Mundspeicheldrüsen. Beitr z Chir Fesrschr f Theodor Billroth, Stuttgart, pp 610–630Google Scholar
  12. 12.
    Okazaki K, Kawa S, Kamisawa T et al (2006) Clinical diagnostic criteria of autoimmune pancreatitis: revised proposal. J Gastroenterol 41:626–631PubMedCrossRefGoogle Scholar
  13. 13.
    Kamisawa T, Okamoto A (2006) Autoimmune pancreatitis: proposal of IgG4-related sclerosing disease. J Gastroenterol 41:613–625PubMedCrossRefGoogle Scholar
  14. 14.
    Yamamoto M, Takahashi H, Ohara M et al (2006) A new conceptualization for Mikulicz’s disease as an IgG4-related plasmacytic disease. Mod Rheumatol 16:335–340PubMedCrossRefGoogle Scholar
  15. 15.
    Masaki Y, Dong L, Kurose N et al (2009) Proposal for a new clinical entity, IgG4-positive multi-organ lymphoproliferative syndrome: analysis of 64 cases of IgG4-related disorders. Ann Rheum Dis 68:1310–1315PubMedCrossRefGoogle Scholar
  16. 16.
    Notohara K, Burgart LJ, Yadav D et al (2003) Idiopathic chronic pancreatitis with periductal lymphoplasmacytic infiltration: clinico-pathologic features of 35 cases. Am J Surg Pathol 27:1119–1127PubMedCrossRefGoogle Scholar
  17. 17.
    Zamboni G, Lüttges J, Capelli P et al (2004) Histopathological features of diagnostic and clinical relevance in autoimmune pancreatitis: a study on 53 resection specimens and 9 biopsy specimens. Virchows Arch 445:552–563PubMedCrossRefGoogle Scholar
  18. 18.
    Kamisawa T, Funata N, Hayashi Y et al (2003) Close relationship between autoimmune pancreatitis and multifocal fibrosclerosis. Gut 52:683–687PubMedCrossRefGoogle Scholar
  19. 19.
    Saegusa H, Momose M, Kawa S et al (2003) Hilar and pancreatic gallium-67 accumulation is characteristic feature of autoimmune pancreatitis. Pancreas 27:20–251PubMedCrossRefGoogle Scholar
  20. 20.
    Erkelens GW, Vleggaar FP, Lesterhuis W et al (1999) Sclerosing pancreato-cholangitis responsive to steroid therapy. Lancet 354:43–44PubMedCrossRefGoogle Scholar
  21. 21.
    Nakazawa T, Ohara H, Yamada T (2001) Atypical primary sclerosing cholangitis cases associated with unusual pancreatitis. Hepatogastroenterology 48:625–630PubMedGoogle Scholar
  22. 22.
    Hamano H, Kawa S, Ochi Y et al (2002) Hydronephrosis associated with retroperitoneal fibrosis and sclerosing pancreatitis. Lancet 359:1403–1404PubMedCrossRefGoogle Scholar
  23. 23.
    Takeda S, Haratake J, Kasai T et al (2004) IgG4-associated idiopathic tubulointerstitial nephritis complicating autoimmune pancreatitis. Nephrol Dial Transplant 19:474–476PubMedCrossRefGoogle Scholar
  24. 24.
    Uchiyama-Tanaka Y, Mori Y, Kimura T et al (2004) Acute tubulointerstitial nephritis associated with autoimmune-related pancreatitis. Am J Kidney Dis 43:e18–e25PubMedCrossRefGoogle Scholar
  25. 25.
    Shimatsu A, Oki Y, Fujisawa I et al (2009) Pituitary and stalk lesions (infundibulo-hypophysitis) associated with immunoglobulin G4-related systemic disease: an emerging clinical entity. Endocr J 56:1033–1041PubMedCrossRefGoogle Scholar
  26. 26.
    Komatsu K, Hamano H, Ochi Y et al (2005) High prevalence of hypothyroidism in patients with autoimmune pancreatitis. Dig Dis Sci 50:1052–1057PubMedCrossRefGoogle Scholar
  27. 27.
    Yoshimura Y, Takeda S, Ieki Y et al (2006) IgG4-associated prostatitis complicating autoimmune pancreatitis. Intern Med 45:897–901PubMedCrossRefGoogle Scholar
  28. 28.
    Okazaki K, Uchida K, Matsushita M et al (2007) How to diagnose autoimmune pancreatitis by the revised Japanese clinical criteria. J Gastroenterol 42(Suppl 18):32–38PubMedCrossRefGoogle Scholar
  29. 29.
    Ohara H, Nakazawa T, Sano H et al (2005) Systemic extrapancreatic lesions associated with autoimmune pancreatitis. Pancreas 31:232–237PubMedCrossRefGoogle Scholar
  30. 30.
    Hamano H, Arakura N, Muraki T et al (2006) Prevalence and distribution of extrapancreatic lesions complicating autoimmune pancreatitis. J Gastroenterol 41:1197–1205PubMedCrossRefGoogle Scholar
  31. 31.
    Kawa S, Okazaki K, Kamisawa T et al (2010) Japanese consensus guidelines for management of autoimmune pancreatitis: II. Extrapancreatic lesions, differential diagnosis. J Gastroenterol 45:355–369PubMedCrossRefGoogle Scholar
  32. 32.
    Okazaki K, Kawa S, Kamisawa T et al (2009) Japanese clinical guidelines for autoimmune pancreatitis. Pancreas 38:849–866PubMedCrossRefGoogle Scholar
  33. 33.
    Okazaki K, Kawa S, Kamisawa T et al (2010) Japanese consensus guidelines for management of autoimmune pancreatitis: I. Concept and diagnosis of autoimmune pancreatitis. J Gastroenterol 45:249–265PubMedCrossRefGoogle Scholar
  34. 34.
    Kamisawa T, Okazaki K, Kawa S et al (2010) Japanese consensus guidelines for management of autoimmune pancreatitis: III. Treatment and prognosis of AIP. J Gastroenterol 45:471–477PubMedCrossRefGoogle Scholar
  35. 35.
    Okazaki K, Uchida K, Research Committee Members (2009) Proposal of the concept and diagnostic criteria of IgG4-related disease. Annual reports of research committee of intractable diseases supported by Ministry of Health, Labour and Welfare of Japan, pp 25–30 (in Japanese)Google Scholar
  36. 36.
    Masaki Y, Sugai S, Umehara H (2010) IgG4-related diseases including Mikulicz’s disease and sclerosing pancreatitis: diagnostic insights. J Rheumatol 37:1380–1385PubMedCrossRefGoogle Scholar
  37. 37.
    Kawa S, Ota M, Yoshizawa K et al (2002) HLA DRB10405-DQB10401 haplotype is associated with autoimmune pancreatitis in the Japanese population. Gastroenterology 122:1264–1269PubMedCrossRefGoogle Scholar
  38. 38.
    Park do H, Kim MH, Oh HB (2008) Substitution of aspartic acid at position 57 of the DQbeta1 affects relapse of autoimmune pancreatitis. Gastroenterology 134:440–446PubMedCrossRefGoogle Scholar
  39. 39.
    Kochi Y, Yamada R, Suzuki A et al (2005) A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet 37(5):478–485PubMedCrossRefGoogle Scholar
  40. 40.
    Umemura T, Ota M, Hamano H, Katsuyama Y, Kiyosawa K, Kawa S (2006) Genetic association of Fc receptor-like 3 polymorphisms with autoimmune pancreatitis in Japanese patients. Gut 55(9):1367–1368PubMedCrossRefGoogle Scholar
  41. 41.
    Umemura T, Katsuyama Y, Hamano H et al (2009) Association analysis of Toll-like receptor 4 polymorphisms with autoimmune pancreatitis. Hum Immunol 70:742–746PubMedCrossRefGoogle Scholar
  42. 42.
    Chang MC, Chang YT, Tien YW et al (2007) T-cell regulatory gene CTLA-4 polymorphism/haplotype association with autoimmune pancreatitis. Clin Chem 53(9):1700–1705PubMedCrossRefGoogle Scholar
  43. 43.
    Umemura T, Ota M, Hamano H et al (2008) Association of autoimmune pancreatitis with cytotoxic T-lymphocyte antigen 4 gene polymorphisms in Japanese patients. Am J Gastroenterol 103(3):588–594PubMedCrossRefGoogle Scholar
  44. 44.
    Ueda H, Howson JM, Esposito L et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423(6939):506–511PubMedCrossRefGoogle Scholar
  45. 45.
    Roitt I (1997) Antibodies. In: Roitt I (ed) Roitt’s essential immunology, 9th edn. Blackwell Science, London, pp 43–62Google Scholar
  46. 46.
    Taguchi M, Kihara Y, Nagashio Y, Yamamoto M, Otsuki M, Harada M (2009) Decreased production of immunoglobulin M and A in autoimmune pancreatitis. J Gastroenterol 44:1133–1139PubMedCrossRefGoogle Scholar
  47. 47.
    Robinson DS, Larche M, Durham SR (2004) Tregs and allergic disease. J Clin Invest 114(10):1389–1397PubMedGoogle Scholar
  48. 48.
    van der Neut Kolfschoten M, Schuurman J, Losen M et al (2007) Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317(5844):1554–1557PubMedCrossRefGoogle Scholar
  49. 49.
    Kawa S, Kitahara K, Hamano H et al (2008) A novel immunoglobulin-immunoglobulin interaction in autoimmunity. PLoS ONE 3(2):e1637PubMedCrossRefGoogle Scholar
  50. 50.
    Cornell LD, Chicano SL, Deshpande V et al (2007) Pseudotumors due to IgG4 immune-complex tubulointerstitial nephritis associated with autoimmune pancreatocentric disease. Am J Surg Pathol 31(10):1586–1597PubMedCrossRefGoogle Scholar
  51. 51.
    Muraki T, Hamano H, Ochi Y et al (2006) Autoimmune pancreatitis and complement activation system. Pancreas 32(1):16–21PubMedCrossRefGoogle Scholar
  52. 52.
    Uchida K, Okazaki K, Konishi Y et al (2000) Clinical analysis of autoimmune-related pancreatitis. Am J Gastroenterol 95(10):2788–2794PubMedCrossRefGoogle Scholar
  53. 53.
    Okazaki K, Uchida K, Ohana M et al (2000) Autoimmune-related pancreatitis is associated with autoantibodies and a Th1/Th2-type cellular immune response. Gastroenterology 118(3):573–581PubMedCrossRefGoogle Scholar
  54. 54.
    Nishi H, Tojo A, Onozato ML et al (2007) Anti-carbonic anhydrase II antibody in autoimmune pancreatitis and tubulointerstitial nephritis. Nephrol Dial Transplant 22(4):1273–1275PubMedCrossRefGoogle Scholar
  55. 55.
    Aparisi L, Farre A, Gomez-Cambronero L et al (2005) Antibodies to carbonic anhydrase and IgG4 levels in idiopathic chronic pancreatitis: relevance for diagnosis of autoimmune pancreatitis. Gut 54(5):703–709PubMedCrossRefGoogle Scholar
  56. 56.
    Nishimori I, Miyaji E, Morimoto K, Nagao K, Kamada M, Onishi S (2005) Serum antibodies to carbonic anhydrase IV in patients with autoimmune pancreatitis. Gut 54(2):274–281PubMedCrossRefGoogle Scholar
  57. 57.
    Asada M, Nishio A, Uchida K et al (2006) Identification of a novel autoantibody against pancreatic secretory trypsin inhibitor in patients with autoimmune pancreatitis. Pancreas 33(1):20–26PubMedCrossRefGoogle Scholar
  58. 58.
    Endo T, Takizawa S, Tanaka S et al (2009) Amylase alpha-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes. Diabetes 58(3):732–737PubMedCrossRefGoogle Scholar
  59. 59.
    Takizawa S, Endo T, Wanjia X, Tanaka S, Takahashi M, Kobayashi T (2009) HSP 10 is a new autoantigen in both autoimmune pancreatitis and fulminant type 1 diabetes. Biochem Biophys Res Commun 386(1):192–196PubMedCrossRefGoogle Scholar
  60. 60.
    Frulloni L, Lunardi C, Simone R et al (2009) Identification of a novel antibody associated with autoimmune pancreatitis. N Engl J Med 361(22):2135–2142PubMedCrossRefGoogle Scholar
  61. 61.
    Nishimori I, Bratanova T, Toshkov I et al (1995) Induction of experimental autoimmune sialoadenitis by immunization of PL/J mice with carbonic anhydrase II. J Immunol 154(9):4865–4873PubMedGoogle Scholar
  62. 62.
    Ueno Y, Ishii M, Takahashi S, Igarashi T, Toyota T, LaRusso NF (1998) Different susceptibility of mice to immune-mediated cholangitis induced by immunization with carbonic anhydrase II. Lab Invest 78(5):629–637PubMedGoogle Scholar
  63. 63.
    Kountouras J, Zavos C, Gavalas E, Tzilves D (2007) Challenge in the pathogenesis of autoimmune pancreatitis: potential role of helicobacter pylori infection via molecular mimicry. Gastroenterology 133(1):368–369PubMedCrossRefGoogle Scholar
  64. 64.
    Kountouras J, Zavos C, Chatzopoulos D (2005) A concept on the role of Helicobacter pylori infection in autoimmune pancreatitis. J Cell Mol Med 9(1):196–207PubMedCrossRefGoogle Scholar
  65. 65.
    Guarneri F, Guarneri C, Benvenga S (2005) Helicobacter pylori and autoimmune pancreatitis: role of carbonic anhydrase via molecular mimicry? J Cell Mol Med 9(3):741–744PubMedCrossRefGoogle Scholar
  66. 66.
    McGeachy MJ, Cua DJ (2007) The link between IL-23 and Th17 cell-mediated immune pathologies. Semin Immunol 19(6):372–376PubMedCrossRefGoogle Scholar
  67. 67.
    Oukka M (2007) Interplay between pathogenic Th17 and regulatory T cells. Ann Rheum Dis 66(Suppl 3):iii87–iii90PubMedCrossRefGoogle Scholar
  68. 68.
    Yamamoto M, Harada S, Ohara M et al (2005) Clinical and pathological differences between Mikulicz’s disease and Sjogren’s syndrome. Rheumatology 44(2):227–234PubMedCrossRefGoogle Scholar
  69. 69.
    Zen Y, Fujii T, Harada K et al (2007) Th2 and regulatory immune reactions are increased in immunoglobulin G4-related sclerosing pancreatitis and cholangitis. Hepatology 45(6):1538–1546PubMedCrossRefGoogle Scholar
  70. 70.
    Uchida K, Okazaki K, Nishi T et al (2002) Experimental immune-mediated pancreatitis in neonatally thymectomized mice immunized with carbonic anhydrase II and lactoferrin. Lab Invest 82(4):411–424PubMedCrossRefGoogle Scholar
  71. 71.
    Ajjan RA, McIntosh RS, Waterman EA et al (1998) Analysis of the T-cell receptor Valpha repertoire and cytokine gene expression in Sjogren’s syndrome. Br J Rheumatol 37(2):179–185PubMedCrossRefGoogle Scholar
  72. 72.
    Dienes HP, Lohse AW, Gerken G et al (1997) Bile duct epithelia as target cells in primary biliary cirrhosis and primary sclerosing cholangitis. Virchows Arch 431(2):119–124PubMedCrossRefGoogle Scholar
  73. 73.
    Valencia X, Lipsky PE (2007) CD4+CD25+FoxP3+ regulatory T cells in autoimmune diseases. Nat Clin Pract Rheumatol 3(11):619–626PubMedCrossRefGoogle Scholar
  74. 74.
    Gottenberg JE, Lavie F, Abbed K et al (2005) CD4 CD25high regulatory T cells are not impaired in patients with primary Sjogren’s syndrome. J Autoimmun 24(3):235–242PubMedCrossRefGoogle Scholar
  75. 75.
    Miyoshi H, Uchida K, Taniguchi T et al (2008) Circulating naive and CD4+CD25high regulatory T cells in patients with autoimmune pancreatitis. Pancreas 36(2):133–140PubMedCrossRefGoogle Scholar
  76. 76.
    Stanley JR, Amagai M (2006) Pemphigus, bullous impetigo, and the staphylococcal scalded-skin syndrome. N Engl J Med 355(17):1800–1810PubMedCrossRefGoogle Scholar
  77. 77.
    Fujii H, Nakatani K, Arita N et al (2003) Internalization of antibodies by endothelial cells via fibronectin implicating a novel mechanism in lupus nephritis. Kidney Int 64(5):1662–1670PubMedCrossRefGoogle Scholar
  78. 78.
    Aalberse RC, Stapel SO, Schuurman J, Rispens T (2009) Immunoglobulin G4: an odd antibody. Clin Exp Allergy 39(4):469–477PubMedCrossRefGoogle Scholar
  79. 79.
    Ruiter B, Knol EF, van Neerven RJ et al (2007) Maintenance of tolerance to cow’s milk in atopic individuals is characterized by high levels of specific immunoglobulin G4. Clin Exp Allergy 37(7):1103–1110PubMedCrossRefGoogle Scholar
  80. 80.
    Hussain R, Poindexter RW, Ottesen EA (1992) Control of allergic reactivity in human filariasis. Predominant localization of blocking antibody to the IgG4 subclass. J Immunol 148(9):2731–2737PubMedGoogle Scholar
  81. 81.
    Yazdanbakhsh M, van den Biggelaar A, Maizels RM (2001) Th2 responses without atopy: immunoregulation in chronic helminth infections and reduced allergic disease. Trends Immunol 22(7):372–377PubMedCrossRefGoogle Scholar
  82. 82.
    Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T (1985) Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 161(1):72–87PubMedCrossRefGoogle Scholar
  83. 83.
    Demols A, Le Moine O, Desalle F, Quertinmont E, Van Laethem JL, Deviere J (2000) CD4(+)T cells play an important role in acute experimental pancreatitis in mice. Gastroenterology 118(3):582–590PubMedCrossRefGoogle Scholar
  84. 84.
    Vallance BA, Hewlett BR, Snider DP, Collins SM (1998) T cell-mediated exocrine pancreatic damage in major histocompatibility complex class II-deficient mice. Gastroenterology 115(4):978–987PubMedCrossRefGoogle Scholar
  85. 85.
    Sakaguchi Y, Inaba M, Tsuda M et al (2008) The Wistar Bonn Kobori rat, a unique animal model for autoimmune pancreatitis with extrapancreatic exocrinopathy. Clin Exp Immunol 152(1):1–12PubMedCrossRefGoogle Scholar
  86. 86.
    Marth T, Strober W, Kelsall BL (1996) High dose oral tolerance in ovalbumin TCR-transgenic mice: systemic neutralization of IL-12 augments TGF-beta secretion and T cell apoptosis. J Immunol 157(6):2348–2357PubMedGoogle Scholar
  87. 87.
    Hahm KB, Im YH, Lee C et al (2000) Loss of TGF-beta signaling contributes to autoimmune pancreatitis. J Clin Invest 105(8):1057–1065PubMedCrossRefGoogle Scholar
  88. 88.
    Kusuda T, Uchida K, Satoi S et al (2010) Idiopathic duct-centric pancreatitis (IDCP) with immunological studies. Intern Med 49(23):2569–2575PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kazuichi Okazaki
    • 1
  • Kazushige Uchida
    • 1
  • Hideaki Miyoshi
    • 1
  • Tsukasa Ikeura
    • 1
  • Makoto Takaoka
    • 1
  • Akiyoshi Nishio
    • 1
  1. 1.The Third Department of Internal Medicine, Division of Gastroenterology and HepatologyKansai Medical UniversityHirakataJapan

Personalised recommendations