Clinical Reviews in Allergy & Immunology

, Volume 39, Issue 1, pp 20–29 | Cite as

X Chromosome Inactivation and Autoimmunity

  • Wesley H. BrooksEmail author


Autoimmune diseases appear to have multiple contributing factors including genetics, epigenetics, environmental factors, and aging. The predominance of females among patients with autoimmune diseases suggests possible involvement of the X chromosome and X chromosome inactivation. X chromosome inactivation is an epigenetic event resulting in multiple levels of control for modulation of the expression of X-linked genes in normal female cells such that there remains only one active X chromosome in the cell. The extent of this control is unique among the chromosomes and has the potential for problems when regulation is disrupted. Here we discuss the X chromosome inactivation process and how the X chromosome and X chromosome inactivation may be involved in development of autoimmune disorders.


X chromosome X inactivation Autoimmunity Polyamines 



Decarboxylated S-adenosylmethionine


Epstein–Barr virus


Long interspersed nuclear element


Multiple sclerosis


Peptidyl arginine deiminase


Pseudo-autosomal regions of the X chromosome


Scaffold attachment factor


S-adenosylmethionine, the cellular methyl group donor


SAM decarboxylase, a key, initial enzyme in polyamine synthesis


Spermidine/spermine-N1-acetyltransferase, an enzyme in polyamine recycling


Spermine synthase, an enzyme in polyamine synthesis


An anti-sense gene to the XIST gene, involved in initiation of XCI


The active X chromosome


X-added region


X chromosome inactivation, epigenetic silencing of X chromosomes


X-conserved region


The inactive X chromosome


X-inactivation center, locus of genes involved in initiating XCI


X-inactivation specific transcript, a key gene in initiating XCI


X-linked chronic granulomatous disease


X chromosome short arm


X chromosome long arm



The author would like to thank Dr. Yves Renaudineau (University of Brest, Brest, France) for his kind advice in the preparation of this manuscript. The author would also like to thank Dr. Thomas Yang (University of Florida, Gainesville, Florida, USA) for providing the cell lines and facilities used in preparing Fig. 2. The author would also like to thank Dr. Missag Parseghian (Peregrine Pharmaceuticals, Inc., Tustin, California, USA) for providing the anti-histone H1 antibodies used in Fig. 2.


  1. 1.
    Migeon BR (2007) Females are mosaics: X inactivation and sex differences in disease. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Kelley RL, Kuroda MI (1995) Equality for X chromosomes. Science 270:1607–1610CrossRefPubMedGoogle Scholar
  3. 3.
    Jacobson L, Gange SJ, Rose NR, Graham NMH (1997) Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 84:223–242CrossRefPubMedGoogle Scholar
  4. 4.
    Scofield RH, Bruner GR, Namjou N et al (2008) Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arthritis Rheum 58:2511–2517CrossRefPubMedGoogle Scholar
  5. 5.
    Kantarci OH, Barcellos LF, Atkinson EJ et al (2006) Men transmit MS more often to their children vs women: the Carter effect. Neurology 67:305–310CrossRefPubMedGoogle Scholar
  6. 6.
    Ross MT, Grafham DV, Coffey AJ et al (2005) The DNA sequence of the human X chromosome. Nature 434:325–337CrossRefPubMedGoogle Scholar
  7. 7.
    Ohno S, Becak W, Becak ML (1964) X-autosome ratio and the behavior pattern of individual X-chromosomes in placental mammals. Chromosoma 15:14–30CrossRefPubMedGoogle Scholar
  8. 8.
    Huebner K, Croce CM (2001) FRA3B and other common fragile sites: the weakest links. Nat Rev Cancer 1:214–221CrossRefPubMedGoogle Scholar
  9. 9.
    Thorland EC, Myers SL, Persing DH et al (2000) Human papillomavirus type 16 integrations in cervical tumors frequently occur in common fragile sites. Cancer Res 60:5916–5921PubMedGoogle Scholar
  10. 10.
    Glover TW, Arit MF, Casper AM, Durkin SG (2005) Mechanisms of common fragile site instability. Hum Mol Genet 14:R197–R205CrossRefPubMedGoogle Scholar
  11. 11.
    Glover TW, Stein CK (1987) Induction of sister chromatid exchanges at common fragile sites. Am J Hum Genet 41:882–890PubMedGoogle Scholar
  12. 12.
    Chatila TA, Blaeser F, Ho N et al (2000) JM2, a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 106:R75–R81CrossRefPubMedGoogle Scholar
  13. 13.
    Heard E, Clerc P, Avner P (1997) X-chromosome inactivation in mammals. Annu Rev Genet 31:571–610CrossRefPubMedGoogle Scholar
  14. 14.
    Carrel L, Willard HF (1999) Heterogeneous gene expression from the inactive X chromosome: an X-linked gene that escapes X inactivation in some human cell lines but is inactivated in others. Proc Natl Acad Sci U S A 96:7364–7369CrossRefPubMedGoogle Scholar
  15. 15.
    Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404CrossRefPubMedGoogle Scholar
  16. 16.
    Lyon MF (1962) Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet 14:135–148PubMedGoogle Scholar
  17. 17.
    Lyon MF (2000) LINE-1 elements and X chromosome inactivation: a function for “junk” DNA? Proc Natl Acad Sci U S A 97:6248–6249CrossRefPubMedGoogle Scholar
  18. 18.
    Plath K, Mlynarczyk-Evans SK, Nusinow DA, Panning B (2002) Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36:233–278CrossRefPubMedGoogle Scholar
  19. 19.
    Navarro P, Pichard S, Ciaudo C, Avner P, Rougeulle C (2005) Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation. Genes Dev 19:1474–1484CrossRefPubMedGoogle Scholar
  20. 20.
    Tsai CL, Rowntree RK, Cohen DE, Lee JT (2008) Higher order chromatin structure at the X-inactivation center via looping DNA. Dev Biol 319:416–425CrossRefPubMedGoogle Scholar
  21. 21.
    Xu N, Tsai CL, Lee JT (2006) Transient homologous chromosome pairing marks the onset of X inactivation. Science 311:1149–1152CrossRefPubMedGoogle Scholar
  22. 22.
    Shibata S, Lee JT (2009) MacroRNAs in the epigenetic control of X-chromosome inactivation. Epigenomics 2009:187–214CrossRefGoogle Scholar
  23. 23.
    Navarro P, Page DR, Avner P, Rougeulle C (2006) Tsix-mediated epigenetic switch of a CTCF-flanked region of the Xist promoter determines the Xist transcription program. Genes Dev 20:2787–2792CrossRefPubMedGoogle Scholar
  24. 24.
    Boumil RM, Ogawa Y, Sun BK, Huynh KD, Lee JT (2006) Differential methylation of Xite and CTCF sites in Tsix mirrors the pattern of X-inactivation choice in mice. Mol Cell Biol 26:2109–2117CrossRefPubMedGoogle Scholar
  25. 25.
    Rasmussen TP, Wutz A, Pehrson JR, Jaenisch R (2001) Expression of Xist RNA is sufficient to initiate macrochromatin body formation. Chromosoma 110:411–420CrossRefPubMedGoogle Scholar
  26. 26.
    Brown CJ, Willard HF (1994) The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature 368:154–156CrossRefPubMedGoogle Scholar
  27. 27.
    Hansen RS (2003) X inactivation-specific methylation of LINE-1 elements by DNMT3B: implications for the Lyon repeat hypothesis. Hum Mol Genet 12:2559–2567CrossRefPubMedGoogle Scholar
  28. 28.
    Boggs BA, Cheung P, Heard E, Spector DL, Chinault AC, Allis CD (2002) Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet 30:73–76CrossRefPubMedGoogle Scholar
  29. 29.
    Ng K, Pullirsch D, Leeb M, Wutz A (2007) Xist and the order of silencing. EMBO Reports 8:34–39CrossRefPubMedGoogle Scholar
  30. 30.
    Changolkar LN, Pehrson JR (2006) MacroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome. Mol Cell Biol 26:4410–4420CrossRefPubMedGoogle Scholar
  31. 31.
    Pehrson JR, Fried VA (1992) MacroH2A, a core histone containing a large non-histone region. Science 257:1398–1400CrossRefPubMedGoogle Scholar
  32. 32.
    Chadwick BP, Valley CM, Willard HF (2001) Histone variant macroH2A contains two distinct macrochromatin domains capable of directing macroH2A to the inactive X chromosome. Nuc Acids Res 29:2699–2705CrossRefGoogle Scholar
  33. 33.
    Chadwick BP, Willard HF (2001) A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 152:375–384CrossRefPubMedGoogle Scholar
  34. 34.
    Fackelmayer FO (2005) A stable proteinaceous structure in the territory of inactive X chromosomes. J Biol Chem 280:1720–1723CrossRefPubMedGoogle Scholar
  35. 35.
    Barr ML, Carr DH (1960) Sex chromatin, sex chromosomes and sex anomalies. Can Med Assoc J 83:979–986PubMedGoogle Scholar
  36. 36.
    Rego A, Sinclair PB, Tao W, Kireev I, Belmont AS (2008) The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure. J Cell Sci 121:1119–1127CrossRefPubMedGoogle Scholar
  37. 37.
    Clemson CM, Hall LL, Byron M, McNeil J, Lawrence JB (2006) The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc Natl Acad Sci U S A 103:7688–7693CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang LF, Huynh KD, Lee JT (2007) Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129:693–706CrossRefPubMedGoogle Scholar
  39. 39.
    Kawakami T, Zhang C, Taniguchi T, Kim et al (2004) Characterization of loss-of-inactive X in Klinefelter syndrome and female-derived cancer cells. Oncogene 23:6163–6169CrossRefPubMedGoogle Scholar
  40. 40.
    Ganesan S, Silver DP, Greenberg RA et al (2002) BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111:393–405CrossRefPubMedGoogle Scholar
  41. 41.
    Stone C, McCabe N, Ashworth A (2003) X-chromosome inactivation: X marks the spot for BRCA1. Curr Biol 13:R63–R64CrossRefPubMedGoogle Scholar
  42. 42.
    Bolduc V, Chagnon P, Provost S et al (2008) No evidence that skewing of X chromosome inactivation patterns is transmitted to offspring in humans. J Clin Invest 118:333–341CrossRefPubMedGoogle Scholar
  43. 43.
    Knudsen GP, Pedersen J, Klingenberg O, Lygren I, Ørstavik KH (2007) Increased skewing of X chromosome inactivation with age in both blood and buccal cells. Cytogenet Genome Res 116:24–28CrossRefPubMedGoogle Scholar
  44. 44.
    Devriendt K, Matthijs G, Legius E et al (1997) Skewed X-chromosome inactivation in female carriers of dyskeratosis congenita. Am J Hum Genet 60:581–587PubMedGoogle Scholar
  45. 45.
    Knudsen GP, Neilson TC, Pedersen J et al (2006) Increased skewing of X chromosome inactivation in Rett syndrome patients and their mothers. Eur J Hum Genet 14:1189–1194CrossRefPubMedGoogle Scholar
  46. 46.
    Köker MY, Sanal O, de Boer M et al (2006) Skewing of X-chromosome inactivation in three generations of carriers with X-linked chronic granulomatous disease within one family. Eur J Clin Invest 36:257–264CrossRefPubMedGoogle Scholar
  47. 47.
    Stewart JJ (1998) The female X-inactivation mosaic in systemic lupus erythematosus. Immunol Today 19:352–357CrossRefPubMedGoogle Scholar
  48. 48.
    Chitnis S, Monteiro J, Glass D et al (2000) The role of X-chromosome inactivation in female predisposition to autoimmunity. Arthritis Res 2:399–406CrossRefPubMedGoogle Scholar
  49. 49.
    Knudsen GP, Harbo HF, Smestad C et al (2007) X chromosome inactivation in females with multiple sclerosis. Eur J Neurol 14:1392–1396CrossRefPubMedGoogle Scholar
  50. 50.
    Özbalkan Z, Bağişlar S, Kiraz S et al (2005) Skewed X chromosome inactivation in blood cells of women with scleroderma. Arthritis Rheum 52:1564–1570CrossRefPubMedGoogle Scholar
  51. 51.
    Chagnon P, Schneider R, Hébert J et al (2006) Identification and characterization of an Xp22.33;Yp11.2 translocation causing triplication of genes in pseudoautosomal region 1 in an XX male with severe systemic lupus erythematosus. Arthritis Rheum 54:1270–1278CrossRefPubMedGoogle Scholar
  52. 52.
    Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B (2007) Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 179:6352–6358PubMedGoogle Scholar
  53. 53.
    Brix TH, Knudsen GPS, Kristiansen M, Kyvik KO, Ørstavik KH, Hegedüs L (2005) High frequency of skewed X-chromosome inactivation in females with autoimmune thyroid disease: a possible explanation for the female predisposition to thyroid autoimmunity. J Clin Endrocrinol Metab 90:5949–5953CrossRefGoogle Scholar
  54. 54.
    D'Alessandro E, Cola MD, Lo Re ML et al (1990) Nonrandom chromosome changes in multiple sclerosis. Am J Med Genet 37:406–411CrossRefPubMedGoogle Scholar
  55. 55.
    Brandrup F, Koch C, Petri M, Schiodt M, Johansen KS (1981) Discoid lupus erythematosus-like lesions and stomatitis in female carriers of X-linked chronic granulomatosus disease. Br J Dermatol 104:495–505CrossRefPubMedGoogle Scholar
  56. 56.
    Ortiz-Romero P, Corell-Almuzara A, Lopez-Estebaranz J, Arranz F, Ruiz-Contreras J (1997) Lupus like lesions in a patient with X-linked chronic granulomatous disease and recombinant X chromosome. Dermatology 195:280–283CrossRefPubMedGoogle Scholar
  57. 57.
    Richardson AL, Wang ZC, De Nicolo A et al (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9:121–132CrossRefPubMedGoogle Scholar
  58. 58.
    van’t Veer LJ, Dal H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRefGoogle Scholar
  59. 59.
    Javierre BM, Esteller M, Ballestar E (2008) Epigenetic connections between autoimmune disorders and haematological malignancies. Trends Immunol 29:615–623CrossRefGoogle Scholar
  60. 60.
    Puri H, Campbell R, Puri-Harner V et al (1978) Serum-free polyamines in children with systemic lupus erythematosus. Adv Polyamine Res 2:359–367Google Scholar
  61. 61.
    Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14CrossRefPubMedGoogle Scholar
  62. 62.
    Casero RA, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discovery 6:373–390CrossRefGoogle Scholar
  63. 63.
    Hobbs CA, Gilmour SK (2000) High levels of intracellular polyamines promote histone acetyltransferase activity results in chromatin hyperacetylation. J Cell Biochem 77:345–360CrossRefPubMedGoogle Scholar
  64. 64.
    Poduslo JF, Curran GL (1996) Polyamine modification increases the permeability of proteins at the blood-nerve and blood-brain barriers. J Neurochem 66:1599–1609PubMedGoogle Scholar
  65. 65.
    Williams K (1997) Modulation and block of ion channels: a new biology of polyamines. Cell Signal 9:1–13CrossRefPubMedGoogle Scholar
  66. 66.
    Maeda Y, Rachez C, Hawel L, Byus CV, Freedman LP, Sladek FM (2002) Polyamines modulate the interaction between nuclear receptors and vitamin D receptor-interacting protein. Mol Endocrinol 16:1502–1510CrossRefPubMedGoogle Scholar
  67. 67.
    Thomas T, Kiang DT (1988) A twenty-two-fold increase in relative affinity of estrogen receptor to poly(dA-dC) poly(dG-dT) in the presence of polyamines. Nuc Acids Res 16:4705–4720CrossRefGoogle Scholar
  68. 68.
    Kleppe K, Osland A, Fosse V et al (1981) Effect of polyamines on enzymes involved in DNA repair. Med Biol 59:374–380PubMedGoogle Scholar
  69. 69.
    Hasan R, Moinuddin AK, Ali R (1995) Polyamine induced Z-conformation of native calf thymus DNA. FEBS Lett 368:27–30CrossRefPubMedGoogle Scholar
  70. 70.
    Brooks WH (2000) Autoimmune diseases may result from inappropriate RNA polymerase III transcription: comment on the article by Neidhart et al. Arthritis Rheum 46:1412–1413CrossRefGoogle Scholar
  71. 71.
    Brooks WH (2005) Autoimmune disorders result from loss of epigenetic control following chromosome damage. Med Hypotheses 64:590–598CrossRefPubMedGoogle Scholar
  72. 72.
    Brooks WH (2002) Systemic lupus erythematosus and related autoimmune diseases are antigen-driven, epigenetic diseases. Med Hypotheses 59:736–741CrossRefPubMedGoogle Scholar
  73. 73.
    Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, why. Mol Cell 33:1–13CrossRefPubMedGoogle Scholar
  74. 74.
    Herrmann F, Bossert M, Schwander A, Akgün E, Fackelmayer FO (2004) Arginine methylation of scaffold attachment factor A by heterogeneous nuclear ribonucleoprotein particle-associated PRMT1. J Biol Chem 279:48774–48779CrossRefPubMedGoogle Scholar
  75. 75.
    Nakashima K, Hagiwara T, Yamada M (2002) Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J Biol Chem 277:49562–49568CrossRefPubMedGoogle Scholar
  76. 76.
    Szekanecz Z, Soos L, Szabo Z et al (2008) Anti-citrullinated protein antibodies in rheumatoid arthritis: as good as it gets? Clin Rev Allerg Immunol 34:26–31CrossRefGoogle Scholar
  77. 77.
    Pavlova BG, Muhlberger HH, Stobl H et al (1995) B lymphocytes with latent EBV infection appearing in long-term bone marrow cultures (HLTBMCs) from haematological patients induce lysis of stromal microenvironment. Br J Haematology 89:704–711CrossRefGoogle Scholar
  78. 78.
    Drotar ME, Silva S, Barone E et al (2003) Epstein-Barr virus nuclear antigen-1 and Myc cooperate in lymphomagenesis. Int J Cancer 106:388–395CrossRefPubMedGoogle Scholar
  79. 79.
    Arnheim N, Calabrese P (2009) Understanding what determines the frequency and pattern of human germline mutations. Nat Rev Genet 10:478–488CrossRefPubMedGoogle Scholar
  80. 80.
    Barros SP, Offenbacher S (2009) Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 88:400–408CrossRefPubMedGoogle Scholar
  81. 81.
    Figueiredo LM, Cross GA, Janzen CJ (2009) Epigenetic regulation in African trypanosomes: a new kid on the block. Nat Rev Microbiol 7:504–513CrossRefPubMedGoogle Scholar
  82. 82.
    Hewagama A, Richardson B (2009) The genetics and epigenetics of autoimmune diseases. J Autoimmun 33:3–11CrossRefPubMedGoogle Scholar
  83. 83.
    Invernizzi P (2009) Future directions in genetic for autoimmune diseases. J Autoimmun 33:1–2CrossRefPubMedGoogle Scholar
  84. 84.
    Invernizzi P, Pasini S, Selmi C, Gershwin ME, Podda M (2009) Female predominance and X chromosome defects in autoimmune diseases. J Autoimmun 33:12–16CrossRefPubMedGoogle Scholar
  85. 85.
    Larizza D, Calcaterra V, Martinetti M (2009) Autoimmune stigmata in Turner syndrome: when lacks an X chromosome. J Autoimmun 33:25–30CrossRefPubMedGoogle Scholar
  86. 86.
    Persani L, Rossetti R, Cacciatore C, Bonomi M (2009) Primary Ovarian Insufficiency: X chromosome defects and autoimmunity. J Autoimmun 33:35–41CrossRefPubMedGoogle Scholar
  87. 87.
    Sawalha AH, Harley JB, Scofield RH (2009) Autoimmunity and Klinefelter's syndrome: when men have two X chromosomes. J Autoimmun 33:31–34CrossRefPubMedGoogle Scholar
  88. 88.
    Wells AD (2009) New, insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J Immunol 182:7331–7341CrossRefPubMedGoogle Scholar
  89. 89.
    Zernicka-Goetz M, Morris SA, Bruce AW (2009) Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet 10:467–477CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.Experimental HTS, Drug DiscoveryH. Lee Moffitt Cancer Center & Research InstituteTampaUSA
  2. 2.Drug Discovery, SRB-3H. Lee Moffitt Cancer Center & Research InstituteTampaUSA

Personalised recommendations