Clinical Reviews in Allergy & Immunology

, Volume 38, Issue 1, pp 20–31 | Cite as

Crohn’s Disease: an Immune Deficiency State

  • Daniel J. B. MarksEmail author
  • Farooq Z. Rahman
  • Gavin W. Sewell
  • Anthony W. Segal


Crohn’s disease is a chronic inflammatory disorder primarily affecting the gastrointestinal tract. Its clinical manifestations arise from a substantial infiltration of the intestinal mucosa by activated leukocytes and the downstream consequences of chronic inflammation. The underlying cause driving this immunological reaction remains poorly understood. A number of hypotheses have been proposed, most of which postulate a primary over-activation of the immune response, based on the pathological appearances of active Crohn’s lesions. Interestingly, none of these theories have been mechanistically proven. It is possible that the immunological events responsible for disease initiation are quite different from those contributing to its persistence and propagation. A substantial body of data has emerged in recent years to suggest that the primary defect in Crohn’s disease is actually one of relative immunodeficiency. This review considers the evidence for such a phenomenon in contrast to alternative prevailing hypotheses and attempts to address some of the potential paradoxes that it generates.


Crohn’s disease Immunodeficiency Macrophage Neutrophil Cytokine 


  1. 1.
    Shanahan F (2002) Crohn’s disease. Lancet 359(9300):62–69CrossRefPubMedGoogle Scholar
  2. 2.
    Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347(6):417–429CrossRefPubMedGoogle Scholar
  3. 3.
    Segal AW, Loewi G (1976) Neutrophil dysfunction in Crohn’s disease. Lancet 2(7979):219–221CrossRefPubMedGoogle Scholar
  4. 4.
    Marks DJ, Segal AW (2008) Innate immunity in inflammatory bowel disease: a disease hypothesis. J Pathol 214(2):260–266CrossRefPubMedGoogle Scholar
  5. 5.
    Barrett JC et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962CrossRefPubMedGoogle Scholar
  6. 6.
    Rahman FZ et al (2008) Phagocyte dysfunction and inflammatory bowel disease. Inflamm Bowel Dis 14(10):1443–1452CrossRefPubMedGoogle Scholar
  7. 7.
    Rutgeerts P et al (1991) Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 338(8770):771–774CrossRefPubMedGoogle Scholar
  8. 8.
    Harper PH et al (1985) Role of the faecal stream in the maintenance of Crohn’s colitis. Gut 26(3):279–284CrossRefPubMedGoogle Scholar
  9. 9.
    Dalziel TK (1913) Chronic intestinal enteritis. BMJ ii:1068–1070Google Scholar
  10. 10.
    Chiodini RJ et al (1984) Possible role of mycobacteria in inflammatory bowel disease. I. An unclassified Mycobacterium species isolated from patients with Crohn’s disease. Dig Dis Sci 29(12):1073–1079CrossRefPubMedGoogle Scholar
  11. 11.
    Feller M et al (2007) Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: a systematic review and meta-analysis. Lancet Infect Dis 7(9):607–613CrossRefPubMedGoogle Scholar
  12. 12.
    Quirke P (2001) Antagonist. Mycobacterium avium subspecies paratuberculosis is a cause of Crohn’s disease. Gut 49(6):757–760CrossRefPubMedGoogle Scholar
  13. 13.
    Van Kruiningen HJ (1999) Lack of support for a common etiology in Johne’s disease of animals and Crohn’s disease in humans. Inflamm Bowel Dis 5(3):183–191PubMedCrossRefGoogle Scholar
  14. 14.
    Selby W et al (2007) Two-year combination antibiotic therapy with clarithromycin, rifabutin, and clofazimine for Crohn’s disease. Gastroenterology 132(7):2313–2319CrossRefPubMedGoogle Scholar
  15. 15.
    Darfeuille-Michaud A et al (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 127(2):412–421CrossRefPubMedGoogle Scholar
  16. 16.
    Glasser AL et al (2001) Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect Immun 69(9):5529–5537CrossRefPubMedGoogle Scholar
  17. 17.
    Berin MC et al (2002) Role of EHEC O157:H7 virulence factors in the activation of intestinal epithelial cell NF-kappaB and MAP kinase pathways and the upregulated expression of interleukin 8. Cell Microbiol 4(10):635–648CrossRefPubMedGoogle Scholar
  18. 18.
    Meconi S et al (2007) Adherent-invasive Escherichia coli isolated from Crohn’s disease patients induce granulomas in vitro. Cell Microbiol 9(5):1252–1261CrossRefPubMedGoogle Scholar
  19. 19.
    Marks DJ et al (2006) Can unresolved infection precipitate autoimmune disease? Curr Top Microbiol Immunol 305:105–125CrossRefPubMedGoogle Scholar
  20. 20.
    Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 24(1):4–10CrossRefPubMedGoogle Scholar
  21. 21.
    Ainsworth M et al (1989) Intestinal permeability of 51Cr-labelled ethylenediaminetetraacetic acid in patients with Crohn’s disease and their healthy relatives. Scand J Gastroenterol 24(8):993–998CrossRefPubMedGoogle Scholar
  22. 22.
    Hollander D et al (1986) Increased intestinal permeability in patients with Crohn’s disease and their relatives. A possible etiologic factor. Ann Intern Med 105(6):883–885PubMedGoogle Scholar
  23. 23.
    Marin ML et al (1983) A freeze fracture study of Crohn’s disease of the terminal ileum: changes in epithelial tight junction organization. Am J Gastroenterol 78(9):537–547PubMedGoogle Scholar
  24. 24.
    Kyo K et al (2001) Associations of distinct variants of the intestinal mucin gene MUC3A with ulcerative colitis and Crohn’s disease. J Hum Genet 46(1):5–20CrossRefPubMedGoogle Scholar
  25. 25.
    Buisine MP et al (2001) Mucin gene expression in intestinal epithelial cells in Crohn’s disease. Gut 49(4):544–551CrossRefPubMedGoogle Scholar
  26. 26.
    Clamp JR, Fraser G, Read AE (1981) Study of the carbohydrate content of mucus glycoproteins from normal and diseased colons. Clin Sci (Lond) 61(2):229–234Google Scholar
  27. 27.
    Pullan RD et al (1994) Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut 35(3):353–359CrossRefPubMedGoogle Scholar
  28. 28.
    Hugot JP et al (1996) Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 379(6568):821–823CrossRefPubMedGoogle Scholar
  29. 29.
    Hugot JP et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599–603CrossRefPubMedGoogle Scholar
  30. 30.
    Ogura Y et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603–606CrossRefPubMedGoogle Scholar
  31. 31.
    Cuthbert AP et al (2002) The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122(4):867–874CrossRefPubMedGoogle Scholar
  32. 32.
    Ogura Y et al (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 276(7):4812–4818CrossRefPubMedGoogle Scholar
  33. 33.
    Gutierrez O et al (2002) Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation. J Biol Chem 277(44):41701–41705CrossRefPubMedGoogle Scholar
  34. 34.
    Lala S et al (2003) Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125(1):47–57CrossRefPubMedGoogle Scholar
  35. 35.
    Girardin SE et al (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11):8869–8872CrossRefPubMedGoogle Scholar
  36. 36.
    Inohara N et al (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278(8):5509–5512CrossRefPubMedGoogle Scholar
  37. 37.
    Li J et al (2004) Regulation of IL-8 and IL-1beta expression in Crohn’s disease associated NOD2/CARD15 mutations. Hum Mol Genet 13(16):1715–1725CrossRefPubMedGoogle Scholar
  38. 38.
    Marks DJ et al (2006) Defective acute inflammation in Crohn’s disease: a clinical investigation. Lancet 367(9511):668–678CrossRefPubMedGoogle Scholar
  39. 39.
    Rioux JD et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39(5):596–604CrossRefPubMedGoogle Scholar
  40. 40.
    Borgiani P et al (2007) Interleukin-23R Arg381Gln is associated with susceptibility to Crohn’s disease but not with phenotype in an Italian population. Gastroenterology 133(3):1049–1051CrossRefPubMedGoogle Scholar
  41. 41.
    Weersma RK et al (2009) Confirmation of multiple Crohn's Disease susceptibility loci in a large Dutch-Belgian cohort. Am J Gastroenterol 104(3):630–638CrossRefPubMedGoogle Scholar
  42. 42.
    Maloy KJ (2008) The interleukin-23/interleukin-17 axis in intestinal inflammation. J Intern Med 263(6):584–590CrossRefPubMedGoogle Scholar
  43. 43.
    Stuart LM, Ezekowitz RA (2005) Phagocytosis: elegant complexity. Immunity 22(5):539–550CrossRefPubMedGoogle Scholar
  44. 44.
    Kuballa P et al (2008) Impaired autophagy of an intracellular pathogen induced by a Crohn’s disease associated ATG16L1 variant. PLoS ONE 3(10):e3391CrossRefPubMedGoogle Scholar
  45. 45.
    Singh SB et al (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313(5792):1438–1441CrossRefPubMedGoogle Scholar
  46. 46.
    Torok HP et al (2005) Polymorphisms in the DLG5 and OCTN cation transporter genes in Crohn’s disease. Gut 54(10):1421–1427CrossRefPubMedGoogle Scholar
  47. 47.
    Rioux JD et al (2001) Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 29(2):223–228CrossRefPubMedGoogle Scholar
  48. 48.
    Peltekova VD et al (2004) Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 36(5):471–475CrossRefPubMedGoogle Scholar
  49. 49.
    Nakamura H et al (1998) Identification of a novel human homolog of the Drosophila dlg, P-dlg, specifically expressed in the gland tissues and interacting with p55. FEBS Lett 433(1–2):63–67CrossRefPubMedGoogle Scholar
  50. 50.
    Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456(7218):18–21CrossRefPubMedGoogle Scholar
  51. 51.
    Kuramoto S et al (1987) Granulomas of the gut in Crohn’s disease. A step sectioning study. Dis Colon Rectum 30(1):6–11CrossRefPubMedGoogle Scholar
  52. 52.
    James DG (2000) A clinicopathological classification of granulomatous disorders. Postgrad Med J 76(898):457–465CrossRefPubMedGoogle Scholar
  53. 53.
    Reeves EP et al (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416(6878):291–297CrossRefPubMedGoogle Scholar
  54. 54.
    Thrasher AJ et al (1994) Chronic granulomatous disease. Biochim Biophys Acta 1227(1–2):1–24PubMedGoogle Scholar
  55. 55.
    Marks DJ et al (2009) Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn’s disease. Am J Gastroenterol 104(1):117–124CrossRefPubMedGoogle Scholar
  56. 56.
    Ishii E et al (1987) Chediak-Higashi syndrome with intestinal complication. Report of a case. J Clin Gastroenterol 9(5):556–558CrossRefPubMedGoogle Scholar
  57. 57.
    Grucela AL et al (2006) Granulomatous enterocolitis associated with Hermansky-Pudlak syndrome. Am J Gastroenterol 101(9):2090–2095CrossRefPubMedGoogle Scholar
  58. 58.
    O’Morain C, Segal AW, Levi AJ (1984) Elemental diet as primary treatment of acute Crohn’s disease: a controlled trial. Br Med J (Clin Res Ed) 288(6434):1859–1862CrossRefGoogle Scholar
  59. 59.
    Rhodes JM et al (1982) Serum inhibitors of leukocyte chemotaxis in Crohn’s disease and ulcerative colitis. Gastroenterology 82(6):1327–1334PubMedGoogle Scholar
  60. 60.
    Farrell RJ, Peppercorn MA (2002) Ulcerative colitis. Lancet 359(9303):331–340CrossRefPubMedGoogle Scholar
  61. 61.
    Harbord MW et al (2006) Impaired neutrophil chemotaxis in Crohn’s disease relates to reduced production of chemokines and can be augmented by granulocyte-colony stimulating factor. Aliment Pharmacol Ther 24(4):651–660CrossRefPubMedGoogle Scholar
  62. 62.
    Strober W, Fuss IJ, Blumberg RS (2002) The immunology of mucosal models of inflammation. Annu Rev Immunol 20:495–549CrossRefPubMedGoogle Scholar
  63. 63.
    Vavricka SR et al (2004) hPepT1 transports muramyl dipeptide, activating NF-kappaB and stimulating IL-8 secretion in human colonic Caco2/bbe cells. Gastroenterology 127(5):1401–1409CrossRefPubMedGoogle Scholar
  64. 64.
    Doyle SL, O’Neill LA (2006) Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem Pharmacol 72(9):1102–1113CrossRefPubMedGoogle Scholar
  65. 65.
    Marks DJ et al (2006) An exuberant inflammatory response to E. coli: implications for the pathogenesis of ulcerative colitis and pyoderma gangrenosum. Gut 55(11):1662–1663CrossRefPubMedGoogle Scholar
  66. 66.
    Castell JV et al (1989) Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett 242(2):237–239CrossRefPubMedGoogle Scholar
  67. 67.
    Bridger S et al (2002) In siblings with similar genetic susceptibility for inflammatory bowel disease, smokers tend to develop Crohn’s disease and non-smokers develop ulcerative colitis. Gut 51(1):21–25CrossRefPubMedGoogle Scholar
  68. 68.
    Sopori M (2002) Effects of cigarette smoke on the immune system. Nat Rev Immunol 2(5):372–377CrossRefPubMedGoogle Scholar
  69. 69.
    Sher ME et al (1999) The influence of cigarette smoking on cytokine levels in patients with inflammatory bowel disease. Inflamm Bowel Dis 5(2):73–78PubMedGoogle Scholar
  70. 70.
    Hugot JP et al (2003) Crohn’s disease: the cold chain hypothesis. Lancet 362(9400):2012–2015CrossRefPubMedGoogle Scholar
  71. 71.
    Liu AH, Murphy JR (2003) Hygiene hypothesis: fact or fiction? J Allergy Clin Immunol 111(3):471–478CrossRefPubMedGoogle Scholar
  72. 72.
    Elliott DE et al (2000) Does the failure to acquire helminthic parasites predispose to Crohn’s disease? FASEB J 14(12):1848–1855CrossRefPubMedGoogle Scholar
  73. 73.
    Summers RW et al (2005) Trichuris suis therapy in Crohn’s disease. Gut 54(1):87–90CrossRefPubMedGoogle Scholar
  74. 74.
    Farthing MJ (2004) Bugs and the gut: an unstable marriage. Best Pract Res Clin Gastroenterol 18(2):233–239CrossRefPubMedGoogle Scholar
  75. 75.
    Porter CK et al (2008) Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology 135(3):781–786CrossRefPubMedGoogle Scholar
  76. 76.
    Bednarz W et al (2008) Analysis of results of surgical treatment in Crohn’s disease. Hepatogastroenterology 55(84):998–1001PubMedGoogle Scholar
  77. 77.
    Scammell BE, Keighley MR (1986) Delayed perineal wound healing after proctectomy for Crohn’s colitis. Br J Surg 73(2):150–152CrossRefPubMedGoogle Scholar
  78. 78.
    Kyle J (1980) Urinary complications of Crohn’s disease. World J Surg 4(2):153–160CrossRefPubMedGoogle Scholar
  79. 79.
    Ambrose NS, Alexander-Williams J, Keighley MR (1984) Audit of sepsis in operations for inflammatory bowel disease. Dis Colon Rectum 27(9):602–604CrossRefPubMedGoogle Scholar
  80. 80.
    Hutfless SM et al (2007) Mortality by medication use among patients with inflammatory bowel disease, 1996–2003. Gastroenterology 133(6):1779–1786CrossRefPubMedGoogle Scholar
  81. 81.
    Gilroy DW et al (2004) Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov 3(5):401–416CrossRefPubMedGoogle Scholar
  82. 82.
    Nahar IK et al (2003) Infliximab treatment of rheumatoid arthritis and Crohn’s disease. Ann Pharmacother 37(9):1256–1265CrossRefPubMedGoogle Scholar
  83. 83.
    Cui G et al (2006) Improvement of real-time polymerase chain reaction for quantifying TNF-alpha mRNA expression in inflamed colorectal mucosa: an approach to optimize procedures for clinical use. Scand J Clin Lab Invest 66(3):249–259CrossRefPubMedGoogle Scholar
  84. 84.
    Dionne S et al (1997) Quantitative PCR analysis of TNF-alpha and IL-1 beta mRNA levels in pediatric IBD mucosal biopsies. Dig Dis Sci 42(7):1557–1566CrossRefPubMedGoogle Scholar
  85. 85.
    Stallmach A et al (2004) Cytokine/chemokine transcript profiles reflect mucosal inflammation in Crohn’s disease. Int J Colorectal Dis 19(4):308–315CrossRefPubMedGoogle Scholar
  86. 86.
    Plevy SE et al (1997) A role for TNF-alpha and mucosal T helper-1 cytokines in the pathogenesis of Crohn’s disease. J Immunol 159(12):6276–6282PubMedGoogle Scholar
  87. 87.
    Sandborn WJ et al (2001) Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 121(5):1088–1094CrossRefPubMedGoogle Scholar
  88. 88.
    Van den Brande JM et al (2003) Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology 124(7):1774–1785CrossRefPubMedGoogle Scholar
  89. 89.
    Naito Y et al (2003) Enhanced intestinal inflammation induced by dextran sulfate sodium in tumor necrosis factor-alpha deficient mice. J Gastroenterol Hepatol 18(5):560–569CrossRefPubMedGoogle Scholar
  90. 90.
    Oh J, Arkfeld DG, Horwitz DA (2005) Development of Crohn’s disease in a patient taking etanercept. J Rheumatol 32(4):752–753PubMedGoogle Scholar
  91. 91.
    Charach G, Grosskopf I, Weintraub M (2008) Development of Crohn’s disease in a patient with multiple sclerosis treated with copaxone. Digestion 77(3–4):198–200CrossRefPubMedGoogle Scholar
  92. 92.
    Saverymuttu S, Hodgson HJ, Chadwick VS (1985) Controlled trial comparing prednisolone with an elemental diet plus non-absorbable antibiotics in active Crohn’s disease. Gut 26(10):994–998CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Daniel J. B. Marks
    • 1
    Email author
  • Farooq Z. Rahman
    • 1
  • Gavin W. Sewell
    • 1
  • Anthony W. Segal
    • 1
  1. 1.Department of MedicineUniversity College LondonLondonUK

Personalised recommendations