Clinical Reviews in Allergy & Immunology

, Volume 38, Issue 1, pp 54–60

Defects in the Leukocyte Adhesion Cascade

Article

Abstract

Leukocyte trafficking from bloodstream to tissue is important for the continuous surveillance for foreign antigens as well as for rapid leukocyte accumulation at sites of inflammatory response or tissue injury. Leukocyte interaction with vascular endothelial cells is a pivotal event in the inflammatory response and is mediated by several families of adhesion molecules. The crucial role of the β2-integrin subfamily in leukocyte emigration was established after leukocyte adhesion deficiency (LAD) I was discovered. Patients with this disorder suffer from life-threatening bacterial infections, and in its severe form, death usually occurs in early childhood unless bone marrow transplantation is performed. The LAD II disorder clarifies the role of the selectin receptors and their fucosylated ligands. Clinically, patients with LAD II suffer not only from a less severe form of infectious episodes resembling the moderate phenotype of LAD I but also from severe psychomotor and growth retardation. LAD III emphasizes the importance of the integrin-activation phase in the adhesion cascade. All hematopoietic integrin activation processes are defective, which lead to severe infection as observed in LAD I and to marked increase tendency for bleeding problems (defective activation of β1, β2, and β3 integrins). The various genetic defects leading to all adhesion molecules syndrome will be discussed.

Keywords

Adhesion Leukocyte Integrin Selectins Chemokines LAD syndrome Sialyl Lewis X Rap1 

References

  1. 1.
    Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 84(7):2068–2101PubMedGoogle Scholar
  2. 2.
    Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6(12):1182–1190CrossRefPubMedGoogle Scholar
  3. 3.
    Abram CL, Lowell CA (2009) The ins and outs of leukocyte integrin signaling. Ann Rev Immunol 27:339–362CrossRefGoogle Scholar
  4. 4.
    Shamri R, Grabovsky V, Gauguet JM, Feigelson S, Manevich E, Kolanus W, Robinson MK, Staunton DE, von Andrian UH, Alon R (2005) Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol 6(5):497–506CrossRefPubMedGoogle Scholar
  5. 5.
    Pasvolsky R, Feigelson SW, Kilic SS et al (2007) A LADIII syndrome is associated with effective expression of the Rap-1 activator alDAG-GEF1 in lymphocyte, neutrophils and platelets. J Exp Med 204(7):1571–1582PubMedGoogle Scholar
  6. 6.
    Anderson DC, Smith CW (2001) Leukocyte adhesion deficiency and other disorders of leukocyte adherence and motility. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited diseases, 7th edn. McGraw-Hill, New York, pp 3955–3995Google Scholar
  7. 7.
    Etzioni A (1996) Adhesion molecules-their role in health and disease. Pediatr Res 39(2):191–198CrossRefPubMedGoogle Scholar
  8. 8.
    Fischer A, Lisowska-Grospierre B, Anderson DC, Springer T (1988) Leukocyte adhesion deficiency: molecular basis and functional consequences. Immunol Rev 1(1):39–54Google Scholar
  9. 9.
    von Adrian UH, Berger EM, Ramezani L, Chambers JD et al (1993) In vivo behavior of neutrophils from two patients with distinct inherited leukocyte adhesion deficiency syndromes. J Clin Invest 91(6):2893–2897CrossRefGoogle Scholar
  10. 10.
    Hogg N, Stewart MP, Scarth SL, Newton R, Shaw JM, Law SK, Klein N (1999) A novel leukocyte adhesion deficiency caused by expressed but nonfunctional beta2 integrins Mac-1 and LFA-1. J Clin Invest 103(1):97–106CrossRefPubMedGoogle Scholar
  11. 11.
    Roos D, Meischl C, de Boer M, Simsek S, Weening RS, Sanal O et al (2002) Genetic analysis of patients with leukocyte adhesion deficiency: genomic sequencing reveals otherwise undetectable mutations. Exp Hemat 30(3):252–261CrossRefPubMedGoogle Scholar
  12. 12.
    Tone Y, Wada T, Shibata F, Toma T, Kasahara Y, Koizumi S, Yachie A (2007) Somatic revertant mosaicism in a patient with leukocyte adhesion deficiency type 1. Blood 109(3):1182–1184CrossRefPubMedGoogle Scholar
  13. 13.
    Uzel G, Ing E, Rosenzweig SD, Hsu AP et al (2008) Reversion mutations in patients with leukocyte adhesion deficiency type 1 (LAD-1). Blood 111(1):209–218CrossRefPubMedGoogle Scholar
  14. 14.
    Lorusso F, Kong D, Jalil AK, Sylvestre C, Tan SL, Ao A (2006) Preimplantation genetic diagnosis of leukocyte adhesion deficiency type I. Fertil Steril 85(2):e415–e498CrossRefGoogle Scholar
  15. 15.
    Thomas C, Le Deist F, Cavazzana-Calvo M, Benkerrou M, Haddad E, Blanche S, Hartmann W, Friedrich W, Fischer A (1995) Results of allogeneic bone marrow transplantation in patients with leukocyte adhesion deficiency. Blood 86(4):1629–1635PubMedGoogle Scholar
  16. 16.
    Bauer TR, Hickstein DD (2000) Gene therapy for leukocyte adhesion deficiency. Curr Opin Mol Ther 2(4):383–388PubMedGoogle Scholar
  17. 17.
    Bauer TR, Allen JM, Hai M, Tuschong LM et al (2008) Successful treatment of canine leukocyte adhesive deficiency by foamy virus vectors. Nat Med 14(1):93–97CrossRefPubMedGoogle Scholar
  18. 18.
    Etzioni A, Frydman M, Pollack S, Avidor I et al (1992) Brief report: recurrent severe infections caused by a novel leukocyte adhesion deficiency. N Engl J Med 327(25):1789–1792PubMedCrossRefGoogle Scholar
  19. 19.
    Yakubenia S, Wild MK (2006) Leukocyte adhesion deficiency II. Advances and open questions. FEBS J 273(19):4390–4398CrossRefPubMedGoogle Scholar
  20. 20.
    Wild MK, John K, Marquardt T, Vestweber D (2002) Leukocyte adhesion deficiency II: therapy and genetic defect. Cells Tissues Organs 172(3):161–173CrossRefPubMedGoogle Scholar
  21. 21.
    Etzioni A, Gershoni-Baruch R, Pollack S, Shehadeh N (1998) Leukocyte adhesion deficiency type II: long-term follow-up. J Allergy Clin Immunol 102(2):323–324CrossRefPubMedGoogle Scholar
  22. 22.
    Karsan A, Cornejo CJ, Winn RK, Schwartz BR, Way W, Lannir N, Gershoni-Baruch R, Etzioni A, Ochs HD, Harlan JM (1998) Leukocyte adhesion deficiency type II is a generalized defect of de novo GDP- fucose biosynthesis. Endothelial cell fucosylation is not required for neutrophil rolling on human nonlymphoid endothelium. J Clin Invest 101(11):2438–2445CrossRefPubMedGoogle Scholar
  23. 23.
    Lubke T, Marquardt T, von Figura K, Korner C (1999) A new type of carbohydrate-deficient glycoprotein syndrome due to a decreased import of GDP-fucose into the Golgi. J Biol Chem 274(1):25986–25989CrossRefPubMedGoogle Scholar
  24. 24.
    Lubke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Korner C (2001) Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 28(1):73–76CrossRefPubMedGoogle Scholar
  25. 25.
    Helmus Y, Denecke J, Yakubenia S, Robinson P et al (2006) Leukocyte adhesion deficiency II patients with a dual defect of the GDP-fucose transporter. Blood 107(10):3959–3966CrossRefPubMedGoogle Scholar
  26. 26.
    Hellbrush CC, Sperandis M, Frommhold D et al (2007) Golgi GDP-fucose transporter deficient mice mimic congenital disorder of glycozylation IIc/leukocyte adhesion deficiency II. J Biol Chem 282(14):10762–10772CrossRefGoogle Scholar
  27. 27.
    Sturla L, Rampal R, Haltiwanger RS, Fruscione F, Etzioni A, Ronetti M (2003) Differential terminal fucosylation of N-linked glycans versus protein O-fucosylation in LAD II (CDG IIc). J Biol Chem 278(29):21559–21565CrossRefPubMedGoogle Scholar
  28. 28.
    Luo Y, Haltiwanger RS (2005) O-fucosylation on Notch occur in the endoplasmic reticulum. J Biol Chem 280(12):11289–11294CrossRefPubMedGoogle Scholar
  29. 29.
    Marquardt T, Luhn K, Srikrishna G, Freeze HH, Harms E, Vestweber D (1999) Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 94(12):3976–3985PubMedGoogle Scholar
  30. 30.
    Etzioni A, Tonetti M (2000) Fucose supplementation in leukocyte adhesion deficiency type II. Blood 95(11):3641–3643PubMedGoogle Scholar
  31. 31.
    Alon R, Aker M, Feigelson S, Sokolovsky-Eisenberg M, Staunton DE, Cinamon G, Grabovsky V, Shamri R, Etzioni A (2003) A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow. Blood 101(11):4437–4445CrossRefPubMedGoogle Scholar
  32. 32.
    Alon R, Etzioni A (2003) LAD III, a novel group of leukocyte integrin activation deficiencies. Trends Immunol 24(10):561–566CrossRefPubMedGoogle Scholar
  33. 33.
    Kuijpers TW, Van Lier RA, Hamann D, de Boer M, Thung LY, Weening RS, Verhoeven AJ, Roos D (1997) Leukocyte adhesion deficiency type 1 (LAD-1)/variant. A novel immunodeficiency syndrome characterized by dysfunctional beta 2 integrins. J Clin Invest 100(7):1725–1733CrossRefPubMedGoogle Scholar
  34. 34.
    Harris ES, Shigeoka AO, Li W, Adams RH, Prescott SM, McIntyre TM, Zimmerman GA, Lorant DE (2001) A novel syndrome of variant leukocyte adhesion deficiency involving defects in adhesion mediated by beta1 and beta2 integrins. Blood 97(3):767–776CrossRefPubMedGoogle Scholar
  35. 35.
    MacDowall A, Inwald D, Leitinger B, Jones A, Leisner R, Klein N, Hogg N (2003) A novel form of intregrin dysfunction involving beta 1, beta2 and beta 3 integrins. J Clin Invest 111(1):51–60Google Scholar
  36. 36.
    Kinashi T, Aker M, Sokolovsky-Eisenberg M, Grabovsky V, Tanaka C, Shamri R, Feigelson S, Etzioni A, Alon R (2004) LAD III, a leukocyte adhesion deficiency syndrome associated with defective Rap-1 activation and impaired stabilization of integrin bonds. Blood 103(3):1033–1036CrossRefPubMedGoogle Scholar
  37. 37.
    Bos JL, de Rooij J, Reedquist KA (2001) Rap-1 signalling: adhering to new models. Nat Rev Mol Cell Biol 2(5):369–377CrossRefPubMedGoogle Scholar
  38. 38.
    Crittenden JR, Bergmeier W, Zhang Y, Piffath CL et al (2004) CalDAG-GEFI integrates signalling for platelet aggregation and thrombus formation. Nat Med 10(9):982–986CrossRefPubMedGoogle Scholar
  39. 39.
    Bergmeier W, George T, Wang HW et al (2007) Mice Lacking the signalling molecule CalDAG-GEF1 represent a model for leukocyte adhesion deficiency type III. JCI 117(6):1699–1707CrossRefPubMedGoogle Scholar
  40. 40.
    Mory A, Feigelson SW, Yarali N (2008) Kindlin-3 a new gene involved in the pathogenesis of LAD III. Blood 112(6):2591CrossRefPubMedGoogle Scholar
  41. 41.
    Kuijpers TW, van de Vijver E, Weternman MAJ et al (2009) LAD-1/variant syndrome is caused by mutations in FERMT3. Blood, in press. doi:10.1182/blood-2008-10-182154
  42. 42.
    Larjava H, Plow EF, Wu C (2008) Kindlines: essential regulators of integrin signalling and cell-matrix adhesion. EMBO 9(12):1203–1208CrossRefGoogle Scholar
  43. 43.
    Moser M, Bauer M, Schmid S et al (2009) Kindlin 3 is required for beta 2 integrin mediated leukocyte Adhesion to endothelial cells. Nat Med 15(3):300–305CrossRefPubMedGoogle Scholar
  44. 44.
    Svensson L, Howarth K, McDowall A et al (2009) Leukocyte adhesion deficiency III is caused by Mutations in Kindlin # affecting integrin activation. Nat Med 15(3):306–312CrossRefPubMedGoogle Scholar
  45. 45.
    Malinin NI, Zhang L, Choi J et al (2009) A point mutation in Kindlin 3 ablates activation of three Subfamilies in humans. Nat Med 15(3):313–318CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.Meyer Children HospitalRappaport School of MedicineHaifaIsrael

Personalised recommendations