Clinical Reviews in Allergy & Immunology

, Volume 37, Issue 3, pp 173–180

Interpretation of Pulmonary Function Test: Issues and Controversies

Article

Abstract

Pulmonary function testing (PFT) serves many purposes in clinical practice, and in contrast to other laboratory measures, PFT results are often provided with a clinical interpretation. PFT interpretation depends on the clinical context, and multiple challenges influence PFT interpretation. Overall, the goal of PFT interpretation is to distinguish normal from abnormal, and this is affected by the selection of reference standards, as well as the arbitrary albeit not necessarily irrational choice of cut-off values. Controversies regarding PFT analysis may lead to important differences in interpretation. In this article, issues associated with the selection of reference standards are discussed, followed by a review of the controversies related to PFT interpretation in the diagnosis of obstructive ventilatory defect, restrictive ventilatory defect, gas transfer defect, and flow-volume loop abnormalities. Given the challenges facing PFT interpretation, no single interpretative algorithm is sufficient; rather, PFT interpretation requires a comprehensive approach including consideration of the clinical context, laboratory methodology, and reference standards and an understanding of the consequences of a normal or abnormal designation.

Keywords

Respiratory function tests Pulmonary diffusing capacity Lung volume measurements Spirometry 

References

  1. 1.
    Pellegrino R, Viege G, Brusasco V, Crapo RO, Burgos F, Casaburi R, Coates A, van der Grinten CPM, Gustafsson P, Hankinson J, Jensen R, Johnson DC, Macintyre N, McKay R, Miller MR, Navajas D, Pedersen OF, Wanger J (2005) Interpretative strategies for lung function tests. Eur Respir J 26:948–968CrossRefPubMedGoogle Scholar
  2. 2.
    McCormack MC, Shade D, Wise RA (2007) Spirometer calibration checks: is 3.5% good enough? Chest 131:1486–1493CrossRefPubMedGoogle Scholar
  3. 3.
    Crapo RO (2004) The role of reference values in interpreting lung function tests. Eur Respir J 24:341–342CrossRefPubMedGoogle Scholar
  4. 4.
    Collen J, Greenburg D, Holley A, King CS, Hnatiuk O (2008) Discordance in spirometric interpretations using three commonly used reference equations vs national health and nutrition examination study III. Chest 134:1009–1016CrossRefPubMedGoogle Scholar
  5. 5.
    Harik-Khan RI, Fleg JL, Muller DC, Wise RA (2001) The effect of anthropometric and socioeconomic factors on the racial difference in lung function. Am J Respir Crit Care Med 164:1647–1654PubMedGoogle Scholar
  6. 6.
    Disability Evaluation Under Social Security; Respiratory System—Adult; Category of Impairments—Respiratory System. Accessed online on Feb 25, 2009 at http://www.ssa.gov/disability/professionals/bluebook/3.00-Respiratory-Adult.htm
  7. 7.
    Zheng JP, Zhong NS (2002) Normative values of pulmonary function testing in Chinese adults. Chinese Med J 2002:50–54Google Scholar
  8. 8.
    Ip MS, Ko FW, Lau AC, Yu WC, Tang KS, Choo K, Chan-Yeung MM, Hong Kong Thoracic Society, American College of Chest Physicians (Hong Kong and Macau Chapter) (2006) Updated spirometric reference values for adult Chinese in Hong Kong and implications on clinical utilization. Chest 129:384–392CrossRefPubMedGoogle Scholar
  9. 9.
    Ghio AJ, Crapo RO, Elliott CG (1990) Reference equations used to predict pulmonary function. Survey at institutions with respiratory disease training programs in the United States and Canada. Chest 97:400–403CrossRefPubMedGoogle Scholar
  10. 10.
    Permutt S, Menkes HA (1979) Spirometry: Analysis of Forced Expiration Within the Time Domain. In: Macklem PT, Permutt S (eds) The lung in the transition between health and disease. M. Dekker, New York, pp 113–152Google Scholar
  11. 11.
    Fessler HE, Permutt S (1998) Lung volume reduction surgery and airflow limitation. Am J Respir Crit Care Med 157:715–722PubMedGoogle Scholar
  12. 12.
    Celli BR, Macnee W, Committee members (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23:932–946CrossRefPubMedGoogle Scholar
  13. 13.
    Mannino DM, Buist AS, Petty TL, Enright PL, Redd SC (2003) Lung function and mortality in the United States: data from the First National Health and Nutrition Examination Survey follow up study. Thorax 58:388–393CrossRefPubMedGoogle Scholar
  14. 14.
    Anthonisen NR, Skeans MA, Wise RA, Manfreda J, Kanner RE, Connett JE, Lung Health Study Research Group (2005) The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med 142:233–239PubMedGoogle Scholar
  15. 15.
    Martinez FJ, Han MK, Andrei AC, Wise R, Murray S, Curtis JL, Sternberg A, Criner G, Gay SE, Reilly J, Make B, Ries AL, Sciurba F, Weinmann G, Mosenifar Z, DeCamp M, Fishman AP, Celli BR (2008) Longitudinal change in the BODE index predicts mortality in severe emphysema. Am J Respir Crit Care Med 178:491–499CrossRefPubMedGoogle Scholar
  16. 16.
    Tashkin DP, Celli B, Senn S, Burkhart D, Kesten S, Menjoge S, Decramer M (2008) UPLIFT Study Investigators A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med 359:543–554CrossRefGoogle Scholar
  17. 17.
    Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, Jones PW, Yates JC, Vestbo J, TORCH investigators (2007) Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 356:775–789CrossRefPubMedGoogle Scholar
  18. 18.
    Burrows B, Knudson RJ, Camilli AE, Lyle SK, Lebowitz MD (1987) The “horse-racing effect” and predicting decline in forced expiratory volume in one second from screening spirometry. Am Rev Respir Dis 135:788–793PubMedGoogle Scholar
  19. 19.
    O’Donnell DE, Lam M, Webb KA (1999) Spirometric correlates of improvement in exercise performance after anticholinergic therapy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160:542–549PubMedGoogle Scholar
  20. 20.
    Wise RA (2004) The epidemiology of chronic obstructive pulmonary disease. In: Lung Volume Reduction Surgery for Emphysema, Fessler HE, JJ Reilly, Jr., and DJ Sugarbaker (eds). Lung Biology in Health and Disease Monographs. Marcel Dekker, Vol 184, pp 1–22Google Scholar
  21. 21.
    Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukushi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease—GOLD executive summary. Am J Respir Crit Care Med 176:532–555CrossRefPubMedGoogle Scholar
  22. 22.
    Wise RA and S Permutt. Evaluation of Lung Function: Determination of Pulmonary Impairment. DH Simmons (ed). In: Current Pulmonology Vol. 6, pp. 307–327, 1985, John Wiley & Sons, Inc. NY,Google Scholar
  23. 23.
    O’Donnell DE, Lam M, Webb KA (1999) Spirometric correlates of improvement in exercise performance after anticholinergic therapy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160:542–549PubMedGoogle Scholar
  24. 24.
    Casanova C, Cote C, de Torres JP, Aguirre-Jaime A, Marin JM, Pinto-Plata V, Celli BR (2005) Inspiratory-to-total lung capacity ratio predicts mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171:591–597CrossRefPubMedGoogle Scholar
  25. 25.
    Calverley PM, Burge PS, Spencer S, Anderson JA, Jones PW (2003) Bronchodilator reversibility testing in chronic obstructive pulmonary disease. Thorax 58:659–664CrossRefPubMedGoogle Scholar
  26. 26.
    Aaron SD, Dales RE, Cardinal P (1999) How accurate is spirometry at predicting restrictive pulmonary impairment? Chest 115:869–873CrossRefPubMedGoogle Scholar
  27. 27.
    Hyatt RE, Cowl CT, Bioraker JA, Scanlon PD (2009) Conditions associated with an abnormal nonspecific pattern of pulmonary function tests. Chest 135:419–424CrossRefPubMedGoogle Scholar
  28. 28.
    Drummond MB, Schwartz PF, Duggan WT, Teeter JG, Riese RJ, Ahrens RC, Crapo RO, England RD, Macintyre NR, Jensen RL, Wise RA (2008) Intersession variability in single-breath diffusing capacity in diabetics without overt lung disease. Am J Respir Crit Care Med 178:225–232CrossRefPubMedGoogle Scholar
  29. 29.
    Thompson BR, Johns DP, Bailey M, Raven J, Walters EH, Abramson MJ (2008) Prediction equations for single breath diffusing capacity (Tlco) in a middle aged Caucasian population. Thorax 63:889–893CrossRefPubMedGoogle Scholar
  30. 30.
    Peters-Golden M, Wise RA, Hochberg MC, Stevens MB, Wigley FM (1984) Carbon monoxide diffusing capacity as predictor of outcome in systemic sclerosis. Am J Med 77:1027–1034CrossRefPubMedGoogle Scholar
  31. 31.
    Latsi PI, du Bois RM, Nicholson AG, Colby TV, Bisirtzoglou D, Nikolakopoulou A, Veeraraghavan S, Hansell DM, Wells AU (2003) Fibrotic idiopathic interstitial pneumonia: the prognostic value of longitudinal functional trends. Am J Respir Crit Care Med 168:531–537CrossRefPubMedGoogle Scholar
  32. 32.
    Ferguson MK, Vigneswaran WT (2008) Diffusing capacity predicts morbidity after lung resection in patients without obstructive lung disease. Ann Thorac Surg 85:1158–1164CrossRefPubMedGoogle Scholar
  33. 33.
    Owens GR, Rogers RM, Pennock BE, Levin D (1984) The diffusing capacity as a predictor of arterial oxygen desaturation during exercise in patients with chronic obstructive pulmonary disease. N Engl J Med 310:1218–1221PubMedCrossRefGoogle Scholar
  34. 34.
    Ries AL, Farrow JT, Clausen JL (1988) Pulmonary function tests cannot predict exercise-induced hypoxemia in chronic obstructive pulmonary disease. Chest 93:454–459CrossRefPubMedGoogle Scholar
  35. 35.
    Johnson DC (2000) Importance of adjusting carbon monoxide diffusing capacity (DLCO) and carbon monoxide transfer coefficient (KCO) for alveolar volume. Respir Med 94:28–37CrossRefPubMedGoogle Scholar
  36. 36.
    Hughes JM, Pride NB (2001) In defence of the carbon monoxide transfer coefficient Kco (TL/VA). Eur Respir J 17:168–174CrossRefPubMedGoogle Scholar
  37. 37.
    Saydain G, Beck KC, Decker PA, Cowl CT, Scanlon PD (2004) Clinical significance of elevated diffusing capacity. Chest 125:446–452CrossRefPubMedGoogle Scholar
  38. 38.
    Ettinger WH, Wise RA, Stevens MB, Wigley FM (1983) Absence of positional change in pulmonary diffusing capacity in systemic sclerosis. Am J Med 75:305–312CrossRefPubMedGoogle Scholar
  39. 39.
    Pride NB, Permutt S, Riley RL, Bromberger-Barnea B (1967) Determinants of maximal expiratory flow from the lungs. J Appl Physiol 23:646–662PubMedGoogle Scholar
  40. 40.
    Haponik EF, Munster AM, Wise RA, Smith PL, Meyers DA, Britt EJ, Bleecker ER (1984) Upper airway function in burn patients. Correlation of flow-volume curves and nasopharyngoscopy. Am Rev Respir Dis 129:251–257PubMedGoogle Scholar
  41. 41.
    Haponik EF, Bleecker ER, Allen RP, Smith PL, Kaplan J (1981) Abnormal inspiratory flow-volume curves in patients with sleep-disordered breathing. Am Rev Respir Dis 124:571–574PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Johns Hopkins Asthma & Allergy CenterBaltimoreUSA

Personalised recommendations