Advertisement

Clinical Reviews in Allergy & Immunology

, Volume 37, Issue 2, pp 97–104 | Cite as

Varied Immune Response to FVIII: Presence of Proteolytic Antibodies Directed to Factor VIII in Different Human Pathologies

  • Bharath Wootla
  • Narasimha Rao Desirazu
  • Alain Friboulet
  • Taizo Uda
  • Sébastien Lacroix-DesmazesEmail author
  • Srini V. Kaveri
Article

Abstract

The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation of the complement and its activation, and activation of effector cells. In addition to this plethora of functions, antibodies are capable of expressing enzymatic activity. Antibodies with catalytic function are a result of the productive interplay between the highly evolved machinery of the immune system and the chemical framework used to induce them (antigens). Catalytic antibodies are immunoglobulins with an ability to catalyze the reactions involving the antigen for which they are specific. Catalytic immunoglobulins of the IgM and IgG isotypes have been detected in the serum of healthy donors. In addition, catalytic immunoglobulins of the IgA isotype have been detected in the milk of healthy mothers. Conversely, antigen-specific hydrolytic antibodies have been reported in a number of inflammatory, autoimmune, and neoplastic disorders. The pathophysiological occurrence and relevance of catalytic antibodies remains a debated issue. Through the description of the hydrolysis of coagulation factor VIII as model target antigen, we propose that catalytic antibodies directed to the coagulation factor VIII may play a beneficial or a deleterious role depending on the immuno-inflammatory condition under which they occur.

Keywords

Factor VIII Anti-FVIII antibodies Catalytic antibody 

Notes

Acknowledgments

This work was supported by Institut National de la Santé et de la Recherche Médicale, by Centre National de la Recherche Scientifique, by Université Pierre et Marie Curie, by the Indo-French Center for Promotion of Advanced Research, by a grant from Agence Nationale de la Recherche (ANR-05-MRAR-012) and from Japan Sciences and Technology Agency (JST, Tokyo, Japan). BW was the recipient of a research fellowship from Laboratoire Français du Fractionnement et des Biotechnologies (LFB, Les Ulis).

References

  1. 1.
    Ehrenforth S, Kreuz W, Scharrer I et al (1992) Incidence of development of factor VIII and factor IX inhibitors in haemophiliacs. Lancet 339:594–598PubMedCrossRefGoogle Scholar
  2. 2.
    De Biasi R, Rocino A, Papa ML, Salerno E, Mastrullo L, De Biasi D (1994) Incidence of factor VIII inhibitor development in hemophilia A patients treated with less pure plasma derived concentrates. Throm Haemost 7(5):544–547Google Scholar
  3. 3.
    Goodeve AC, Williams I, Bray GL, Peake IR (2000) Relationship between factor VIII mutation type and inhibitor development in a cohort of previously untreated patients treated with recombinant factor VIII (Recombinate). Recombinate PUP Study Group. Thromb Haemost 83:844–848PubMedGoogle Scholar
  4. 4.
    Gail Macick B (1993) Treatment of factor VIII inhibitors: products and strategies. Seminars in Thromb Hemost 86:192Google Scholar
  5. 5.
    Bovill EG, Burns SL, Golden EA (1985) Factor VIII antibody in a patient with mild haemophilia. Br J Haematol 61:323–328PubMedCrossRefGoogle Scholar
  6. 6.
    Santagostino E, Gringeri A, Tagliavacca L, Mannucci PM (1995) Inhibitors to factor VIII in a family with mild hemophilia: molecular characterization and response to factor VIII and desmopressin. Thromb Haemost 74:619–621PubMedGoogle Scholar
  7. 7.
    Lottenburg R, Kentro T, Kitchins C (1987) Acquired hemophilia. A natural history study of 16 patients with FVIII inhibitors reveiving little or no therapy. Arch Intern Med 147:1077–1081CrossRefGoogle Scholar
  8. 8.
    Kessler CM (2000) Acquired factor VIII autoantibody inhibitors: current concepts and potential therapeutic strategies for the future. Haematologica 85:57–61; discussion 61–3PubMedGoogle Scholar
  9. 9.
    Franchini M, Gandini G, Di Paolantonio T, Mariani G (2005) Acquired hemophilia A: a concise review. Am J Hematol 80:55–63PubMedCrossRefGoogle Scholar
  10. 10.
    Collins PW, Hirsch S, Baglin TP et al (2006) Acquired haemophilia A in the UK: a two year national surveillance study by UK Haemophilia Centre Doctors’ Organisation. Blood 109(5):1870–1877PubMedCrossRefGoogle Scholar
  11. 11.
    Shapiro S (1967) The immunologic character of acquired inhibitors of antihemophiliac globulin (Factor VIII) and the kinetics of their interaction with FVIII. J Clin Invest 46:147–156PubMedGoogle Scholar
  12. 12.
    Gilles J-G, Saint-Remy J-M (1996) Coagulation factor VIII autoantibodies. In: Peter JB, Shoenfeld Y (eds) Autoantibodies. Elsevier, Amsterdam, pp 172–178CrossRefGoogle Scholar
  13. 13.
    Perkins HA, MacKenzie MR, Fudenberg HH (1970) Hemostatic defects in dysproteinemias. Blood 35:695–707PubMedGoogle Scholar
  14. 14.
    Kelsey PR, Leyland MJ (1982) Acquired inhibitor to human factor VIII associated with paraproteinaemia and subsequent development of chronic lymphatic leukaemia. Br Med J (Clinical research ed) 285:174–175CrossRefGoogle Scholar
  15. 15.
    Green D, Lechner K (1981) A survey of 215 non-hemophilic patients with inhibitors to factor VIII. Thromb Haemastos 45(3):200–203Google Scholar
  16. 16.
    Morrison AE, Ludlam CA, Kessler C (1993) Use of porcine factor VIII in the treatment of patients with acquired hemophilia. Blood 81:1513–1520PubMedGoogle Scholar
  17. 17.
    Green D, Blanc J, Foiles N (1999) Spontaneous inhibitors of factor VIII: kinetics of inactivation of human and porcine factor VIII. J Lab Clin Med 133:260–264PubMedCrossRefGoogle Scholar
  18. 18.
    Pruthi RK, Nichols WL (1999) Autoimmune factor VIII inhibitors. Curr Opin Hematol 6:314–322PubMedCrossRefGoogle Scholar
  19. 19.
    Algiman M, Dietrich G, Nydegger U, Boieldieu D, Sultan Y, Kazatchkine MD (1992) Natural antibodies to factor VIII (anti-hemophilic factor) in healthy individuals. Proc Natl Acad Sci U S A 89:3795–3799PubMedCrossRefGoogle Scholar
  20. 20.
    Gilles JG, Arnout J, Vermylen J, Saint-Remy JM (1993) Anti-factor VIII antibodies of hemophiliac patients are frequently directed towards nonfunctional determinants and do not exhibit isotypic restriction. Blood 82:2452–2461PubMedGoogle Scholar
  21. 21.
    Dietrich G, Algiman M, Sultan Y, Nydegger UE, Kazatchkine MD (1992) Origin of anti-idiotypic activity against anti-factor VIII autoantibodies in pools of normal human immunoglobulin G (IVIg). Blood 79:2946–2951PubMedGoogle Scholar
  22. 22.
    Gilles JG, Desqueper B, Lenk H, Vermylen J, Saint-Remy JM (1996) Neutralizing antiidiotypic antibodies to factor VIII inhibitors after desensitization in patients with hemophilia A. J Clin Invest 97:1382–1388PubMedCrossRefGoogle Scholar
  23. 23.
    Sultan Y, Kazatchkine MD, Maisonneuve P, Nydegger UE (1984) Anti-idiotypic suppression of autoantibodies to Factor VIII (antihaemophilic factor) by high-dose intravenous gammaglobulin. Lancet 2:765–768PubMedCrossRefGoogle Scholar
  24. 24.
    Rossi F, Sultan Y, Kazatchkine MD (1988) Anti-idiotypes against autoantibodies and alloantibodies to Factor VIII:C (anti-haemophilic factor) are present in therapeutic polyspecific normal immunoglobulins. Clin Exp Immunol 74:311–316PubMedGoogle Scholar
  25. 25.
    Fulcher CA, De Graaf Mahoney S, Roberts JR, Kasper CK, Zimmerman TS (1985) Localization of human factor VIII inhibitor epitopes to two polypeptide fragments. Proc Natl Acad Sci U S A 82:7728–7732PubMedCrossRefGoogle Scholar
  26. 26.
    Kalaga R, Li L, O’Dell JR, Paul S (1995) Unexpected presence of polyreactive catalytic antibodies in IgG from unimmunized donors and decreased levels in rheumatoid arthritis. J Immunol 155:2695–2702PubMedGoogle Scholar
  27. 27.
    Paul S, Lan L, Kalaga R et al (1997) Characterization of thyroglobulin-directed and polyreactive catalytic antibodies in autoimmune disease. J Immunol 159:1530–1536PubMedGoogle Scholar
  28. 28.
    Planque S, Bangale Y, Song XT et al (2004) Ontogeny of proteolytic immunity: IgM serine proteases. J Biol Chem 279(14):14024–14032PubMedCrossRefGoogle Scholar
  29. 29.
    Kit Y-Y, Semenov DV, Nevinsky GA (1996) Phosphorylation of different human milk proteins by human catalytic secretory immunoglobulin A. Biochem Molec Biol Intl 39:521–527Google Scholar
  30. 30.
    Kanyshkova TG, Semenov DV, Khlimankov D, Buneva VN, Nevinsky GA (1997) DNA-hydrolyzing activity of the light chain of IgG antibodies from milk of healthy human mothers. FEBS Lett 416:23–26PubMedCrossRefGoogle Scholar
  31. 31.
    Wentworth JP, McDunn JE, Wentworth AD et al (2002) Evidence of antibody-catalyzed ozone formation in bacterial killing and inflammation. Science 298:2195–2199PubMedCrossRefGoogle Scholar
  32. 32.
    Friboulet A, Avalle B, Debat H, Thomas D (1999) A possible role of catalytic antibodies in metabolism. Immunol Today 20:474–475PubMedCrossRefGoogle Scholar
  33. 33.
    Shuster AM, Gololobov GV, Kvashuk OA, Bogomolova AE, Smirnov IV, Gabibov AG (1992) DNA hydrolyzing autoantibodies. Science 256:665–667PubMedCrossRefGoogle Scholar
  34. 34.
    Vlassov A, Florentz C, Helm M et al (1998) Characterization and selectivity of catalytic antibodies from human serum with RNase activity. Nucleic Acids Res 26:5243–5250PubMedCrossRefGoogle Scholar
  35. 35.
    Baranovskii AG, Ershova NA, Buneva VN et al (2001) Catalytic heterogeneity of polyclonal DNA-hydrolyzing antibodies from the sera of patients with multiple sclerosis. Immunol Lett 76:163–167PubMedCrossRefGoogle Scholar
  36. 36.
    Li L, Paul S, Tyutyulkova S, Kazatchkine MD, Kaveri S (1995) Catalytic activity of anti-thyroglobulin antibodies. J Immunol 154:3328–3332PubMedGoogle Scholar
  37. 37.
    Lacroix-Desmazes S, Bayry J, Kaveri SV et al (2005) High levels of catalytic antibodies correlate with favorable outcome in sepsis. Proc Natl Acad Sci U S A 102:4109–4113PubMedCrossRefGoogle Scholar
  38. 38.
    Lacroix-Desmazes S, Bayry J, Misra N et al (2002) The prevalence of proteolytic antibodies against factor VIII in hemophilia A. N Engl J Med 346:662–667PubMedCrossRefGoogle Scholar
  39. 39.
    Lacroix-Desmazes S, Moreau A, Sooryanarayana et al (1999) Catalytic activity of antibodies against factor VIII in patients with hemophilia A. Nat Med 5:044–1047CrossRefGoogle Scholar
  40. 40.
    Wootla B, Dasgupta S, Dimitrov JD et al (2008) Factor VIII hydrolysis mediated by anti-factor VIII autoantibodies in acquired hemophilia. J Immunol 180:7714–7720PubMedGoogle Scholar
  41. 41.
    Wootla B, Nicoletti A, Patey N et al (2008) Hydrolysis of coagulation factors by circulating IgG is associated with a reduced risk for chronic allograft nephropathy in renal transplanted patients. J Immunol 180:8455–8460PubMedGoogle Scholar
  42. 42.
    Thiagarajan P, Dannenbring R, Matssura K, Tramontano A, Gololobov G, Paul S (2000) Monoclonal antibody light chain with prothrombinase activity. Biochemistry 39:6459–6465PubMedCrossRefGoogle Scholar
  43. 43.
    Nardi M, Tomlinson S, Greco MA, Karpatkin S (2001) Complement-independent, peroxide-induced antibody lysis of platelets in HIV-1-related immune thrombocytopenia. Cell 106:551–561PubMedCrossRefGoogle Scholar
  44. 44.
    Belogurov AA Jr, Kurkova IN, Friboulet A et al (2008) Recognition and degradation of myelin basic protein peptides by serum autoantibodies: novel biomarker for multiple sclerosis. J Immunol 180:1258–1267PubMedGoogle Scholar
  45. 45.
    Ponomarenko NA, Durova OM, Vorobiev II et al (2002) Catalytic antibodies in clinical and experimental pathology: human and mouse models. J Immunol Methods 269:197–211PubMedCrossRefGoogle Scholar
  46. 46.
    Ponomarenko NA, Durova OM, Vorobiev II et al (2006) Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen. Proc Natl Acad Sci U S A 103:281–286PubMedCrossRefGoogle Scholar
  47. 47.
    Lacroix-Desmazes S, Wootla B, Dasgupta S et al (2006) Catalytic IgG from patients with hemophilia A inactivate therapeutic factor VIII. J Immunol 177:1355–1363PubMedGoogle Scholar
  48. 48.
    Holschermann H, Bohle RM, Zeller H et al (1999) In situ detection of tissue factor within the coronary intima in rat cardiac allograft vasculopathy. Am J Pathol 154:211–220PubMedGoogle Scholar
  49. 49.
    Holschermann H, Bohle RM, Schmidt H et al (2000) Hirudin reduces tissue factor expression and attenuates graft arteriosclerosis in rat cardiac allografts. Circulation 102:357–363PubMedGoogle Scholar
  50. 50.
    Yen MH, Pilkington G, Starling RC et al (2002) Increased tissue factor expression predicts development of cardiac allograft vasculopathy. Circulation 106:1379–1383PubMedCrossRefGoogle Scholar
  51. 51.
    Matsuyama M, Yoshimura R, Akioka K et al (2003) Tissue factor antisense oligonucleotides prevent renal ischemia-reperfusion injury. Transplantation 76:786–791PubMedCrossRefGoogle Scholar
  52. 52.
    Sayegh MH, Carpenter CB (2004) Transplantation 50 years later–progress, challenges, and promises. N Engl J Med 351:2761–2766PubMedCrossRefGoogle Scholar
  53. 53.
    Riewald M, Ruf W (2003) Science review: role of coagulation protease cascades in sepsis. Critical Care (London, England) 7:123–129CrossRefGoogle Scholar
  54. 54.
    Salom RN, Maguire JA, Hancock WW (1998) Endothelial activation and cytokine expression in human acute cardiac allograft rejection. Pathology 30:24–29PubMedCrossRefGoogle Scholar
  55. 55.
    Mannucci PM, Tuddenham EG (2001) The hemophilias–from royal genes to gene therapy. N Engl J Med 344:1773–1779PubMedCrossRefGoogle Scholar
  56. 56.
    Arai M, Scandella D, Hoyer LW (1989) Molecular basis of factor VIII inhibition by human antibodies: antibodies that bind to the factor VIII light chain prevent the interaction of factor VIII with phospholipid. J Clin Invest 83:1978–1984PubMedCrossRefGoogle Scholar
  57. 57.
    Saenko EL, Shima M, Gilbert GE, Scandella D (1996) Slowed release of thrombin-cleaved factor VIII from von Willebrand factor by a monoclonal and a human antibody is a novel mechanism for FVIII inhibition. J Biol Chem 271:27424–27431PubMedCrossRefGoogle Scholar
  58. 58.
    Shima M, Scandella D, Yoshioka A et al (1993) A factor VIII neutralizing monoclonal antibody and a human inhibitor alloantibody recognizing epitopes in the C2 domain inhibit factor VIII binding to von Willebrand factor and to phosphatidylserine. Thromb Haemost 69:240–246PubMedGoogle Scholar
  59. 59.
    Zhong D, Saenko EL, Shima M, Felch M, Scandella D (1998) Some human inhibitor antibodies interfere with factor VIII binding to Factor IX. Blood 92:136–142PubMedGoogle Scholar
  60. 60.
    Foster PA, Fulcher CA, Huoghten RA, de Graaf Mahoney S, Zimmerman TS (1988) Localization of the binding regions of a murine monoclonal anti-FVIII antibody and a human anti-factor VIII alloantibody, both of which inhibit factor VIII procoagulant activity, to amino acid residues threonine351-serine365 of the factor VIII heavy chain. J Clin Invest 82:123–128PubMedCrossRefGoogle Scholar
  61. 61.
    Lubahn BC, Ware J, Stafford DW, Reisner HM (1989) Identification of a FVIII epitope recognized by a human hemophilic inhibitor. Blood 73:497–499PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Bharath Wootla
    • 1
    • 2
    • 3
  • Narasimha Rao Desirazu
    • 4
  • Alain Friboulet
    • 5
  • Taizo Uda
    • 6
  • Sébastien Lacroix-Desmazes
    • 1
    • 2
    • 3
    • 7
    Email author
  • Srini V. Kaveri
    • 1
    • 2
    • 3
  1. 1.Centre de Recherche des CordeliersUniversité Pierre et Marie Curie - Paris6, UMR S 872ParisFrance
  2. 2.Université Paris Descartes, UMR S 872ParisFrance
  3. 3.INSERM, U872ParisFrance
  4. 4.Department of BiochemistryIndian Institute of ScienceBangaloreIndia
  5. 5.Université de Technologie de Compiègne, CNRS UMR 6022 Génie Enzymatique et CellulaireCompiègne CedexFrance
  6. 6.Research Center for Applied Medical EngineeringOita UniversityOitaJapan
  7. 7.Centre de Recherche des CordeliersINSERM UMR S 872 Equipe 16ParisFrance

Personalised recommendations