Vascular Disease in Scleroderma



Although scleroderma is generally considered a fibrosing disease of the tissues, it is now recognized that the underlying vascular disease is playing a fundamental role in its pathogenesis and associated tissue injury. The exact mechanism for the widespread scleroderma vascular disease is still unknown, but endothelial cell injury induced by infection, immune-mediated cytotoxicity, antiendothelial antibodies, and/or ischemia-reperfusion have all been implicated. The downstream effects of blood vessel perturbation produce “biomarkers” of vascular damage that reflect disease and may predict clinical outcomes. A complex interaction between endothelial cells, smooth muscle cells, extracellular matrix, and intravascular circulating factors is now recognized to contribute to the vascular reactivity, remodeling, and occlusive disease of scleroderma. Understanding the mechanisms underlying these processes provides rationale of novel therapeutic strategies and specific targeted therapy. This review will outline some of the evidence for the causes and consequences of scleroderma vascular disease.


Systemic sclerosis Scleroderma Vascular disease Endothelium Pathogenesis 



The author thanks the Scleroderma Research Foundation and the Board members of the Johns Hopkins Scleroderma Center, for their support of our research program, and Pam Hill and Jolene Patey for their help in the preparation of this manuscript. The author is grateful for the wonderful friendship and inspiration given by Dr Ronald Asherson over the years.


  1. 1.
    Norton WL, Nardo JM (1970) Vascular disease in progressive systemic sclerosis (scleroderma). Ann Intern Med 73:317–324PubMedGoogle Scholar
  2. 2.
    LeRoy EC (1996) Systemic sclerosis. A vascular perspective. Rheum Dis Clin North Am 22:675–694PubMedCrossRefGoogle Scholar
  3. 3.
    Guiducci S, Giacomelli R, Cerinic MM (2007) Vascular complications of scleroderma. Autoimmun Rev 6:520–523PubMedCrossRefGoogle Scholar
  4. 4.
    Suter LG, Murabito JM, Felson DT, Fraenkel L (2005) The incidence and natural history of Raynaud’s phenomenon in the community. Arthritis Rheum 52:1259–1263PubMedCrossRefGoogle Scholar
  5. 5.
    Carpentier PH, Satger B, Poensin D, Maricq HR (2006) Incidence and natural history of Raynaud phenomenon: a long-term follow-up (14 years) of a random sample from the general population. J Vasc Surg 44:1023–1028PubMedCrossRefGoogle Scholar
  6. 6.
    Korn JH, Mayes M, Matucci CM, Rainisio M, Pope J, Hachulla E et al (2004) Digital ulcers in systemic sclerosis: prevention by treatment with bosentan, an oral endothelin receptor antagonist. Arthritis Rheum 50:3985–3993PubMedCrossRefGoogle Scholar
  7. 7.
    Gliddon AE, Dore CJ, Black CM, McHugh N, Moots R, Denton CP et al (2007) Prevention of vascular damage in scleroderma and autoimmune Raynaud’s phenomenon: a multicenter, randomized, double-blind, placebo-controlled trial of the angiotensin-converting enzyme inhibitor quinapril. Arthritis Rheum 56:3837–3846PubMedCrossRefGoogle Scholar
  8. 8.
    Tiso F, Favaro M, Ciprian L, Cardarelli S, Rizzo M, Tonello M et al (2007) [Digital ulcers in a cohort of 333 scleroderma patients]. Reumatismo 59:215–220PubMedGoogle Scholar
  9. 9.
    Nihtyanova SI, Brough GM, Black CM, Denton CP (2008) Clinical burden of digital vasculopathy in limited and diffuse cutaneous systemic sclerosis. Ann Rheum Dis 67:120–123PubMedCrossRefGoogle Scholar
  10. 10.
    Hachulla E, Clerson P, Launay D, Lambert M, Morell-Dubois S, Queyrel V et al (2007) Natural history of ischemic digital ulcers in systemic sclerosis: single-center retrospective longitudinal study. J Rheumatol 34:2423–2430PubMedGoogle Scholar
  11. 11.
    Wigley FM, Wise RA, Miller R, Needleman BW, Spence RJ (1992) Anticentromere antibody as a predictor of digital ischemic loss in patients with systemic sclerosis. Arthritis Rheum 35:688–693PubMedCrossRefGoogle Scholar
  12. 12.
    Herrick AL, Oogarah PK, Freemont AJ, Marcuson R, Haeney M, Jayson MI (1994) Vasculitis in patients with systemic sclerosis and severe digital ischaemia requiring amputation. Ann Rheum Dis 53:323–326PubMedCrossRefGoogle Scholar
  13. 13.
    Matucci-Cerinic M, Seibold JR (2008) Digital ulcers and outcomes assessment in scleroderma. Rheumatology (Oxford) 47(Suppl 5):v46–v47CrossRefGoogle Scholar
  14. 14.
    Ho M, Veale D, Eastmond C, Nuki G, Belch J (2000) Macrovascular disease and systemic sclerosis. Ann Rheum Dis 59:39–43PubMedCrossRefGoogle Scholar
  15. 15.
    Stucker M, Quinna S, Memmel U, Rochling A, Traupe M, Hoffmann K et al (2000) Macroangiopathy of the upper extremities in progressive systemic sclerosis. Eur J Med Res 5:295–302PubMedGoogle Scholar
  16. 16.
    Hasegawa M, Nagai Y, Tamura A, Ishikawa O (2006) Arteriographic evaluation of vascular changes of the extremities in patients with systemic sclerosis. Br J Dermatol 155:1159–1164PubMedCrossRefGoogle Scholar
  17. 17.
    Rodnan GP, Myerowitz RL, Justh GO (1980) Morphologic changes in the digital arteries of patients with progressive systemic sclerosis (scleroderma) and Raynaud phenomenon. Medicine (Baltimore) 59:393–408Google Scholar
  18. 18.
    Youssef P, Englert H, Bertouch J (1993) Large vessel occlusive disease associated with CREST syndrome and scleroderma. Ann Rheum Dis 52:464–466PubMedCrossRefGoogle Scholar
  19. 19.
    Stafford L, Englert H, Gover J, Bertouch J (1998) Distribution of macrovascular disease in scleroderma. Ann Rheum Dis 57:476–479PubMedCrossRefGoogle Scholar
  20. 20.
    Taylor MH, McFadden JA, Bolster MB, Silver RM (2002) Ulnar artery involvement in systemic sclerosis (scleroderma). J Rheumatol 29:102–106PubMedGoogle Scholar
  21. 21.
    Constans J, Germain C, Gosse P, Taillard J, Tiev K, Delevaux I et al (2007) Arterial stiffness predicts severe progression in systemic sclerosis: the ERAMS study. J Hypertens 25:1900–1906PubMedCrossRefGoogle Scholar
  22. 22.
    Hettema ME, Zhang D, Stienstra Y, Oomen PN, Smit AJ, Kallenberg CG et al (2008) Decreased capillary permeability and capillary density in patients with systemic sclerosis using large-window sodium fluorescein videodensitometry of the ankle. Rheumatology (Oxford) 47:1409–1412CrossRefGoogle Scholar
  23. 23.
    Sherer Y, Gerli R, Bocci EB, Gilburd B, Vaudo G, Bistoni O et al (2007) Heat-shock protein 65 autoantibodies are differently associated with early atherosclerosis in rheumatoid arthritis and in healthy subjects. Ann N Y Acad Sci 1108:408–413PubMedCrossRefGoogle Scholar
  24. 24.
    Bartoli F, Angotti C, Fatini C, Conforti ML, Guiducci S, Blagojevic J et al (2007) Angiotensin-converting enzyme I/D polymorphism and macrovascular disease in systemic sclerosis. Rheumatology (Oxford) 46:772–775CrossRefGoogle Scholar
  25. 25.
    Bartoli F, Blagojevic J, Bacci M, Fiori G, Tempestini A, Conforti ML et al (2007) Flow-mediated vasodilation and carotid intima-media thickness in systemic sclerosis. Ann N Y Acad Sci 1108:283–290PubMedCrossRefGoogle Scholar
  26. 26.
    Szucs G, Timar O, Szekanecz Z, Der H, Kerekes G, Szamosi S et al (2007) Endothelial dysfunction precedes atherosclerosis in systemic sclerosis—relevance for prevention of vascular complications. Rheumatology (Oxford) 46:759–762CrossRefGoogle Scholar
  27. 27.
    Bulkley BH, Roberts WC (1976) Atherosclerotic narrowing of the left main coronary artery. A necropsy analysis of 152 patients with fatal coronary heart disease and varying degrees of left main narrowing. Circulation 53:823–828PubMedGoogle Scholar
  28. 28.
    Bulkley BH, Klacsmann PG, Hutchins GM (1978) Angina pectoris, myocardial infarction and sudden cardiac death with normal coronary arteries: a clinicopathologic study of 9 patients with progressive systemic sclerosis. Am Heart J 95:563–569PubMedCrossRefGoogle Scholar
  29. 29.
    D’Angelo WA, Fries JF, Masi AT, Shulman LE (1969) Pathologic observations in systemic sclerosis (scleroderma). A study of fifty-eight autopsy cases and fifty-eight matched controls. Am J Med 46:428–440PubMedCrossRefGoogle Scholar
  30. 30.
    Akram MR, Handler CE, Williams M, Carulli MT, Andron M, Black CM et al (2006) Angiographically proven coronary artery disease in scleroderma. Rheumatology (Oxford) 45:1395–1398CrossRefGoogle Scholar
  31. 31.
    Maricq HR, Downey JA, LeRoy EC (1976) Standstill of nailfold capillary blood flow during cooling in scleroderma and Raynaud’s syndrome. Blood Vessels 13:338–349PubMedCrossRefGoogle Scholar
  32. 32.
    Maricq HR, LeRoy EC (1973) Patterns of finger capillary abnormalities in connective tissue disease by “wide-field” microscopy. Arthritis Rheum 16:619–628PubMedCrossRefGoogle Scholar
  33. 33.
    Maricq HR, Weinberger AB, LeRoy EC (1982) Early detection of scleroderma-spectrum disorders by in vivo capillary microscopy: a prospective study of patients with Raynaud’s phenomenon. J Rheumatol 9:289–291PubMedGoogle Scholar
  34. 34.
    Anderson ME, Allen PD, Moore T, Hillier V, Taylor CJ, Herrick AL (2005) Computerized nailfold video capillaroscopy—a new tool for assessment of Raynaud’s phenomenon. J Rheumatol 32:841–848PubMedGoogle Scholar
  35. 35.
    Wildt M, Hesselstrand R, Akesson A, Scheja A (2007) Simple counting of nailfold capillary density in suspected systemic sclerosis—9 years’ experience. Scand J Rheumatol 36:452–457PubMedCrossRefGoogle Scholar
  36. 36.
    Maricq HR, LeRoy EC, D’Angelo WA, Medsger TA Jr, Rodnan GP, Sharp GC et al (1980) Diagnostic potential of in vivo capillary microscopy in scleroderma and related disorders. Arthritis Rheum 23:183–189PubMedCrossRefGoogle Scholar
  37. 37.
    Cutolo M, Pizzorni C, Sulli A (2004) Nailfold video-capillaroscopy in systemic sclerosis. Z Rheumatol 63:457–462PubMedCrossRefGoogle Scholar
  38. 38.
    Harper FE, Maricq HR, Turner RE, Lidman RW, LeRoy EC (1982) A prospective study of Raynaud phenomenon and early connective tissue disease. A five-year report. Am J Med 72:883–888PubMedCrossRefGoogle Scholar
  39. 39.
    Maricq HR, Harper FE, Khan MM, Tan EM, LeRoy EC (1983) Microvascular abnormalities as possible predictors of disease subsets in Raynaud phenomenon and early connective tissue disease. Clin Exp Rheumatol 1:195–205PubMedGoogle Scholar
  40. 40.
    Houtman PM, Kallenberg CG, Fidler V, Wouda AA (1986) Diagnostic significance of nailfold capillary patterns in patients with Raynaud’s phenomenon. An analysis of patterns discriminating patients with and without connective tissue disease. J Rheumatol 13:556–563PubMedGoogle Scholar
  41. 41.
    ter Borg EJ, Piersma-Wichers G, Smit AJ, Kallenberg CG, Wouda AA (1994) Serial nailfold capillary microscopy in primary Raynaud’s phenomenon and scleroderma. Semin Arthritis Rheum 24:40–47PubMedCrossRefGoogle Scholar
  42. 42.
    Meli M, Gitzelmann G, Koppensteiner R, mann-Vesti BR (2006) Predictive value of nailfold capillaroscopy in patients with Raynaud’s phenomenon. Clin Rheumatol 25:153–158PubMedCrossRefGoogle Scholar
  43. 43.
    Sulli A, Secchi ME, Pizzorni C, Cutolo M (2008) Scoring the nailfold microvascular changes during the capillaroscopic analysis in systemic sclerosis patients. Ann Rheum Dis 67:885–887PubMedCrossRefGoogle Scholar
  44. 44.
    Grassi W, De AR (2007) Capillaroscopy: questions and answers. Clin Rheumatol 26:2009–2016PubMedCrossRefGoogle Scholar
  45. 45.
    Di FM, Paradiso M, Riccieri V, Basili S, Mammarella A, Valesini G (2007) Autonomic dysfunction and microvascular damage in systemic sclerosis. Clin Rheumatol 26:1278–1283CrossRefGoogle Scholar
  46. 46.
    Braverman IM, Ken-Yen A (1983) Ultrastructure and three-dimensional reconstruction of several macular and papular telangiectases. J Invest Dermatol 81:489–497PubMedCrossRefGoogle Scholar
  47. 47.
    Walker JG, Stirling J, Beroukas D, Dharmapatni K, Haynes DR, Smith MD et al (2005) Histopathological and ultrastructural features of dermal telangiectasias in systemic sclerosis. Pathology 37:220–225PubMedCrossRefGoogle Scholar
  48. 48.
    Kazandjian S, Bruneval P, Fiessinger JN, Camilleri JP, Housset E (1986) Active proliferation of telangiectases in skin of patients with progressive systemic sclerosis (PSS). Arch Dermatol Res 279:8–11PubMedCrossRefGoogle Scholar
  49. 49.
    Shovlin CL, Guttmacher AE, Buscarini E, Faughnan ME, Hyland RH, Westermann CJ et al (2000) Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu–Osler–Weber syndrome). Am J Med Genet 91:66–67PubMedCrossRefGoogle Scholar
  50. 50.
    Mould TL, Roberts-Thomson PJ (2000) Pathogenesis of telangiectasia in scleroderma. Asian Pac J Allergy Immunol 18:195–200PubMedGoogle Scholar
  51. 51.
    McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE et al (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351PubMedCrossRefGoogle Scholar
  52. 52.
    Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ et al (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13:189–195PubMedCrossRefGoogle Scholar
  53. 53.
    Fujimoto M, Hasegawa M, Hamaguchi Y, Komura K, Matsushita T, Yanaba K et al (2006) A clue for telangiectasis in systemic sclerosis: elevated serum soluble endoglin levels in patients with the limited cutaneous form of the disease. Dermatology 213:88–92PubMedCrossRefGoogle Scholar
  54. 54.
    Wipff J, Kahan A, Hachulla E, Sibilia J, Cabane J, Meyer O et al (2007) Association between an endoglin gene polymorphism and systemic sclerosis-related pulmonary arterial hypertension. Rheumatology (Oxford) 46:622–625CrossRefGoogle Scholar
  55. 55.
    Wipff J, Avouac J, Borderie D, Zerkak D, Lemarechal H, Kahan A et al (2008) Disturbed angiogenesis in systemic sclerosis: high levels of soluble endoglin. Rheumatology (Oxford) 47:972–975CrossRefGoogle Scholar
  56. 56.
    Dharmapatni AA, Smith MD, Ahern MJ, Simpson A, Li C, Kumar S et al (2001) The TGF beta receptor endoglin in systemic sclerosis. Asian Pac J Allergy Immunol 19:275–282PubMedGoogle Scholar
  57. 57.
    Coffman JD, Cohen AS (1971) Total and capillary fingertip blood flow in Raynaud’s phenomenon. N Engl J Med 285:259–263PubMedGoogle Scholar
  58. 58.
    Traub YM, Shapiro AP, Rodnan GP, Medsger TA, McDonald RH Jr, Steen VD et al (1983) Hypertension and renal failure (scleroderma renal crisis) in progressive systemic sclerosis. Review of a 25-year experience with 68 cases. Medicine (Baltimore) 62:335–352Google Scholar
  59. 59.
    Cannon PJ, Hassar M, Case DB, Casarella WJ, Sommers SC, LeRoy EC (1974) The relationship of hypertension and renal failure in scleroderma (progressive systemic sclerosis) to structural and functional abnormalities of the renal cortical circulation. Medicine (Baltimore) 53:1–46CrossRefGoogle Scholar
  60. 60.
    Penn H, Howie AJ, Kingdon EJ, Bunn CC, Stratton RJ, Black CM et al (2007) Scleroderma renal crisis: patient characteristics and long-term outcomes. QJM 100:485–494PubMedCrossRefGoogle Scholar
  61. 61.
    Follansbee WP, Curtiss EI, Medsger TA Jr, Steen VD, Uretsky BF, Owens GR et al (1984) Physiologic abnormalities of cardiac function in progressive systemic sclerosis with diffuse scleroderma. N Engl J Med 310:142–148PubMedGoogle Scholar
  62. 62.
    Alexander EL, Firestein GS, Weiss JL, Heuser RR, Leitl G, Wagner HN Jr et al (1986) Reversible cold-induced abnormalities in myocardial perfusion and function in systemic sclerosis. Ann Intern Med 105:661–668PubMedGoogle Scholar
  63. 63.
    Young RH, Mark GJ (1978) Pulmonary vascular changes in scleroderma. Am J Med 64:998–1004PubMedCrossRefGoogle Scholar
  64. 64.
    Steen VD, Medsger TA (2007) Changes in causes of death in systemic sclerosis, 1972–2002. Ann Rheum Dis 66:940–944PubMedCrossRefGoogle Scholar
  65. 65.
    Sjogren RW (1994) Gastrointestinal motility disorders in scleroderma. Arthritis Rheum 37:1265–1282PubMedCrossRefGoogle Scholar
  66. 66.
    Sallam H, McNearney TA, Chen JD (2006) Systematic review: pathophysiology and management of gastrointestinal dysmotility in systemic sclerosis (scleroderma). Aliment Pharmacol Ther 23:691–712PubMedCrossRefGoogle Scholar
  67. 67.
    Nehra A, Hall SJ, Basile G, Bertero EB, Moreland R, Toselli P et al (1995) Systemic sclerosis and impotence: a clinicopathological correlation. J Urol 153:1140–1146PubMedCrossRefGoogle Scholar
  68. 68.
    Lewis T (2008) The pathological changes in the arteries supplying the fingers in warm-handed people and in cases of so called Raynaud’s disease. Clin Sci (Lond) 3:287–319Google Scholar
  69. 69.
    Trostle DC, Bedetti CD, Steen VD, Al-Sabbagh MR, Zee B, Medsger TA Jr (1988) Renal vascular histology and morphometry in systemic sclerosis. A case-control autopsy study. Arthritis Rheum 31:393–400PubMedCrossRefGoogle Scholar
  70. 70.
    Salerni R, Rodnan GP, Leon DF, Shaver JA (1977) Pulmonary hypertension in the CREST syndrome variant of progressive systemic sclerosis (scleroderma). Ann Intern Med 86:394–399PubMedGoogle Scholar
  71. 71.
    Stupi AM, Steen VD, Owens GR, Barnes EL, Rodnan GP, Medsger TA Jr (1986) Pulmonary hypertension in the CREST syndrome variant of systemic sclerosis. Arthritis Rheum 29:515–524PubMedCrossRefGoogle Scholar
  72. 72.
    Al-Sabbagh MR, Steen VD, Zee BC, Nalesnik M, Trostle DC, Bedetti CD et al (1989) Pulmonary arterial histology and morphometry in systemic sclerosis: a case-control autopsy study. J Rheumatol 16:1038–1042PubMedGoogle Scholar
  73. 73.
    Yousem SA (1990) The pulmonary pathologic manifestations of the CREST syndrome. Hum Pathol 21:467–474PubMedCrossRefGoogle Scholar
  74. 74.
    Nagai Y, Yamanaka M, Hashimoto C, Nakano A, Hasegawa A, Tanaka Y et al (2007) Autopsy case of systemic sclerosis with severe pulmonary hypertension. J Dermatol 34:769–772PubMedCrossRefGoogle Scholar
  75. 75.
    Cool CD, Kennedy D, Voelkel NF, Tuder RM (1997) Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection. Hum Pathol 28:434–442PubMedCrossRefGoogle Scholar
  76. 76.
    Roberts CG, Hummers LK, Ravich WJ, Wigley FM, Hutchins GM (2006) A case-control study of the pathology of oesophageal disease in systemic sclerosis (scleroderma). Gut 55:1697–1703PubMedCrossRefGoogle Scholar
  77. 77.
    Fleischmajer R, Perlish JS, Shaw KV, Pirozzi DJ (1976) Skin capillary changes in early systemic scleroderma. Electron microscopy and “in vitro” autoradiography with tritiated thymidine. Arch Dermatol 112:1553–1557PubMedCrossRefGoogle Scholar
  78. 78.
    Trotta F, Biagini G, Cenacchi G, Ballardini G, Varotti C, Passarini B et al (1984) Microvascular changes in progressive systemic sclerosis: immunohistochemical and ultrastructural study. Clin Exp Rheumatol 2:209–215PubMedGoogle Scholar
  79. 79.
    Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P (1992) Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol 166:255–263PubMedCrossRefGoogle Scholar
  80. 80.
    Freemont AJ, Hoyland J, Fielding P, Hodson N, Jayson MI (1992) Studies of the microvascular endothelium in uninvolved skin of patients with systemic sclerosis: direct evidence for a generalized microangiopathy. Br J Dermatol 126:561–568PubMedCrossRefGoogle Scholar
  81. 81.
    Fleischmajer R, Perlish JS (1977) [3H]Thymidine labeling of dermal endothelial cells in scleroderma. J Invest Dermatol 69:379–382PubMedCrossRefGoogle Scholar
  82. 82.
    Kazandjian S, Fiessinger JN, Camilleri JP, Dadoune JP, Housset E (1982) Endothelial cell renewal in skin of patients with progressive systemic sclerosis (PSS): an in vitro autoradiographic study. Acta Derm Venereol 62:425–429PubMedGoogle Scholar
  83. 83.
    Fleischmajer R, Perlish JS (1980) Capillary alterations in scleroderma. J Am Acad Dermatol 2:161–170PubMedGoogle Scholar
  84. 84.
    Fleming JN, Nash RA, McLeod DO, Fiorentino DF, Shulman HM, Connolly MK et al (2008) Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS ONE 3:e1452PubMedCrossRefGoogle Scholar
  85. 85.
    Hummers LK (2008) Biomarkers of vascular disease in scleroderma. Rheumatology (Oxford) 47(Suppl 5):v21–v22CrossRefGoogle Scholar
  86. 86.
    Kahaleh MB, Osborn I, LeRoy EC (1981) Increased factor VIII/von Willebrand factor antigen and von Willebrand factor activity in scleroderma and in Raynaud’s phenomenon. Ann Intern Med 94:482–484PubMedGoogle Scholar
  87. 87.
    James JP, Stevens TR, Hall ND, Maddison PJ, Goulding NJ, Silman A et al (1990) Factor VIII related antigen in connective tissue disease patients and relatives. Br J Rheumatol 29:6–9PubMedCrossRefGoogle Scholar
  88. 88.
    Herrick AL, Barlow JD, Bowden A, Williams N, Hobson AR, Irving M et al (1996) Investigation of anal function in patients with systemic sclerosis. Ann Rheum Dis 55:370–374PubMedCrossRefGoogle Scholar
  89. 89.
    Marasini B, Cugno M, Bassani C, Stanzani M, Bottasso B, Agostoni A (1992) Tissue-type plasminogen activator and von Willebrand factor plasma levels as markers of endothelial involvement in patients with Raynaud’s phenomenon. Int J Microcirc Clin Exp 11:375–382PubMedGoogle Scholar
  90. 90.
    Konttinen YT, Mackiewicz Z, Ruuttila P, Ceponis A, Sukura A, Povilenaite D et al (2003) Vascular damage and lack of angiogenesis in systemic sclerosis skin. Clin Rheumatol 22:196–202PubMedCrossRefGoogle Scholar
  91. 91.
    Blann AD, Illingworth K, Jayson MI (1993) Mechanisms of endothelial cell damage in systemic sclerosis and Raynaud’s phenomenon. J Rheumatol 20:1325–1330PubMedGoogle Scholar
  92. 92.
    Abraham D, Distler O (2007) How does endothelial cell injury start? The role of endothelin in systemic sclerosis. Arthritis Res Ther 9(Suppl 2):S2PubMedCrossRefGoogle Scholar
  93. 93.
    Silver RM (2008) Endothelin and scleroderma lung disease. Rheumatology (Oxford) 47(Suppl 5):v25–v26CrossRefGoogle Scholar
  94. 94.
    Kahaleh MB (1991) Endothelin, an endothelial-dependent vasoconstrictor in scleroderma. Enhanced production and profibrotic action. Arthritis Rheum 34:978–983PubMedCrossRefGoogle Scholar
  95. 95.
    Yamane K, Miyauchi T, Suzuki N, Yuhara T, Akama T, Suzuki H et al (1992) Significance of plasma endothelin-1 levels in patients with systemic sclerosis. J Rheumatol 19:1566–1571PubMedGoogle Scholar
  96. 96.
    Sfikakis PP, McCune BK, Tsokos M, Aroni K, Vayiopoulos G, Tsokos GC (1993) Immunohistological demonstration of transforming growth factor-beta isoforms in the skin of patients with systemic sclerosis. Clin Immunol Immunopathol 69:199–204PubMedCrossRefGoogle Scholar
  97. 97.
    Yamane K (1994) Endothelin and collagen vascular disease: a review with special reference to Raynaud’s phenomenon and systemic sclerosis. Intern Med 33:579–582PubMedCrossRefGoogle Scholar
  98. 98.
    Vancheeswaran R, Magoulas T, Efrat G, Wheeler-Jones C, Olsen I, Penny R et al (1994) Circulating endothelin-1 levels in systemic sclerosis subsets—a marker of fibrosis or vascular dysfunction? J Rheumatol 21:1838–1844PubMedGoogle Scholar
  99. 99.
    Kadono T, Kikuchi K, Sato S, Soma Y, Tamaki K, Takehara K (1995) Elevated plasma endothelin levels in systemic sclerosis. Arch Dermatol Res 287:439–442PubMedCrossRefGoogle Scholar
  100. 100.
    Denton CP, Bickerstaff MC, Shiwen X, Carulli MT, Haskard DO, Dubois RM et al (1995) Serial circulating adhesion molecule levels reflect disease severity in systemic sclerosis. Br J Rheumatol 34:1048–1054PubMedCrossRefGoogle Scholar
  101. 101.
    Tabata H, Yamakage A, Yamazaki S (1997) Cutaneous localization of endothelin-1 in patients with systemic sclerosis: immunoelectron microscopic study. Int J Dermatol 36:272–275PubMedCrossRefGoogle Scholar
  102. 102.
    Silveri F, De AR, Poggi A, Muti S, Bonapace G, Argentati F et al (2001) Relative roles of endothelial cell damage and platelet activation in primary Raynaud’s phenomenon (RP) and RP secondary to systemic sclerosis. Scand J Rheumatol 30:290–296PubMedCrossRefGoogle Scholar
  103. 103.
    Postlethwaite AE, Chiang TM (2007) Platelet contributions to the pathogenesis of systemic sclerosis. Curr Opin Rheumatol 19:574–579PubMedCrossRefGoogle Scholar
  104. 104.
    Kahaleh MB, Osborn I, LeRoy EC (1982) Elevated levels of circulating platelet aggregates and beta-thromboglobulin in scleroderma. Ann Intern Med 96:610–613PubMedGoogle Scholar
  105. 105.
    Kahaleh MB, Scharstein KK, LeRoy EC (1985) Enhanced platelet adhesion to collagen in scleroderma. Effect of scleroderma plasma and scleroderma platelets. J Rheumatol 12:468–471PubMedGoogle Scholar
  106. 106.
    Lima J, Fonollosa V, Fernandez-Cortijo J, Ordi J, Cuenca R, Khamashta MA et al (1991) Platelet activation, endothelial cell dysfunction in the absence of anticardiolipin antibodies in systemic sclerosis. J Rheumatol 18:1833–1836PubMedGoogle Scholar
  107. 107.
    Macko RF, Gelber AC, Young BA, Lowitt MH, White B, Wigley FM et al (2002) Increased circulating concentrations of the counteradhesive proteins SPARC and thrombospondin-1 in systemic sclerosis (scleroderma). Relationship to platelet and endothelial cell activation. J Rheumatol 29:2565–2570PubMedGoogle Scholar
  108. 108.
    Reilly IA, Roy L, Fitzgerald GA (1986) Biosynthesis of thromboxane in patients with systemic sclerosis and Raynaud’s phenomenon. Br Med J (Clin Res Ed) 292:1037–1039Google Scholar
  109. 109.
    Pamuk GE, Turgut B, Pamuk ON, Vural O, Demir M, Cakir N (2007) Increased circulating platelet-leucocyte complexes in patients with primary Raynaud’s phenomenon and Raynaud’s phenomenon secondary to systemic sclerosis: a comparative study. Blood Coagul Fibrinolysis 18:297–302PubMedCrossRefGoogle Scholar
  110. 110.
    Guiducci S, Distler JH, Jungel A, Huscher D, Huber LC, Michel BA et al (2008) The relationship between plasma microparticles and disease manifestations in patients with systemic sclerosis. Arthritis Rheum 58:2845–2853PubMedCrossRefGoogle Scholar
  111. 111.
    Gruschwitz M, von den DP, Kellner I, Hornstein OP, Sterry W (1992) Expression of adhesion proteins involved in cell–cell and cell–matrix interactions in the skin of patients with progressive systemic sclerosis. J Am Acad Dermatol 27:169–177PubMedCrossRefGoogle Scholar
  112. 112.
    Majewski S, Hunzelmann N, Johnson JP, Jung C, Mauch C, Ziegler-Heitbrock HW et al (1991) Expression of intercellular adhesion molecule-1 (ICAM-1) in the skin of patients with systemic scleroderma. J Invest Dermatol 97:667–671PubMedCrossRefGoogle Scholar
  113. 113.
    Kraling BM, Jimenez SA, Sorger T, Maul GG (1994) Isolation and characterization of microvascular endothelial cells from the adult human dermis and from skin biopsies of patients with systemic sclerosis. Lab Invest 71:745–754PubMedGoogle Scholar
  114. 114.
    Sollberg S, Peltonen J, Uitto J, Jimenez SA (1992) Elevated expression of beta 1 and beta 2 integrins, intercellular adhesion molecule 1, and endothelial leukocyte adhesion molecule 1 in the skin of patients with systemic sclerosis of recent onset. Arthritis Rheum 35:290–298PubMedCrossRefGoogle Scholar
  115. 115.
    Gruschwitz MS, Hornstein OP, von den DP (1995) Correlation of soluble adhesion molecules in the peripheral blood of scleroderma patients with their in situ expression and with disease activity. Arthritis Rheum 38:184–189PubMedCrossRefGoogle Scholar
  116. 116.
    Carson CW, Beall LD, Hunder GG, Johnson CM, Newman W (1993) Serum ELAM-1 is increased in vasculitis, scleroderma, and systemic lupus erythematosus. J Rheumatol 20:809–814PubMedGoogle Scholar
  117. 117.
    Sondergaard K, Stengaard-Pedersen K, Zachariae H, Heickendorff L, Deleuran M, Deleuran B (1998) Soluble intercellular adhesion molecule-1 (sICAM-1) and soluble interleukin-2 receptors (sIL-2R) in scleroderma skin. Br J Rheumatol 37:304–310PubMedCrossRefGoogle Scholar
  118. 118.
    Ihn H, Sato S, Fujimoto M, Kikuchi K, Kadono T, Tamaki K et al (1997) Circulating intercellular adhesion molecule-1 in the sera of patients with systemic sclerosis: enhancement by inflammatory cytokines. Br J Rheumatol 36:1270–1275PubMedCrossRefGoogle Scholar
  119. 119.
    Kiener H, Graninger W, Machold K, Aringer M, Graninger WB (1994) Increased levels of circulating intercellular adhesion molecule-1 in patients with systemic sclerosis. Clin Exp Rheumatol 12:483–487PubMedGoogle Scholar
  120. 120.
    Veale DJ, Kirk G, McLaren M, Belch JJ (1998) Clinical implications of soluble intercellular adhesion molecule-1 levels in systemic sclerosis. Br J Rheumatol 37:1227–1228PubMedCrossRefGoogle Scholar
  121. 121.
    Ihn H, Sato S, Fujimoto M, Takehara K, Tamaki K (1998) Increased serum levels of soluble vascular cell adhesion molecule-1 and E-selectin in patients with systemic sclerosis. Br J Rheumatol 37:1188–1192PubMedCrossRefGoogle Scholar
  122. 122.
    Kuryliszyn-Moskal A, Klimiuk PA, Sierakowski S, Ciolkiewicz M (2006) A study on vascular endothelial growth factor and endothelin-1 in patients with extra-articular involvement of rheumatoid arthritis. Clin Rheumatol 25:314–319PubMedCrossRefGoogle Scholar
  123. 123.
    Stratton RJ, Coghlan JG, Pearson JD, Burns A, Sweny P, Abraham DJ et al (1998) Different patterns of endothelial cell activation in renal and pulmonary vascular disease in scleroderma. QJM 91:561–566PubMedCrossRefGoogle Scholar
  124. 124.
    Mulligan-Kehoe MJ, Simons M (2007) Current concepts in normal and defective angiogenesis: implications for systemic sclerosis. Curr Rheumatol Rep 9:173–179PubMedCrossRefGoogle Scholar
  125. 125.
    Mulligan-Kehoe MJ, Simons M (2008) Vascular disease in scleroderma: angiogenesis and vascular repair. Rheum Dis Clin North Am 34:73–79PubMedCrossRefGoogle Scholar
  126. 126.
    Kahaleh MB, Sherer GK, LeRoy EC (1979) Endothelial injury in scleroderma. J Exp Med 149:1326–1335PubMedCrossRefGoogle Scholar
  127. 127.
    Mulligan-Kehoe MJ, Drinane MC, Mollmark J, Casciola-Rosen L, Hummers LK, Hall A et al (2007) Antiangiogenic plasma activity in patients with systemic sclerosis. Arthritis Rheum 56:3448–3458PubMedCrossRefGoogle Scholar
  128. 128.
    Marczak M, Majewski S, Skopinska-Rozewska E, Polakowski I, Jablonska S (1986) Enhanced angiogenic capability of monocyte-enriched mononuclear cell suspensions from patients with systemic scleroderma. J Invest Dermatol 86:355–358PubMedCrossRefGoogle Scholar
  129. 129.
    Kahaleh MB, DeLustro F, Bock W, LeRoy EC (1986) Human monocyte modulation of endothelial cells and fibroblast growth: possible mechanism for fibrosis. Clin Immunol Immunopathol 39:242–255PubMedCrossRefGoogle Scholar
  130. 130.
    Koch AE, Distler O (2007) Vasculopathy and disordered angiogenesis in selected rheumatic diseases: rheumatoid arthritis and systemic sclerosis. Arthritis Res Ther 9(Suppl 2):S3PubMedCrossRefGoogle Scholar
  131. 131.
    Giusti B, Fibbi G, Margheri F, Serrati S, Rossi L, Poggi F et al (2006) A model of anti-angiogenesis: differential transcriptosome profiling of microvascular endothelial cells from diffuse systemic sclerosis patients. Arthritis Res Ther 8:R115PubMedCrossRefGoogle Scholar
  132. 132.
    Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM et al (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171PubMedCrossRefGoogle Scholar
  133. 133.
    Ribatti D, Cantatore FP, Vacca A, D’Amore M, Ria R, Roncali L et al (1998) Systemic sclerosis stimulates angiogenesis in the chick embryo chorioallantoic membrane. Clin Rheumatol 17:115–120PubMedCrossRefGoogle Scholar
  134. 134.
    Distler O, Del Rosso A, Giacomelli R, Cipriani P, Conforti ML, Guiducci S et al (2002) Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. Arthritis Res 4:R11PubMedCrossRefGoogle Scholar
  135. 135.
    Davies CA, Jeziorska M, Freemont AJ, Herrick AL (2006) The differential expression of VEGF, VEGFR-2, and GLUT-1 proteins in disease subtypes of systemic sclerosis. Hum Pathol 37:190–197PubMedCrossRefGoogle Scholar
  136. 136.
    Distler O, Distler JH, Scheid A, Acker T, Hirth A, Rethage J et al (2004) Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res 95:109–116PubMedCrossRefGoogle Scholar
  137. 137.
    Qazi U, Lam C, Karumanchi SA, Petri M (2008) Soluble Fms-like tyrosine kinase associated with preeclampsia in pregnancy in systemic lupus erythematosus. J Rheumatol 35:631–634PubMedGoogle Scholar
  138. 138.
    Hebbar M, Peyrat JP, Hornez L, Hatron PY, Hachulla E, Devulder B (2000) Increased concentrations of the circulating angiogenesis inhibitor endostatin in patients with systemic sclerosis. Arthritis Rheum 43:889–893PubMedCrossRefGoogle Scholar
  139. 139.
    Dziankowska-Bartkowiak B, Waszczykowska E, Dziankowska-Zaboroszczyk E, de Graft-Johnson JE, Zalewska A, Luczynska M et al (2006) Decreased ratio of circulatory vascular endothelial growth factor to endostatin in patients with systemic sclerosis—association with pulmonary involvement. Clin Exp Rheumatol 24:508–513PubMedGoogle Scholar
  140. 140.
    Dziankowska-Bartkowiak B, Waszczykowska E, Zalewska A, Sysa-Jedrzejowska A (2005) Correlation of endostatin and tissue inhibitor of metalloproteinases 2 (TIMP2) serum levels with cardiovascular involvement in systemic sclerosis patients. Mediators Inflamm 2005:144–149PubMedCrossRefGoogle Scholar
  141. 141.
    Hummers LK, Hall A, Wigley F, Simons M (2004) Evidence for abnormal angiogenesis in scleroderma patients. Arthritis Rheum 50:S630Google Scholar
  142. 142.
    D’Alessio S, Fibbi G, Cinelli M, Guiducci S, Del RA, Margheri F et al (2004) Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis Rheum 50:3275–3285PubMedCrossRefGoogle Scholar
  143. 143.
    Del RA, Distler O, Milia AF, Emanueli C, Ibba-Manneschi L, Guiducci S et al (2005) Increased circulating levels of tissue kallikrein in systemic sclerosis correlate with microvascular involvement. Ann Rheum Dis 64:382–387Google Scholar
  144. 144.
    Giusti B, Serrati S, Margheri F, Papucci L, Rossi L, Poggi F et al (2005) The antiangiogenic tissue kallikrein pattern of endothelial cells in systemic sclerosis. Arthritis Rheum 52:3618–3628PubMedCrossRefGoogle Scholar
  145. 145.
    Distler JH, Gay S, Distler O (2006) Angiogenesis and vasculogenesis in systemic sclerosis. Rheumatology (Oxford) 45(Suppl 3):iii26–iii27CrossRefGoogle Scholar
  146. 146.
    Gomer RH (2008) Circulating progenitor cells and scleroderma. Curr Rheumatol Rep 10:183–188PubMedCrossRefGoogle Scholar
  147. 147.
    Del PN, Colombo G, Fracchiolla N, Moronetti LM, Ingegnoli F, Maglione W et al (2004) Circulating endothelial cells as a marker of ongoing vascular disease in systemic sclerosis. Arthritis Rheum 50:1296–1304CrossRefGoogle Scholar
  148. 148.
    Allanore Y, Batteux F, Avouac J, Assous N, Weill B, Kahan A (2007) Levels of circulating endothelial progenitor cells in systemic sclerosis. Clin Exp Rheumatol 25:60–66PubMedGoogle Scholar
  149. 149.
    Kuwana M, Okazaki Y, Yasuoka H, Kawakami Y, Ikeda Y (2004) Defective vasculogenesis in systemic sclerosis. Lancet 364:603–610PubMedCrossRefGoogle Scholar
  150. 150.
    Del Papa N, Quirici N, Soligo D, Scavullo C, Cortiana M, Borsotti C et al (2006) Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum 54:2605–2615PubMedCrossRefGoogle Scholar
  151. 151.
    Cipriani P, Guiducci S, Miniati I, Cinelli M, Urbani S, Marrelli A et al (2007) Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis. Arthritis Rheum 56:1994–2004PubMedCrossRefGoogle Scholar
  152. 152.
    Kuwana M, Kaburaki J, Okazaki Y, Yasuoka H, Kawakami Y, Ikeda Y (2006) Increase in circulating endothelial precursors by atorvastatin in patients with systemic sclerosis. Arthritis Rheum 54:1946–1951PubMedCrossRefGoogle Scholar
  153. 153.
    Furukawa S, Yasuda S, Amengual O, Horita T, Atsumi T, Koike T (2006) Protective effect of pravastatin on vascular endothelium in patients with systemic sclerosis: a pilot study. Ann Rheum Dis 65:1118–1120PubMedCrossRefGoogle Scholar
  154. 154.
    Gurevich VS (2005) Influenza, autoimmunity and atherogenesis. Autoimmun Rev 4:101–105PubMedCrossRefGoogle Scholar
  155. 155.
    Derk CT, Jimenez SA (2006) Statins and the vasculopathy of systemic sclerosis: potential therapeutic agents? Autoimmun Rev 5:25–32PubMedCrossRefGoogle Scholar
  156. 156.
    Abou-Raya A, Abou-Raya S, Helmii M (2008) Statins: potentially useful in therapy of systemic sclerosis-related Raynaud’s phenomenon and digital ulcers. J Rheumatol 35:1801–1808PubMedGoogle Scholar
  157. 157.
    Freedman RR, Girgis R, Mayes MD (1999) Endothelial and adrenergic dysfunction in Raynaud’s phenomenon and scleroderma. J Rheumatol 26:2386–2388PubMedGoogle Scholar
  158. 158.
    Freedman RR, Girgis R, Mayes MD (2001) Abnormal responses to endothelial agonists in Raynaud’s phenomenon and scleroderma. J Rheumatol 28:119–121PubMedGoogle Scholar
  159. 159.
    Freedman RR, Girgis R, Mayes MD (1999) Acute effect of nitric oxide on Raynaud’s phenomenon in scleroderma. Lancet 354:739PubMedCrossRefGoogle Scholar
  160. 160.
    Andersen GN, Caidahl K, Kazzam E, Petersson AS, Waldenstrom A, Mincheva-Nilsson L et al (2000) Correlation between increased nitric oxide production and markers of endothelial activation in systemic sclerosis: findings with the soluble adhesion molecules E-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1. Arthritis Rheum 43:1085–1093PubMedCrossRefGoogle Scholar
  161. 161.
    Cotton SA, Herrick AL, Jayson MI, Freemont AJ (1999) Endothelial expression of nitric oxide synthases and nitrotyrosine in systemic sclerosis skin. J Pathol 189:273–278PubMedCrossRefGoogle Scholar
  162. 162.
    Yamamoto T, Katayama I, Nishioka K (1998) Nitric oxide production and inducible nitric oxide synthase expression in systemic sclerosis. J Rheumatol 25:314–317PubMedGoogle Scholar
  163. 163.
    Dooley A, Gao B, Bradley N, Abraham DJ, Black CM, Jacobs M et al (2006) Abnormal nitric oxide metabolism in systemic sclerosis: increased levels of nitrated proteins and asymmetric dimethylarginine. Rheumatology (Oxford) 45:676–684CrossRefGoogle Scholar
  164. 164.
    Mok MY, Fung PC, Ooi C, Tse HF, Wong Y, Lam YM et al (2008) Serum nitric oxide metabolites and disease activity in patients with systemic sclerosis. Clin Rheumatol 27:315–322PubMedCrossRefGoogle Scholar
  165. 165.
    Romero LI, Zhang DN, Cooke JP, Ho HK, Avalos E, Herrera R et al (2000) Differential expression of nitric oxide by dermal microvascular endothelial cells from patients with scleroderma. Vasc Med 5:147–158PubMedGoogle Scholar
  166. 166.
    Kharitonov SA, Cailes JB, Black CM, du Bois RM, Barnes PJ (1997) Decreased nitric oxide in the exhaled air of patients with systemic sclerosis with pulmonary hypertension. Thorax 52:1051–1055PubMedGoogle Scholar
  167. 167.
    Fajac I, Kahan A, Menkes CJ, Dessanges JF, l’Ava-Santucci J, nh-Xuan AT (1998) Increased nitric oxide in exhaled air in patients with systemic sclerosis. Clin Exp Rheumatol 16:547–552PubMedGoogle Scholar
  168. 168.
    Paredi P, Kharitonov SA, Loukides S, Pantelidis P, du Bois RM, Barnes PJ (1999) Exhaled nitric oxide is increased in active fibrosing alveolitis. Chest 115:1352–1356PubMedCrossRefGoogle Scholar
  169. 169.
    Shimizu K, Ogawa F, Muroi E, Hara T, Komura K, Bae SJ et al (2007) Increased serum levels of nitrotyrosine, a marker for peroxynitrite production, in systemic sclerosis. Clin Exp Rheumatol 25:281–286PubMedGoogle Scholar
  170. 170.
    Stein CM, Tanner SB, Awad JA, Roberts LJ, Morrow JD (1996) Evidence of free radical-mediated injury (isoprostane overproduction) in scleroderma. Arthritis Rheum 39:1146–1150PubMedCrossRefGoogle Scholar
  171. 171.
    Bruckdorfer KR, Hillary JB, Bunce T, Vancheeswaran R, Black CM (1995) Increased susceptibility to oxidation of low-density lipoproteins isolated from patients with systemic sclerosis. Arthritis Rheum 38:1060–1067PubMedCrossRefGoogle Scholar
  172. 172.
    Herrick AL, Matucci CM (2001) The emerging problem of oxidative stress and the role of antioxidants in systemic sclerosis. Clin Exp Rheumatol 19:4–8PubMedGoogle Scholar
  173. 173.
    Ruiz-Ortega M, Ruperez M, Esteban V, Egido J (2003) Molecular mechanisms of angiotensin II-induced vascular injury. Curr Hypertens Rep 5:73–79PubMedCrossRefGoogle Scholar
  174. 174.
    Cohn RD, van EC, Habashi JP, Soleimani AA, Klein EC, Lisi MT et al (2007) Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat Med 13:204–210PubMedCrossRefGoogle Scholar
  175. 175.
    Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B, Dietz HC III (2008) Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med 358:2787–2795PubMedCrossRefGoogle Scholar
  176. 176.
    Rodriguez-Vita J, Sanchez-Lopez E, Esteban V, Ruperez M, Egido J, Ruiz-Ortega M (2005) Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation 111:2509–2517PubMedCrossRefGoogle Scholar
  177. 177.
    Orfanos SE, Psevdi E, Stratigis N, Langleben D, Catravas JD, Kyriakidis M et al (2001) Pulmonary capillary endothelial dysfunction in early systemic sclerosis. Arthritis Rheum 44:902–911PubMedCrossRefGoogle Scholar
  178. 178.
    Langleben D, Orfanos SE, Giovinazzo M, Hirsch A, Baron M, Senecal JL et al (2008) Pulmonary capillary endothelial metabolic dysfunction: severity in pulmonary arterial hypertension related to connective tissue disease versus idiopathic pulmonary arterial hypertension. Arthritis Rheum 58:1156–1164PubMedCrossRefGoogle Scholar
  179. 179.
    Fatini C, Gensini F, Sticchi E, Battaglini B, Angotti C, Conforti ML et al (2002) High prevalence of polymorphisms of angiotensin-converting enzyme (I/D) and endothelial nitric oxide synthase (Glu298Asp) in patients with systemic sclerosis. Am J Med 112:540–544PubMedCrossRefGoogle Scholar
  180. 180.
    Pignone A, Rosso AD, Brosnihan KB, Perfetto F, Livi R, Fiori G et al (2007) Reduced circulating levels of angiotensin-(1-7) in systemic sclerosis: a new pathway in the dysregulation of endothelial-dependent vascular tone control. Ann Rheum Dis 66:1305–1310PubMedCrossRefGoogle Scholar
  181. 181.
    Herrick AL (2000) Vascular function in systemic sclerosis. Curr Opin Rheumatol 12:527–533PubMedCrossRefGoogle Scholar
  182. 182.
    Murray AK, Moore TL, King TA, Herrick AL (2006) Abnormal microvascular response is localized to the digits in patients with systemic sclerosis. Arthritis Rheum 54:1952–1960PubMedCrossRefGoogle Scholar
  183. 183.
    Albrecht HP, Hiller D, Hornstein OP, Buhler-Singer S, Muck M, Gruschwitz M (1993) Microcirculatory functions in systemic sclerosis: additional parameters for therapeutic concepts? J Invest Dermatol 101:211–215PubMedCrossRefGoogle Scholar
  184. 184.
    Roustit M, Simmons GH, Carpentier P, Cracowski JL (2008) Abnormal digital neurovascular response to local heating in systemic sclerosis. Rheumatology (Oxford) 47:860–864CrossRefGoogle Scholar
  185. 185.
    Lekakis J, Mavrikakis M, Papamichael C, Papazoglou S, Economou O, Scotiniotis I et al (1998) Short-term estrogen administration improves abnormal endothelial function in women with systemic sclerosis and Raynaud’s phenomenon. Am Heart J 136:905–912PubMedCrossRefGoogle Scholar
  186. 186.
    Khan F, Belch JJ (1999) Skin blood flow in patients with systemic sclerosis and Raynaud’s phenomenon: effects of oral l-arginine supplementation. J Rheumatol 26:2389–2394PubMedGoogle Scholar
  187. 187.
    Gunawardena H, Harris ND, Carmichael C, McHugh NJ (2007) Microvascular responses following digital thermal hyperaemia and iontophoresis measured by laser Doppler imaging in idiopathic inflammatory myopathy. Rheumatology (Oxford) 46:1483–1486CrossRefGoogle Scholar
  188. 188.
    Rossi M, Bazzichi L, Di MC, Franzoni F, Raimo K, Della RA et al (2008) Blunted increase of digital skin vasomotion following acetylcholine and sodium nitroprusside iontophoresis in systemic sclerosis patients. Rheumatology (Oxford) 47:1012–1017CrossRefGoogle Scholar
  189. 189.
    Furspan PB, Chatterjee S, Freedman RR (2004) Increased tyrosine phosphorylation mediates the cooling-induced contraction and increased vascular reactivity of Raynaud’s disease. Arthritis Rheum 50:1578–1585PubMedCrossRefGoogle Scholar
  190. 190.
    Flavahan NA (2008) Regulation of vascular reactivity in scleroderma: new insights into Raynaud’s phenomenon. Rheum Dis Clin North Am 34:81–87PubMedCrossRefGoogle Scholar
  191. 191.
    Flavahan NA, Flavahan S, Liu Q, Wu S, Tidmore W, Wiener CM et al (2000) Increased alpha2-adrenergic constriction of isolated arterioles in diffuse scleroderma. Arthritis Rheum 43:1886–1890PubMedCrossRefGoogle Scholar
  192. 192.
    Generini S, Matucci CM (1999) Raynaud’s phenomenon and vascular disease in systemic sclerosis. Adv Exp Med Biol 455:93–100PubMedGoogle Scholar
  193. 193.
    Generini S, Seibold JR, Matucci-Cerinic M (2005) Estrogens and neuropeptides in Raynaud’s phenomenon. Rheum Dis Clin North Am 31:177–1xiPubMedCrossRefGoogle Scholar
  194. 194.
    Milner P, Bodin P, Guiducci S, Del RA, Kahaleh MB, Matucci-Cerinic M et al (2004) Regulation of substance P mRNA expression in human dermal microvascular endothelial cells. Clin Exp Rheumatol 22:S24–S27PubMedGoogle Scholar
  195. 195.
    Bunker CB, Terenghi G, Springall DR, Polak JM, Dowd PM (1990) Deficiency of calcitonin gene-related peptide in Raynaud’s phenomenon. Lancet 336:1530–1533PubMedCrossRefGoogle Scholar
  196. 196.
    Brain SD, Petty RG, Lewis JD, Williams TJ (1990) Cutaneous blood flow responses in the forearms of Raynaud’s patients induced by local cooling and intradermal injections of CGRP and histamine. Br J Clin Pharmacol 30:853–859PubMedGoogle Scholar
  197. 197.
    Bunker CB, Reavley C, O’Shaughnessy DJ, Dowd PM (1993) Calcitonin gene-related peptide in treatment of severe peripheral vascular insufficiency in Raynaud’s phenomenon. Lancet 342:80–83PubMedCrossRefGoogle Scholar
  198. 198.
    Lekakis J, Papamichael C, Mavrikakis M, Voutsas A, Stamatelopoulos S (1998) Effect of long-term estrogen therapy on brachial arterial endothelium-dependent vasodilation in women with Raynaud’s phenomenon secondary to systemic sclerosis. Am J Cardiol 82:1555–1557, A8PubMedCrossRefGoogle Scholar
  199. 199.
    Fraenkel L, Zhang Y, Chaisson CE, Evans SR, Wilson PW, Felson DT (1998) The association of estrogen replacement therapy and the Raynaud phenomenon in postmenopausal women. Ann Intern Med 129:208–211PubMedGoogle Scholar
  200. 200.
    Wigley FM (2001) Raynaud’s phenomenon is linked to unopposed estrogen replacement therapy in postmenopausal women. Clin Exp Rheumatol 19:10–11PubMedGoogle Scholar
  201. 201.
    Mizutani H, Hayashi T, Nouchi N, Inachi S, Suzuki K, Shimizu M (1996) Increased endothelial and epidermal thrombomodulin expression and plasma thrombomodulin level in progressive systemic sclerosis. Acta Med Okayama 50:293–297PubMedGoogle Scholar
  202. 202.
    Salojin KV, Le Tonqueze M, Saraux A, Nassonov EL, Dueymes M, Piette JC et al (1997) Antiendothelial cell antibodies: useful markers of systemic sclerosis. Am J Med 102:178–185PubMedCrossRefGoogle Scholar
  203. 203.
    Kahaleh B (2008) Vascular disease in scleroderma: mechanisms of vascular injury. Rheum Dis Clin North Am 34:57–71PubMedCrossRefGoogle Scholar
  204. 204.
    Shanahan WR Jr, Korn JH (1982) Cytotoxic activity of sera from scleroderma and other connective tissue diseases. Lack of cellular and disease specificity. Arthritis Rheum 25:1391–1395PubMedCrossRefGoogle Scholar
  205. 205.
    Meyer O, Haim T, Dryll A, Lansaman J, Ryckewaert A (1983) Vascular endothelial cell injury in progressive systemic sclerosis and other connective tissue diseases. Clin Exp Rheumatol 1:29–34PubMedGoogle Scholar
  206. 206.
    Drenk F, Mensing H, Serbin A, Deicher H (1985) Studies on endothelial cell cytotoxic activity in sera of patients with progressive systemic sclerosis, Raynaud syndrome, rheumatoid arthritis, and systemic lupus erythematosus. Rheumatol Int 5:259–263PubMedCrossRefGoogle Scholar
  207. 207.
    Cohen S, Johnson AR, Hurd E (1983) Cytotoxicity of sera from patients with scleroderma. Effects on human endothelial cells and fibroblasts in culture. Arthritis Rheum 26:170–178PubMedCrossRefGoogle Scholar
  208. 208.
    Kahaleh MB, LeRoy EC (1983) Endothelial injury in scleroderma. A protease mechanism. J Lab Clin Med 101:553–560PubMedGoogle Scholar
  209. 209.
    Kahaleh MB, Fan PS (1997) Mechanism of serum-mediated endothelial injury in scleroderma: identification of a granular enzyme in scleroderma skin and sera. Clin Immunol Immunopathol 83:32–40PubMedCrossRefGoogle Scholar
  210. 210.
    Penning CA, Cunningham J, French MA, Harrison G, Rowell NR, Hughes P (1984) Antibody-dependent cellular cytotoxicity of human vascular endothelium in systemic sclerosis. Clin Exp Immunol 57:548–556PubMedGoogle Scholar
  211. 211.
    Rosenbaum J, Pottinger BE, Woo P, Black CM, Loizou S, Byron MA et al (1988) Measurement and characterisation of circulating anti-endothelial cell IgG in connective tissue diseases. Clin Exp Immunol 72:450–456PubMedGoogle Scholar
  212. 212.
    Holt CM, Lindsey N, Moult J, Malia RG, Greaves M, Hume A et al (1989) Antibody-dependent cellular cytotoxicity of vascular endothelium: characterization and pathogenic associations in systemic sclerosis. Clin Exp Immunol 78:359–365PubMedGoogle Scholar
  213. 213.
    Carvalho D, Savage CO, Black CM, Pearson JD (1996) IgG antiendothelial cell autoantibodies from scleroderma patients induce leukocyte adhesion to human vascular endothelial cells in vitro. Induction of adhesion molecule expression and involvement of endothelium-derived cytokines. J Clin Invest 97:111–119PubMedCrossRefGoogle Scholar
  214. 214.
    Tan EM, Pearson CM (1972) Rheumatic disease sera reactive with capillaries in the mouse kidney. Arthritis Rheum 15:23–28PubMedCrossRefGoogle Scholar
  215. 215.
    Hill MB, Phipps JL, Cartwright RJ, Milford WA, Greaves M, Hughes P (1996) Antibodies to membranes of endothelial cells and fibroblasts in scleroderma. Clin Exp Immunol 106:491–497PubMedCrossRefGoogle Scholar
  216. 216.
    Ihn H, Sato S, Fujimoto M, Igarashi A, Yazawa N, Kubo M et al (2000) Characterization of autoantibodies to endothelial cells in systemic sclerosis (SSc): association with pulmonary fibrosis. Clin Exp Immunol 119:203–209PubMedCrossRefGoogle Scholar
  217. 217.
    Negi VS, Tripathy NK, Misra R, Nityanand S (1998) Antiendothelial cell antibodies in scleroderma correlate with severe digital ischemia and pulmonary arterial hypertension. J Rheumatol 25:462–466PubMedGoogle Scholar
  218. 218.
    Pignone A, Scaletti C, Matucci-Cerinic M, Vazquez-Abad D, Meroni PL, Del Papa N et al (1998) Anti-endothelial cell antibodies in systemic sclerosis: significant association with vascular involvement and alveolo-capillary impairment. Clin Exp Rheumatol 16:527–532PubMedGoogle Scholar
  219. 219.
    Magro CM, Ross P, Marsh CB, Allen JN, Liff D, Knight DA et al (2007) The role of anti-endothelial cell antibody-mediated microvascular injury in the evolution of pulmonary fibrosis in the setting of collagen vascular disease. Am J Clin Pathol 127:237–247PubMedCrossRefGoogle Scholar
  220. 220.
    Renaudineau Y, Revelen R, Levy Y, Salojin K, Gilburg B, Shoenfeld Y et al (1999) Anti-endothelial cell antibodies in systemic sclerosis. Clin Diagn Lab Immunol 6:156–160PubMedGoogle Scholar
  221. 221.
    Bordron A, Dueymes M, Levy Y, Jamin C, Leroy JP, Piette JC et al (1998) The binding of some human antiendothelial cell antibodies induces endothelial cell apoptosis. J Clin Invest 101:2029–2035PubMedCrossRefGoogle Scholar
  222. 222.
    Sgonc R, Gruschwitz MS, Dietrich H, Recheis H, Gershwin ME, Wick G (1996) Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J Clin Invest 98:785–792PubMedCrossRefGoogle Scholar
  223. 223.
    Nguyen VA, Sgonc R, Dietrich H, Wick G (2000) Endothelial injury in internal organs of University of California at Davis line 200 (UCD 200) chickens, an animal model for systemic sclerosis (Scleroderma). J Autoimmun 14:143–149PubMedCrossRefGoogle Scholar
  224. 224.
    Sgonc R, Gruschwitz MS, Boeck G, Sepp N, Gruber J, Wick G (2000) Endothelial cell apoptosis in systemic sclerosis is induced by antibody-dependent cell-mediated cytotoxicity via CD95. Arthritis Rheum 43:2550–2562PubMedCrossRefGoogle Scholar
  225. 225.
    Laplante P, Raymond MA, Gagnon G, Vigneault N, Sasseville AM, Langelier Y et al (2005) Novel fibrogenic pathways are activated in response to endothelial apoptosis: implications in the pathophysiology of systemic sclerosis. J Immunol 174:5740–5749PubMedGoogle Scholar
  226. 226.
    Wigley FM, Wise RA, Miller R, Needleman BW, Spence RJ (1992) Anticentromere antibody as a predictor of digital ischemic loss in patients with systemic sclerosis. Arthritis Rheum 35:688–693PubMedCrossRefGoogle Scholar
  227. 227.
    Servettaz A, Tamby MC, Guilpain P, Reinbolt J, Garcia de la Pena-Lefebvre, Allanore Y et al (2006) Anti-endothelial cell antibodies from patients with limited cutaneous systemic sclerosis bind to centromeric protein B (CENP-B). Clin Immunol 120:212–219PubMedCrossRefGoogle Scholar
  228. 228.
    Wusirika R, Ferri C, Marin M, Knight DA, Waldman WJ, Ross P Jr et al (2003) The assessment of anti-endothelial cell antibodies in scleroderma-associated pulmonary fibrosis. A study of indirect immunofluorescent and western blot analysis in 49 patients with scleroderma. Am J Clin Pathol 120:596–606PubMedCrossRefGoogle Scholar
  229. 229.
    Baroni SS, Santillo M, Bevilacqua F, Luchetti M, Spadoni T, Mancini M et al (2006) Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med 354:2667–2676PubMedCrossRefGoogle Scholar
  230. 230.
    Balada E, Simeon-Aznar CP, Ordi-Ros J, Rosa-Leyva M, Selva-O’Callaghan A, Pardos-Gea J et al (2008) Anti-PDGFR-alpha antibodies measured by non-bioactivity assays are not specific for systemic sclerosis. Ann Rheum Dis 67:1027–1029PubMedCrossRefGoogle Scholar
  231. 231.
    Loizos N, Weiner J, Griffin H, Boin F, Hummers LK, Wigley FM et al (2008) Lack of evidence for agonist activity by auto-antibodies to platelet-derived growth factor (PDGF) receptor alpha in systemic sclerosis (scleroderma). Arthritis Rheum 58:S927Google Scholar
  232. 232.
    Kahaleh MB, LeRoy EC (1999) Autoimmunity and vascular involvement in systemic sclerosis (SSc). Autoimmunity 31:195–214PubMedCrossRefGoogle Scholar
  233. 233.
    Kahaleh B (2008) The microvascular endothelium in scleroderma. Rheumatology (Oxford) 47(Suppl 5):v14–v15CrossRefGoogle Scholar
  234. 234.
    Lunardi C, Bason C, Navone R, Millo E, Damonte G, Corrocher R et al (2000) Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells. Nat Med 6:1183–1186PubMedCrossRefGoogle Scholar
  235. 235.
    Marks RM, Czerniecki M, Andrews BS, Penny R (1988) The effects of scleroderma serum on human microvascular endothelial cells. Induction of antibody-dependent cellular cytotoxicity. Arthritis Rheum 31:1524–1534PubMedCrossRefGoogle Scholar
  236. 236.
    Majewski S, Blaszczyk M, Jablonska S, Rudnicka L, Wasik M, Skiendzielewska A et al (1990) Cytotoxic effects of sera from patients with systemic scleroderma: comparison of three different in vitro methods. Rheumatol Int 10:65–70PubMedCrossRefGoogle Scholar
  237. 237.
    Rudnicka L, Majewski S, Blaszczyk M, Skiendzielewska A, Makiela B, Skopinska M et al (1992) Adhesion of peripheral blood mononuclear cells to vascular endothelium in patients with systemic sclerosis (scleroderma). Arthritis Rheum 35:771–775PubMedCrossRefGoogle Scholar
  238. 238.
    Komura K, Sato S, Hasegawa M, Fujimoto M, Takehara K (2004) Elevated circulating CD40L concentrations in patients with systemic sclerosis. J Rheumatol 31:514–519PubMedGoogle Scholar
  239. 239.
    Venneker GT, van den Hoogen FH, Boerbooms AM, Bos JD, Asghar SS (1994) Aberrant expression of membrane cofactor protein and decay-accelerating factor in the endothelium of patients with systemic sclerosis. A possible mechanism of vascular damage. Lab Invest 70:830–835PubMedGoogle Scholar
  240. 240.
    Sprott H, Muller-Ladner U, Distler O, Gay RE, Barnum SR, Landthaler M et al (2000) Detection of activated complement complex C5b-9 and complement receptor C5a in skin biopsies of patients with systemic sclerosis (scleroderma). J Rheumatol 27:402–404PubMedGoogle Scholar
  241. 241.
    Helmbold P, Fiedler E, Fischer M, Marsch WC (2004) Hyperplasia of dermal microvascular pericytes in scleroderma. J Cutan Pathol 31:431–440PubMedCrossRefGoogle Scholar
  242. 242.
    Rajkumar VS, Sundberg C, Abraham DJ, Rubin K, Black CM (1999) Activation of microvascular pericytes in autoimmune Raynaud’s phenomenon and systemic sclerosis. Arthritis Rheum 42:930–941PubMedCrossRefGoogle Scholar
  243. 243.
    Rajkumar VS, Howell K, Csiszar K, Denton CP, Black CM, Abraham DJ (2005) Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res Ther 7:R1113–R1123PubMedCrossRefGoogle Scholar
  244. 244.
    Postlethwaite AE, Shigemitsu H, Kanangat S (2004) Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis. Curr Opin Rheumatol 16:733–738PubMedCrossRefGoogle Scholar
  245. 245.
    Denton CP, Xu S, Welsh KI, Pearson JD, Black CM (1996) Scleroderma fibroblast phenotype is modulated by endothelial cell co-culture. J Rheumatol 23:633–638PubMedGoogle Scholar
  246. 246.
    Denton CP, Shi-Wen X, Sutton A, Abraham DJ, Black CM, Pearson JD (1998) Scleroderma fibroblasts promote migration of mononuclear leucocytes across endothelial cell monolayers. Clin Exp Immunol 114:293–300PubMedCrossRefGoogle Scholar
  247. 247.
    Gruschwitz MS, Vieth G (1997) Up-regulation of class II major histocompatibility complex and intercellular adhesion molecule 1 expression on scleroderma fibroblasts and endothelial cells by interferon-gamma and tumor necrosis factor alpha in the early disease stage. Arthritis Rheum 40:540–550PubMedCrossRefGoogle Scholar
  248. 248.
    Faller DV (1999) Endothelial cell responses to hypoxic stress. Clin Exp Pharmacol Physiol 26:74–84PubMedCrossRefGoogle Scholar
  249. 249.
    Distler JH, Jungel A, Huber LC, Schulze-Horsel U, Zwerina J, Gay RE et al (2007) Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum 56:311–322PubMedCrossRefGoogle Scholar
  250. 250.
    Hong KH, Yoo SA, Kang SS, Choi JJ, Kim WU, Cho CS (2006) Hypoxia induces expression of connective tissue growth factor in scleroderma skin fibroblasts. Clin Exp Immunol 146:362–370PubMedCrossRefGoogle Scholar
  251. 251.
    Gabrielli A, Svegliati S, Moroncini G, Pomponio G, Santillo M, Avvedimento EV (2008) Oxidative stress and the pathogenesis of scleroderma: the Murrell’s hypothesis revisited. Semin Immunopathol 30:329–337PubMedCrossRefGoogle Scholar
  252. 252.
    Klareskog L, Gustafsson R, Scheynius A, Hallgren R (1990) Increased expression of platelet-derived growth factor type B receptors in the skin of patients with systemic sclerosis. Arthritis Rheum 33:1534–1541PubMedCrossRefGoogle Scholar
  253. 253.
    Zheng XY, Zhang JZ, Tu P, Ma SQ (1998) Expression of platelet-derived growth factor B-chain and platelet-derived growth factor beta-receptor in fibroblasts of scleroderma. J Dermatol Sci 18:90–97PubMedCrossRefGoogle Scholar
  254. 254.
    Casciola-Rosen L, Wigley F, Rosen A (1997) Scleroderma autoantigens are uniquely fragmented by metal-catalyzed oxidation reactions: implications for pathogenesis. J Exp Med 185:71–79PubMedCrossRefGoogle Scholar
  255. 255.
    Herrick AL, Worthington H, Rieley F, Clarke D, Schofield D, Braganza JM et al (1996) Dietary intake of micronutrient antioxidants in relation to blood levels in patients with systemic sclerosis. J Rheumatol 23:650–653PubMedGoogle Scholar
  256. 256.
    Herrick AL, Rieley F, Schofield D, Hollis S, Braganza JM, Jayson MI (1994) Micronutrient antioxidant status in patients with primary Raynaud’s phenomenon and systemic sclerosis. J Rheumatol 21:1477–1483PubMedGoogle Scholar
  257. 257.
    Blake DR, Winyard P, Scott DG, Brailsford S, Blann A, Lunec J (1985) Endothelial cell cytotoxicity in inflammatory vascular diseases—the possible role of oxidised lipoproteins. Ann Rheum Dis 44:176–182PubMedCrossRefGoogle Scholar
  258. 258.
    Tikly M, Channa K, Theodorou P, Gulumian M (2006) Lipid peroxidation and trace elements in systemic sclerosis. Clin Rheumatol 25:320–324PubMedCrossRefGoogle Scholar
  259. 259.
    Whittaker R, Barnett A, Ryan P (1993) Antiphospholipid syndrome in scleroderma. J Rheumatol 20:1598–1600PubMedGoogle Scholar
  260. 260.
    Chun WH, Bang D, Lee SK (1996) Antiphospholipid syndrome associated with progressive systemic sclerosis. J Dermatol 23:347–351PubMedGoogle Scholar
  261. 261.
    Zandman-Goddard G, Tweezer-Zaks N, Shalev T, Levy Y, Ehrenfeld M, Langevitz P (2007) A novel overlap syndrome: systemic sclerosis associated with antiphospholipid syndrome—a case series. Ann N Y Acad Sci 1108:497–504PubMedCrossRefGoogle Scholar
  262. 262.
    Bamberga P, Asero R, Vismara A, Brucato A, Riboldi P, Meroni PL (1987) Anti-cardiolipin antibodies in progressive systemic sclerosis (PSS). Clin Exp Rheumatol 5:387–388PubMedGoogle Scholar
  263. 263.
    Katayama I, Otoyama K, Kondo S, Nishioka K, Nishiyama S (1990) Clinical manifestations in anticardiolipin antibody-positive patients with progressive systemic sclerosis. J Am Acad Dermatol 23:198–201PubMedCrossRefGoogle Scholar
  264. 264.
    Speranskii AI, Riazantseva TA, Guseva NG, Melkumova KL, Ivanova SM (1990) [Anti-cardiolipin antibodies and other immunological disorders in patients with systemic scleroderma]. Revmatologiia (Mosk) 3:11–14Google Scholar
  265. 265.
    Picillo U, Migliaresi S, Marcialis MR, Ferruzzi AM, Tirri G (1995) Clinical significance of anticardiolipin antibodies in patients with systemic sclerosis. Autoimmunity 20:1–7PubMedCrossRefGoogle Scholar
  266. 266.
    Merkel PA, Chang Y, Pierangeli SS, Convery K, Harris EN, Polisson RP (1996) The prevalence and clinical associations of anticardiolipin antibodies in a large inception cohort of patients with connective tissue diseases. Am J Med 101:576–583PubMedCrossRefGoogle Scholar
  267. 267.
    Sulik A, Kowal-Bielecka O, Domyslawska I, Chwiecko J, Sierakowski S (2005) The prevalence and clinical significance of antiphospholipid antibodies in the patients with systemic sclerosis—preliminary report. Rocz Akad Med Bialymst 50 Suppl 1:228–231Google Scholar
  268. 268.
    Pope JE, Thompson A (2000) The frequency and significance of anticardiolipin antibodies in scleroderma. J Rheumatol 27:1450–1452PubMedGoogle Scholar
  269. 269.
    Marai I, Gilburd B, Blank M, Shoenfeld Y (2003) Anti-cardiolipin and anti-beta2-glycoprotein I (beta2GP-I) antibody assays as screening for anti-phospholipid syndrome. Hum Antibodies 12:57–62PubMedGoogle Scholar
  270. 270.
    Enzenauer RJ, Collier DH, Lopez LR (2006) Anticardiolipin antibodies in scleroderma. J Clin Rheumatol 12:324–326PubMedCrossRefGoogle Scholar
  271. 271.
    Malia RG, Greaves M, Rowlands LM, Lawrence AC, Hume A, Rowell NR et al (1988) Anticardiolipin antibodies in systemic sclerosis: immunological and clinical associations. Clin Exp Immunol 73:456–460PubMedGoogle Scholar
  272. 272.
    Assous N, Allanore Y, Batteux F, Meune C, Toulon P, Weill B et al (2005) Prevalence of antiphospholipid antibodies in systemic sclerosis and association with primitive pulmonary arterial hypertension and endothelial injury. Clin Exp Rheumatol 23:199–204PubMedGoogle Scholar
  273. 273.
    Herrick AL, Oogarah PK, Freemont AJ, Marcuson R, Haeney M, Jayson MI (1994) Vasculitis in patients with systemic sclerosis and severe digital ischaemia requiring amputation. Ann Rheum Dis 53:323–326PubMedCrossRefGoogle Scholar
  274. 274.
    Marie I, Jouen F, Hellot MF, Levesque H (2008) Anticardiolipin and anti-beta2 glycoprotein I antibodies and lupus-like anticoagulant: prevalence and significance in systemic sclerosis. Br J Dermatol 158:141–144PubMedGoogle Scholar
  275. 275.
    Boin F, Johnson E, Rosen A, Wigley F, Casciola-Rosen L (2008) Anti-beta2 Glycoprotein I antibodies are independently associated with macrovascular disease and mortality in Scleroderma Patients. Arthritis Rheum 58:S946–S947CrossRefGoogle Scholar
  276. 276.
    Harigai M, Hara M, Nakazawa S, Fukasawa C, Ohta S, Sugiura T et al (1999) Ligation of CD40 induced tumor necrosis factor-alpha in rheumatoid arthritis: a novel mechanism of activation of synoviocytes. J Rheumatol 26:1035–1043PubMedGoogle Scholar
  277. 277.
    Matucci-Cerinic M, Lotti T, Lombardi A, Pignone A, Iannone F, Beneforti E et al (1990) Cutaneous and plasma fibrinolytic activity in systemic sclerosis. Evidence of normal plasminogen activation. Int J Dermatol 29:644–648PubMedCrossRefGoogle Scholar
  278. 278.
    Munkvad S, Gram J, Jespersen J (1989) Depressed plasma fibrinolytic activity in a group of patients with connective tissue diseases. Scand J Rheumatol 18:277–282PubMedCrossRefGoogle Scholar
  279. 279.
    Cerinic MM, Valentini G, Sorano GG, D’Angelo S, Cuomo G, Fenu L et al (2003) Blood coagulation, fibrinolysis, and markers of endothelial dysfunction in systemic sclerosis. Semin Arthritis Rheum 32:285–295PubMedCrossRefGoogle Scholar
  280. 280.
    Ames PR, Lupoli S, Alves J, Atsumi T, Edwards C, Iannaccone L et al (1997) The coagulation/fibrinolysis balance in systemic sclerosis: evidence for a haematological stress syndrome. Br J Rheumatol 36:1045–1050PubMedCrossRefGoogle Scholar
  281. 281.
    Thompson AE, Shea B, Welch V, Fenlon D, Pope JE (2001) Calcium-channel blockers for Raynaud’s phenomenon in systemic sclerosis. Arthritis Rheum 44:1841–1847PubMedCrossRefGoogle Scholar
  282. 282.
    Allanore Y, Borderie D, Perianin A, Lemarechal H, Ekindjian OG, Kahan A (2005) Nifedipine protects against overproduction of superoxide anion by monocytes from patients with systemic sclerosis. Arthritis Res Ther 7:R93–100PubMedCrossRefGoogle Scholar
  283. 283.
    Sunkel CE, Fau dC-J, Cillero FJ, Priego JG, Ortega MP (1988) Synthesis, platelet aggregation inhibitory activity, and in vivo antithrombotic activity of new 1,4-dihydropyridines. J Med Chem 31:1886–1890PubMedCrossRefGoogle Scholar
  284. 284.
    Mason RP (1999) Effects of calcium channel blockers on cellular apoptosis: implications for carcinogenic potential. Cancer 85:2093–2102PubMedCrossRefGoogle Scholar
  285. 285.
    Morris JL, Gibbins IL, Kadowitz PJ, Herzog H, Kreulen DL, Toda N et al (1995) Roles of peptides and other substances in cotransmission from vascular autonomic and sensory neurons. Can J Physiol Pharmacol 73:521–532PubMedGoogle Scholar
  286. 286.
    Pope J, Fenlon D, Thompson A, Shea B, Furst D, Wells G et al (2000) Prazosin for Raynaud’s phenomenon in progressive systemic sclerosis. Cochrane Database Syst Rev:CD000956Google Scholar
  287. 287.
    Chotani MA, Flavahan S, Mitra S, Daunt D, Flavahan NA (2000) Silent alpha(2C)-adrenergic receptors enable cold-induced vasoconstriction in cutaneous arteries. Am J Physiol Heart Circ Physiol 278:H1075–H1083PubMedGoogle Scholar
  288. 288.
    Bailey SR, Mitra S, Flavahan S, Flavahan NA (2005) Reactive oxygen species from smooth muscle mitochondria initiate cold-induced constriction of cutaneous arteries. Am J Physiol Heart Circ Physiol 289:H243–H250PubMedCrossRefGoogle Scholar
  289. 289.
    Bailey SR, Eid AH, Mitra S, Flavahan S, Flavahan NA (2004) Rho kinase mediates cold-induced constriction of cutaneous arteries: role of alpha2C-adrenoceptor translocation. Circ Res 94:1367–1374PubMedCrossRefGoogle Scholar
  290. 290.
    Akhmetshina A, Dees C, Pileckyte M, Szucs G, Spriewald BM, Zwerina J et al (2008) Rho-associated kinases are crucial for myofibroblast differentiation and production of extracellular matrix in scleroderma fibroblasts. Arthritis Rheum 58:2553–2564PubMedCrossRefGoogle Scholar
  291. 291.
    Wise RA, Wigley FM, White B, Leatherman G, Zhong J, Krasa H et al (2004) Efficacy and tolerability of a selective alpha(2C)-adrenergic receptor blocker in recovery from cold-induced vasospasm in scleroderma patients: a single-center, double-blind, placebo-controlled, randomized crossover study. Arthritis Rheum 50:3994–4001PubMedCrossRefGoogle Scholar
  292. 292.
    Coffman JD, Clement DL, Creager MA, Dormandy JA, Janssens MM, McKendry RJ et al (1989) International study of ketanserin in Raynaud’s phenomenon. Am J Med 87:264–268PubMedCrossRefGoogle Scholar
  293. 293.
    Seibold JR, Jageneau AH (1984) Treatment of Raynaud’s phenomenon with ketanserin, a selective antagonist of the serotonin2 (5-HT2) receptor. Arthritis Rheum 27:139–146PubMedCrossRefGoogle Scholar
  294. 294.
    Pope J, Fenlon D, Thompson A, Shea B, Furst D, Wells G et al (2000) Ketanserin for Raynaud’s phenomenon in Progressive Systemic Sclerosis. Cochrane Database Syst Rev 2:CD000954PubMedGoogle Scholar
  295. 295.
    Coleiro B, Marshall SE, Denton CP, Howell K, Blann A, Welsh KI, Black CM (2003) Treatment of Raynaud’s phenomenon with the selective serotonin reuptake inhibitor fluoxetine. Rheumatology 42:601–602CrossRefGoogle Scholar
  296. 296.
    Giannattasio C, Pozzi M, Gardinali M, Montemerlo E, Citterio F, Maestroni S et al (2007) Effects of prostaglandin E1alpha cyclodextrin [corrected] treatment on endothelial dysfunction in patients with systemic sclerosis. J Hypertens 25:793–797PubMedCrossRefGoogle Scholar
  297. 297.
    Winkelmann RK, Goldyne ME, Linscheid RL (1976) Hypersensitivity of scleroderma cutaneous vascular smooth muscle to 5-hydroxytryptamine. Br J Dermatol 95:51–56PubMedCrossRefGoogle Scholar
  298. 298.
    Scorza R, Caronni M, Mascagni B, Berruti V, Bazzi S, Micallef E et al (2001) Effects of long-term cyclic iloprost therapy in systemic sclerosis with Raynaud’s phenomenon. A randomized, controlled study. Clin Exp Rheumatol 19:503–508PubMedGoogle Scholar
  299. 299.
    Chung L, Fiorentino D (2006) A pilot trial of treprostinil for the treatment and prevention of digital ulcers in patients with systemic sclerosis. J Am Acad Dermatol 54:880–882PubMedCrossRefGoogle Scholar
  300. 300.
    Wigley FM, Wise RA, Seibold JR, McCloskey DA, Kujala G, Medsger TA Jr et al (1994) Intravenous iloprost infusion in patients with Raynaud phenomenon secondary to systemic sclerosis. A multicenter, placebo-controlled, double-blind study. Ann Intern Med 120:199–206PubMedGoogle Scholar
  301. 301.
    Badesch DB, McLaughlin VV, Delcroix M, Vizza CD, Olschewski H, Sitbon O et al (2004) Prostanoid therapy for pulmonary arterial hypertension. J Am Coll Cardiol 43:56S–61SPubMedCrossRefGoogle Scholar
  302. 302.
    Badesch DB, Tapson VF, McGoon MD, Brundage BH, Rubin LJ, Wigley FM et al (2000) Continuous intravenous epoprostenol for pulmonary hypertension due to the scleroderma spectrum of disease. A randomized, controlled trial. Ann Intern Med 132:425–434PubMedGoogle Scholar
  303. 303.
    Galie N, Humbert M, Vachiery JL, Vizza CD, Kneussl M, Manes A et al (2002) Effects of beraprost sodium, an oral prostacyclin analogue, in patients with pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol 39:1496–1502PubMedCrossRefGoogle Scholar
  304. 304.
    Olschewski H, Simonneau G, Galie N, Higenbottam T, Naeije R, Rubin LJ et al (2002) Inhaled iloprost for severe pulmonary hypertension. N Engl J Med 347:322–329PubMedCrossRefGoogle Scholar
  305. 305.
    Stratton R, Shiwen X, Martini G, Holmes A, Leask A, Haberberger T et al (2001) Iloprost suppresses connective tissue growth factor production in fibroblasts and in the skin of scleroderma patients. J Clin Invest 108:241–250PubMedGoogle Scholar
  306. 306.
    Ikeda D, Tsujino I, Sakaue S, Ohira H, Itoh N, Kamigaki M et al (2007) Pilot study of short-term effects of a novel long-acting oral beraprost in patients with pulmonary arterial hypertension. Circ J 71:1829–1831PubMedCrossRefGoogle Scholar
  307. 307.
    Barst RJ, McGoon M, McLaughlin V, Tapson V, Rich S, Rubin L et al (2003) Beraprost therapy for pulmonary arterial hypertension. J Am Coll Cardiol 41:2119–2125PubMedCrossRefGoogle Scholar
  308. 308.
    Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF et al (2001) Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet 358:1119–1123PubMedCrossRefGoogle Scholar
  309. 309.
    Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A et al (2002) Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 346:896–903PubMedCrossRefGoogle Scholar
  310. 310.
    Benza RL, Mehta S, Keogh A, Lawrence EC, Oudiz RJ, Barst RJ (2007) Sitaxsentan treatment for patients with pulmonary arterial hypertension discontinuing bosentan. J Heart Lung Transplant 26:63–69PubMedCrossRefGoogle Scholar
  311. 311.
    Cheng JW (2008) Ambrisentan for the management of pulmonary arterial hypertension. Clin Ther 30:825–833PubMedCrossRefGoogle Scholar
  312. 312.
    Sfikakis PP, Papamichael C, Stamatelopoulos KS, Tousoulis D, Fragiadaki KG, Katsichti P et al (2007) Improvement of vascular endothelial function using the oral endothelin receptor antagonist bosentan in patients with systemic sclerosis. Arthritis Rheum 56:1985–1993PubMedCrossRefGoogle Scholar
  313. 313.
    Jain M, Varga J (2006) Bosentan for the treatment of systemic sclerosis-associated pulmonary arterial hypertension, pulmonary fibrosis and digital ulcers. Expert Opin Pharmacother 7:1487–1501PubMedCrossRefGoogle Scholar
  314. 314.
    Proietti M, Aversa A, Letizia C, Rossi C, Menghi G, Bruzziches R et al (2007) Erectile dysfunction in systemic sclerosis: effects of longterm inhibition of phosphodiesterase type-5 on erectile function and plasma endothelin-1 levels. J Rheumatol 34:1712–1717PubMedGoogle Scholar
  315. 315.
    Badesch DB, Hill NS, Burgess G, Rubin LJ, Barst RJ, Galie N et al (2007) Sildenafil for pulmonary arterial hypertension associated with connective tissue disease. J Rheumatol 34:2417–2422PubMedGoogle Scholar
  316. 316.
    Watanabe H, Ohashi K, Takeuchi K, Yamashita K, Yokoyama T, Tran QK et al (2002) Sildenafil for primary and secondary pulmonary hypertension. Clin Pharmacol Ther 71:398–402PubMedCrossRefGoogle Scholar
  317. 317.
    Fries R, Shariat K, von WH, Bohm M (2005) Sildenafil in the treatment of Raynaud’s phenomenon resistant to vasodilatory therapy. Circulation 112:2980–2985PubMedGoogle Scholar
  318. 318.
    Anderson ME, Moore TL, Hollis S, Jayson MI, King TA, Herrick AL (2002) Digital vascular response to topical glyceryl trinitrate, as measured by laser Doppler imaging, in primary Raynaud’s phenomenon and systemic sclerosis. Rheumatology (Oxford) 41:324–328CrossRefGoogle Scholar
  319. 319.
    Teh LS, Manning J, Moore T, Tully MP, O’Reilly D, Jayson MI (1995) Sustained-release transdermal glyceryl trinitrate patches as a treatment for primary and secondary Raynaud’s phenomenon. Br J Rheumatol 34:636–641PubMedCrossRefGoogle Scholar
  320. 320.
    Chung L, Baron M, Collier DH, Csuka ME, Fiorentino D, Gruber B et al (2007) A multi-center placebo-controlled “In-Life” study of MQX-503 in patients with Raynaud phenomenon. Arthritis Rheum 56:S824Google Scholar
  321. 321.
    Fleming JN, Schwartz SM (2008) The pathology of scleroderma vascular disease. Rheum Dis Clin North Am 34:41–55PubMedCrossRefGoogle Scholar
  322. 322.
    Agewall S, Hernberg A (2006) Atorvastatin normalizes endothelial function in healthy smokers. Clin Sci (Lond) 111:87–91Google Scholar
  323. 323.
    Ferreira GA, Navarro TP, Telles RW, Andrade LE, Sato EI (2007) Atorvastatin therapy improves endothelial-dependent vasodilation in patients with systemic lupus erythematosus: an 8 weeks controlled trial. Rheumatology (Oxford) 46:1560–1565CrossRefGoogle Scholar
  324. 324.
    Iida K, Goland S, Akima T, Luo H, Birnbaum Y, Siegel RJ (2007) Effect of a single 20-mg tablet of Atorvastatin on brachial artery blood flow in normolipidemic male smokers versus nonsmokers. Am J Cardiol 100:881–884PubMedCrossRefGoogle Scholar
  325. 325.
    Dziadzio M, Denton CP, Smith R, Howell K, Blann A, Bowers E et al (1999) Losartan therapy for Raynaud’s phenomenon and scleroderma: clinical and biochemical findings in a fifteen-week, randomized, parallel-group, controlled trial. Arthritis Rheum 42:2646–2655PubMedCrossRefGoogle Scholar
  326. 326.
    Daniels CE, Wilkes MC, Edens M, Kottom TJ, Murphy SJ, Limper AH et al (2004) Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest 114:1308–1316PubMedGoogle Scholar
  327. 327.
    Barst RJ (2005) PDGF signaling in pulmonary arterial hypertension. J Clin Invest 115:2691–2694PubMedCrossRefGoogle Scholar
  328. 328.
    Ghofrani HA, Seeger W, Grimminger F (2005) Imatinib for the treatment of pulmonary arterial hypertension. N Engl J Med 353:1412–1413PubMedCrossRefGoogle Scholar
  329. 329.
    van der MJ, Wouda AA, Kallenberg CG, Wesseling H (1987) A double-blind controlled trial of low dose acetylsalicylic acid and dipyridamole in the treatment of Raynaud’s phenomenon. Vasa Suppl 18:71–75Google Scholar
  330. 330.
    Beckett VL, Conn DL, Fuster V, Osmundson PJ, Strong CG, Chao EY et al (1984) Trial of platelet-inhibiting drug in scleroderma. Double-blind study with dipyridamole and aspirin. Arthritis Rheum 27:1137–1143PubMedCrossRefGoogle Scholar
  331. 331.
    Denton CP, Howell K, Stratton RJ, Black CM (2000) Long-term low molecular weight heparin therapy for severe Raynaud’s phenomenon: a pilot study. Clin Exp Rheumatol 18:499–502PubMedGoogle Scholar
  332. 332.
    Goldberg J, Dlesk A (1986) Successful treatment of Raynaud’s phenomenon with pentoxifylline. Arthritis Rheum 29:1055–1056PubMedCrossRefGoogle Scholar
  333. 333.
    Goodfield MJ, Rowell NR (1989) Treatment of peripheral gangrene due to systemic sclerosis with intravenous pentoxifylline. Clin Exp Dermatol 14:161–162PubMedCrossRefGoogle Scholar
  334. 334.
    Dean SM, Satiani B (2001) Three cases of digital ischemia successfully treated with cilostazol. Vasc Med 6:245–248PubMedCrossRefGoogle Scholar
  335. 335.
    Denton CP, Bunce TD, Dorado MB, Roberts Z, Wilson H, Howell K et al (1999) Probucol improves symptoms and reduces lipoprotein oxidation susceptibility in patients with Raynaud’s phenomenon. Rheumatology (Oxford) 38:309–315CrossRefGoogle Scholar
  336. 336.
    Sambo P, Amico D, Giacomelli R, Matucci-Cerinic M, Salsano F, Valentini G et al (2001) Intravenous N-acetylcysteine for treatment of Raynaud’s phenomenon secondary to systemic sclerosis: a pilot study. J Rheumatol 28:2257–2262PubMedGoogle Scholar
  337. 337.
    Herrick AL, Hollis S, Schofield D, Rieley F, Blann A, Griffin K et al (2000) A double-blind placebo-controlled trial of antioxidant therapy in limited cutaneous systemic sclerosis. Clin Exp Rheumatol 18:349–356PubMedGoogle Scholar
  338. 338.
    Sycha T, Graninger M, Auff E, Schnider P (2004) Botulinum toxin in the treatment of Raynaud’s phenomenon: a pilot study. Eur J Clin Invest 34:312–313PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  1. 1.Division of RheumatologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations