Clinical Reviews in Allergy & Immunology

, Volume 36, Issue 1, pp 40–51

Atypical p-ANCA in PSC and AIH: A Hint Toward a “leaky gut”?



Primary sclerosing cholangitis (PSC) and autoimmune hepatitis (AIH) are enigmatic chronic inflammatory diseases of the liver, which are frequently associated with chronic inflammatory bowel diseases. Both types of liver disease share various distinct autoantibodies such as atypical perinuclear antineutrophil cytoplasmic antibodies (p-ANCA), and thus are considered autoimmune disorders with atypical features. The discovery that atypical p-ANCA recognize both tubulin beta isoform 5 in human neutrophils and the bacterial cell division protein FtsZ has renewed the discussion on the potential role of microorganisms in the pathogenesis of both diseases. In this paper, we review the evidence for microbial infection in PSC and AIH and discuss new concepts how cross-recognition between microbial antigens in the gut and host components by the immune system along with stimulation of pattern recognition receptors might give rise to chronic hepatic inflammatory disorders with features of autoimmunity.


Autoimmunity Antibodies Autoimmune disease Infection Primary sclerosing cholangitis Autoimmune hepatitis Toll-like receptor Regulatory T cells 


  1. 1.
    Broomé U, Bergquist A (2006) Primary sclerosing cholangitis, inflammatory bowel disease, and colon cancer. Sem Liver Dis 26:31–41Google Scholar
  2. 2.
    Griga T, Tromm A, Muller KM, May B (2000) Overlap syndrome between autoimmune hepatitis and primary sclerosing cholangitis in two cases. Eur J Gastroenterol Hepatol 12:559–564PubMedGoogle Scholar
  3. 3.
    Gregorio GV, Portmann B, Karani J et al (2001) Autoimmune hepatitis/sclerosing cholangitis overlap syndrome in childhood: a 16-year prospective study. Hepatology 33:544–553PubMedGoogle Scholar
  4. 4.
    Burak K, Angulo P, Pasha TM, Egan K, Petz J, Lindor KD (2004) Incidence and risk factors for cholangiocarcinoma in primary sclerosing cholangitis. Am J Gastroenterol 99:523–526PubMedGoogle Scholar
  5. 5.
    Lazaridis K, Gores GJ (2006) Primary sclerosing cholangitis and cholangiocarcinoma. Sem Liver Dis 26:42–51Google Scholar
  6. 6.
    Fevery J, Verslype C, Lai G, Aerts R, Van Steenbergen W (2007) Incidence, diagnosis, and therapy of cholangiocarcinoma in patients with primary sclerosing cholangitis. Dig Dis Sci 52:3123–3135PubMedGoogle Scholar
  7. 7.
    Jess T, Loftus EV Jr, Velayos FS et al (2007) Risk factors for colorectal neoplasia in inflammatory bowel disease: a nested case-control study from Copenhagen county, Denmark and Olmsted county, Minnesota. Am J Gastroenterol 102:829–836PubMedGoogle Scholar
  8. 8.
    Boden RW, Rankin JG, Goulston SJM, Morrow W (1959) The liver in ulcerative colitis; the significance of raised serum-alkaline-phosphatase levels. Lancet ii:245–248Google Scholar
  9. 9.
    Rankin JG, Boden RW, Goulston SJM, Morrow W (1959) The liver in ulcerative colitis; treatment of pericholangitis with tetracycline. Lancet ii:1110–1112Google Scholar
  10. 10.
    Mistilis SP, Skrying AP, Goulston SJ (1965) Effect of long-term tetracycline therapy, steroid therapy and colectomy in pericholangitis associated with ulcerative colitis. Australas Ann Med 14:286–294PubMedGoogle Scholar
  11. 11.
    Vinnik IE, Kern F Jr, Struthers JE Jr, Hill RB, Guzak S (1964) Experimental chronic portal vein bacteremia. Proc Soc Exp Biol Med 115:311–314PubMedGoogle Scholar
  12. 12.
    Ludwig J, Barham SS, LaRusso NF, Elveback LR, Wiesner RH, McCall JT (1981) Morphologic features of chronic hepatitis associated with primary sclerosing cholangitis and chronic ulcerative colitis. Hepatology 1:632–640PubMedGoogle Scholar
  13. 13.
    O’Mahony CA, Vierling JM (2006) Etiopathogenesis of primary sclerosing cholangitis. Semin Liv Dis 26:3–21Google Scholar
  14. 14.
    Martins EB, Chapman RW (2001) Sclerosing cholangitis. Curr Opin Gastroenterol 17:458–462PubMedGoogle Scholar
  15. 15.
    Manns MP, Vogel A (2006) Autoimmune hepatitis, from mechanisms to therapy. Hepatology 43(Suppl. 1):32–144Google Scholar
  16. 16.
    Falk RJ, Jennette JC (1988) Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med 318:1651–1657PubMedGoogle Scholar
  17. 17.
    Hardarson S, Labrecque DR, Mitros FA, Neil GA, Goeken JA (1993) Antineutrophil cytoplasmic antibody in inflammatory bowel and hepatobiliary diseases. High prevalence in ulcerative colitis, primary sclerosing cholangitis, and autoimmune hepatitis. Am J Clin Pathol 99:277–281PubMedGoogle Scholar
  18. 18.
    Mulder AHL, Horst G, Haagsma EB, Limburg PC, Kleibeuker JH, Kallenberg CGM (1993) Prevalence and characterization of neutrophil cytoplasmic antibodies in autoimmune liver diseases. Hepatology 17:411–417PubMedGoogle Scholar
  19. 19.
    Mulder AHL, Broekroelofs J, Horst G, Limburg PC, Nelis GF (1994) Anti-neutrophil cytoplasmic antibodies (ANCA) in inflammatory bowel disease: characterization and clinical correlates. Clin Exp Immunol 95:490–497PubMedGoogle Scholar
  20. 20.
    Targan S, Landers C, Vidrich A, Czaja AJ (1995) High-titer antineutrophil cytoplasmic antibodies in type-1 autoimmune hepatitis. Gastroenterology 108:1159–1166PubMedGoogle Scholar
  21. 21.
    Bansi D, Chapman R, Fleming K (1996) Antineutrophil cytoplasmic antibodies in chronic liver diseases: prevalence, titre, specificity and IgG subclass. J Hepatol 24:581–586PubMedGoogle Scholar
  22. 22.
    Claise C, Johanet C, Bouhnik Y, Kapel N, Homberg JC, Poupon R (1996) Antineutrophil cytoplasmic autoantibodies in autoimmune liver and inflammatory bowel diseases. Liver 16:28–34PubMedGoogle Scholar
  23. 23.
    Zauli D, Ghetti S, Grassi A et al (1997) Anti-neutrophil cytoplasmic antibodies in type 1 and 2 autoimmune hepatitis. Hepatology 25:1105–1107PubMedGoogle Scholar
  24. 24.
    Duerr RH, Targan SR, Landers CJ et al (1991) Neutrophil cytoplasmic antibodies: a link between primary sclerosing cholangitis and ulcerative colitis. Gastroenterology 100:1385–1391PubMedGoogle Scholar
  25. 25.
    Duerr RH, Targan SR, Landers CJ et al (1991) Anti-neutrophil cytoplasmic antibodies in ulcerative colitis. Comparison with other colitides/diarrheal illnesses. Gastroenterology 100:1590–1596PubMedGoogle Scholar
  26. 26.
    Wiik A (1989) Delineation of a standard procedure for indirect immunofluorescence detection of ANCA. Acta Pathol Microbiol Immunol Scand 97(suppl.6):12–13Google Scholar
  27. 27.
    Savige J, Gillis D, Benson E et al (1999) International Consensus Statement on Testing and Reporting of Antineutrophil Cytoplasmic Antibodies (ANCA). Am J Clin Pathol 111:507–513PubMedGoogle Scholar
  28. 28.
    Terjung B, Herzog V, Worman HJ et al (1998) Atypical antineutrophil cytoplasmic antibodies with perinuclear fluorescence in chronic inflammatory bowel diseases and hepatobiliary disorders colocalize with nuclear lamina proteins. Hepatology 28:332–340PubMedGoogle Scholar
  29. 29.
    Fricker M, Hollinshead M, White N, Vaux D (1997) Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J Cell Biol 136:531–544PubMedGoogle Scholar
  30. 30.
    Terjung B, Worman HJ, Herzog V, Sauerbruch T, Spengler U (2001) Differentiation of antineutrophil nuclear antibodies in inflammatory bowel and autoimmune liver diseases from antineutrophil cytoplasmic antibodies (p-ANCA) using immunofluorescence microscopy. Clin Exp Immunol 126:37–46PubMedGoogle Scholar
  31. 31.
    Mallolas J, Esteve M, Rius E, Cabré E, Gassull MA (2000) Antineutrophil antibodies associated with ulcerative colitis interact with the antigen(s) during the process of apoptosis. Gut 47:74–78PubMedGoogle Scholar
  32. 32.
    Billing P, Tahir S, Calfin B et al (1995) Nuclear localization of the antigen detected by ulcerative colitis-associated perinuclear antineutrophil cytoplasmic antibodies. Am J Pathol 147:979–987PubMedGoogle Scholar
  33. 33.
    Czaja AJ, Norman GL (2003) Autoantibodies in the diagnosis and management of liver disease. J Clin Gastroenterol 37:315–329PubMedGoogle Scholar
  34. 34.
    Tervaert JW, van der Woude FJ, Fauci AS et al (1989) Association between active Wegener’s granulomatosis and anticytoplasmic antibodies. Arch Intern Med 1:2461–2465Google Scholar
  35. 35.
    Seibold F, Weber P, Klein P, Berg PA, Wiedemann KH (1992) Clinical significance of antibodies against neutrophils in patients with inflammatory bowel disease and primary sclerosing cholangitis. Gut 33:657–662PubMedGoogle Scholar
  36. 36.
    Haagsma EB, Mulder AHL, Gouw ASH et al (1992) Neutrophil cytoplasmic autoantibodies after liver transplantation in patients with primary sclerosing cholangitis. J Hepatol 19:8–14Google Scholar
  37. 37.
    Roozendaal C, van Milligen de Wit AWM, Haagsma EB et al (1998) Antineutrophil cytoplasmic antibodies in primary sclerosing cholangitis: defined specificities may be associated with distinct clinical features. Am J Med 105:393–399PubMedGoogle Scholar
  38. 38.
    Lo SK, Fleming KA, Chapman RW (1994) A 2-year follow-up study of anti-neutrophil antibody in primary sclerosing cholangitis: relationship to clinical activity, liver biochemistry and ursodeoxycholic acid treatment. J Hepatol 21:974–978PubMedGoogle Scholar
  39. 39.
    Pokorny CS, Norton ID, McCaughan GW, Selby WS (1994) Anti-neutrophil cytoplasmic antibody: a prognostic indicator in primary sclerosing cholangitis. J Gastroenterol Hepatol 9:40–44PubMedGoogle Scholar
  40. 40.
    Jenne DE, Tschopp J, Ludemann J, Utecht B, Gross WL (1990) Wegener’s autoantigen decoded. Nature 346:520PubMedGoogle Scholar
  41. 41.
    Zhao MH, Lockwood CM (1996) Azurocidin is a novel antigen for antineutrophil cytoplasmic autoantibodies (ANCA) in systemic vasculitis. Clin Exp Immunol 103:397–402PubMedGoogle Scholar
  42. 42.
    Zhao MH, Jones SJ, Lockwood CM (1995) Bactericidal/permeability-increasing protein (BPI) is an important antigen for anti-neutrophil cytoplasmic autoantibodies (ANCA) in vasculitis. Clin Exp Immunol 99:49–56PubMedGoogle Scholar
  43. 43.
    Stoffel MP, Csernok E, Herzberg C, Johnston T, Carroll SF, Gross WL (1996) Anti-neutrophil cytoplasmic antibodies (ANCA) directed against bactericidal/permeability increasing protein (BPI): a new seromarker for inflammatory bowel disease and associated disorders. Clin Exp Immunol 104:54–59PubMedGoogle Scholar
  44. 44.
    Walmsley RS, Zhao MH, Hamilton MI et al (1997) Antineutrophil cytoplasm autoantibodies against bactericidal/permeability-increasing protein in inflammatory bowel disease. Gut 40:105–109PubMedGoogle Scholar
  45. 45.
    Lindgren S, Nilsson S, Nassberger L et al (2000) Anti-neutrophil cytoplasmic antibodies in patients with chronic liver diseases: prevalence, antigen specificity and predictive value for diagnosis of autoimmune liver disease. Gastroenterol Hepatol 15:437–442Google Scholar
  46. 46.
    Halbwachs-Mecarelli L, Nusbaum P, Noel LH et al (1992) Antineutrophil cytoplasmic antibodies (ANCA) directed against cathepsin G in ulcerative colitis, Crohn’s disease and primary sclerosing cholangitis. Clin Exp Immunol 90:79–84PubMedGoogle Scholar
  47. 47.
    Peen E, Almer S, Bodemar G et al (1993) Anti-lactoferrin antibodies and other types of ANCA in ulcerative colitis, primary sclerosing cholangitis, and Crohn’s disease. Gut 34:56–62PubMedGoogle Scholar
  48. 48.
    Orth T, Kellner R, Diekmann O, Faust J, Meyer zum Büschenfelde KH, Mayet WJ (1998) Identification and characterization of autoantibodies against catalase and alpha-enolase in patients with primary sclerosing cholangitis. Clin Exp Immunol 112:507–515PubMedGoogle Scholar
  49. 49.
    Roozendaal C, Zhao MH, Horst G et al (1998) Catalase and alpha-enolase: two novel granulocyte autoantigens in inflammatory bowel disease (IBD). Clin Exp Immunol 112:10–16PubMedGoogle Scholar
  50. 50.
    Eggena M, Cohavy O, Parseghian MP et al (2000) Identification of histone H1 as a cognate antigen of the ulcerative colitis-associated marker antibody pANCA. J Autoimmun 14:83–97PubMedGoogle Scholar
  51. 51.
    Sobajima J, Ozaki S, Osakada F et al (1997) Novel autoantigens of perinuclear anti-neutrophil cytoplasmic antibodies (P-ANCA) in ulcerative colitis: non-histone chromosomal proteins, HMG1 and HMG2. Clin Exp Immunol 107:135–140PubMedGoogle Scholar
  52. 52.
    Sobajima J, Ozaki S, Uesugi H et al (1999) High mobility group (HMG) nonhistone chromosomal proteins HMG1 and HMG2 are significant target antigens of perinuclear anti-neutrophil cytoplasmic antibodies in autoimmune hepatitis. Gut 44:867–873PubMedCrossRefGoogle Scholar
  53. 53.
    Terjung B, Muennich M, Gottwein J, Soehne J, et al (2005) Identification of myeloid-specific tubulin-beta isotype 5 as target antigen of antineutrophil cytoplasmic antibodies in autoimmune liver disorders. Hepatology 42(suppl 1):288AGoogle Scholar
  54. 54.
    Lewis SA, Gilmartin ME, Hall JL, Cowan NJ (1985) Three expressed sequences within the human beta-tubulin multigene family each define a distinct isotype. J Mol Biol 182:11–20PubMedGoogle Scholar
  55. 55.
    Wang D, Villasante A, Lewis SA, Cowan NJ (1986) The mammalian beta-tubulin repertoire: hematopoietic expression of a novel, heterologous beta-tubulin isotype. J Cell Biol 1034:1903–1910Google Scholar
  56. 56.
    Erickson HP (1995) FtsZ, a prokaryotic homolog of tubulin? Cell 80:367–370PubMedGoogle Scholar
  57. 57.
    Ponsioen CY, Defoer J, Ten Kate FJ et al (2002) A survey of infectious agents as risk factors for primary sclerosing cholangitis: are Chlamydia species involved? Eur J Gastroenterol Hepatol 14:641–648PubMedGoogle Scholar
  58. 58.
    Fausa O, Schrumpf E, Elgio K (1991) Relationship of inflammatory bowel disease and primary sclerosing cholangitis. Semin Liver Dis 11:31–39PubMedGoogle Scholar
  59. 59.
    Aoki CA, Bowlus CL, Gershwin ME (2005) The immunobiology of primary sclerosing cholangitis. Autoimmun Rev 4:137–143PubMedGoogle Scholar
  60. 60.
    Kono K, Ohnishi K, Omata K et al (1988) Experimental portal fibrosis produced by intraportal injection of killed nonpathogenic Escherichia coli in rabbits. Gastroenterology 94:787–796PubMedGoogle Scholar
  61. 61.
    Lichtman SN, Sartor RB, Keku J, Schwab JH (1990) Hepatic inflammation in rats with experimental small intestinal bacterial overgrowth. Gastroenterology 98:414–423PubMedGoogle Scholar
  62. 62.
    Lichtman SN, Okurawa EE, Keku J, Schwab JH, Sartor RB (1992) Degradation of endogenous bacterial cell wall polymers by the muralytic enzyme mutanolysin prevents hepatobiliary injury in genetically susceptible rats with experimental intestinal bacterial overgrowth. J Clin Invest 90:1313–1322PubMedGoogle Scholar
  63. 63.
    Bjornsson ES, Kilander AF, Olsson RG (2000) Bile duct bacterial isolates in primary sclerosing cholangitis and certain other forms of cholestasis--a study of bile cultures from ERCP. Hepatogastroenterology 47:1504–1508PubMedGoogle Scholar
  64. 64.
    Patel SA, Borges MC, Batt MD, Rosenblate HJ (1990) Trichosporon cholangitis associated with hyperbilirubinemia, and findings suggesting primary sclerosing cholangitis on endoscopic retrograde cholangiopancreatography. Am J Gastroenterol 85:84–87PubMedGoogle Scholar
  65. 65.
    Mehal WZ, Hattersley AT, Chapman RW, Fleming KA (1992) A survey of cytomegalovirus (CMV) DNA in primary sclerosing cholangitis (PSC) liver tissues using a sensitive polymerase chain reaction (PCR) based assay. J Hepatol 15:396–399PubMedGoogle Scholar
  66. 66.
    Hamour AA, Bonnington A, Howthorne B, Wilkins EGL (1993) Successful treatment of AIDS-related cryptosporidial sclerosing cholangitis. AIDS 7:1449–1451PubMedGoogle Scholar
  67. 67.
    Albrecht H, Rüsch-Gerdes S, Stellbrink H-J, Greten H, Jäckle S (1997) Disseminated Mycobacterium genavense infection as a cause of pseudo-Whipple’s disease and sclerosing cholangitis. Clin Infect Dis 25:742–743PubMedGoogle Scholar
  68. 68.
    Burgart LJ (1998) Cholangitis in viral disease. Mayo Clin Proc 73:479–482PubMedGoogle Scholar
  69. 69.
    Campos M, Huzdani E, Sempoux C et al (2000) Sclerosing cholangitis associated to cryptosporidiosis in liver-transplanted children. Eur J Pediatr 159:113–115PubMedGoogle Scholar
  70. 70.
    Chen XM, LaRusso NF (2002) Cryptosporidiosis and the pathogenesis of AIDS-cholangiopathy. Sem Liver Dis 22:277–289Google Scholar
  71. 71.
    Selimoglu MA, Ertekin V (2003) Autoimmune hepatitis triggered by Brucella infection or doxycycline or both. Int J Clin Pract 57:639–641PubMedGoogle Scholar
  72. 72.
    Kahana D, Cass O, Jessurun J, Schwarzenberg SJ, Sharp H, Khan K (2003) Sclerosing cholangitis associated with trichosporon infection and natural killer cell deficiency in an 8-year-old girl. J Pediatr Gastroenterol Nutr 37:620–623PubMedGoogle Scholar
  73. 73.
    Kulaksiz H, Rudolph G, Kloeters-Plachky P, Sauer P, Geiss H, Stiehl A (2006) Biliary candida infections in primary sclerosing cholangitis. J Hepatol 45:711–716PubMedGoogle Scholar
  74. 74.
    Hoffmeister B, Ockenga J, Schachschal G, Suttorp N, Seybold J (2007) Rapid development of secondary sclerosing cholangitis due to vancomycin-resistant enterococci. J Infection 54:e65–e68Google Scholar
  75. 75.
    Olsson R, Bjornsson E, Backman L, Friman S, Hockerstedt K, Kaijser B (1998) Bile duct bacterial isolates in primary sclerosing cholangitis: a study of explanted livers. J Hepatol 28:426–432PubMedGoogle Scholar
  76. 76.
    Fox JG, Dewhirst FE, Tully JG et al (1994) Helicobacter hepaticus sp. nov., a microaerophilic bacterium isolated from livers and intestinal mucosal scrapings from mice. J Clin Microbiol 32:1238–1245PubMedGoogle Scholar
  77. 77.
    Ward JM, Fox JG, Anver MR et al (1994) Chronic active hepatitis and associated liver tumors in mice caused by a persistent bacterial infection with a novel Helicobacter species. Nat Cancer Inst 86:1222–1227Google Scholar
  78. 78.
    Fox JG, Li X, Yan L et al (1996) Chronic proliferative hepatitis in A/JCr mice associated with persistent Helicobacter hepaticus infection: a model of helicobacter-induced carcinogenesis. Infect Immun 64:1548–1558PubMedGoogle Scholar
  79. 79.
    Boomkens SY, Kusters JG, Hoffmann G et al (2004) Detection of Helicobacter pylori in bile of cats. FEMS Immunol Med Microbiol 42:307–311PubMedGoogle Scholar
  80. 80.
    Whary MT, Fox JG (2004) Natural and experimental Helicobacter infections. Comp Med 54:128–158PubMedGoogle Scholar
  81. 81.
    Lin TT, Yeh CT, Wu CS et al (1995) Detection and partial sequence analysis of Helicobacter pylori DNA in the bile samples. Dig Dis Sci 40:2214–2219PubMedGoogle Scholar
  82. 82.
    Fox JG, Dewhirst FE, Shen Z et al (1998) Hepatic Helicobacter species identified in bile and gallbladder tissue from Chileans with chronic cholecystitis. Gastroenterology 114:755–763PubMedGoogle Scholar
  83. 83.
    Solnick JV, Schauer DB (2001) Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. Clin Microbiol Rev 14:59–97Google Scholar
  84. 84.
    Nilsson HO, Taneera J, Castedal M, Glatz E, Olsson R, Wadstrom T (2000) Identification of Helicobacter pylori and other Helicobacter species by PCR, hybridization, and partial DNA sequencing in human liver samples from patients with primary sclerosing cholangitis or primary biliary cirrhosis. J Clin Microbiol 38:1072–1076PubMedGoogle Scholar
  85. 85.
    Nilsson I, Lindgren S, Eriksson S, Wadstrom T (2000) Serum antibodies to Helicobacter hepaticus and Helicobacter pylori in patients with chronic liver disease. Gut 46:410–414PubMedGoogle Scholar
  86. 86.
    Wadström T, Ljungh A, Willen R (2001) Primary biliary cirrhosis and primary sclerosing cholangitis are of infectious origin ! Gut 49:454PubMedGoogle Scholar
  87. 87.
    Tanaka A, Prindiville TP, Gish R et al (1999) Are infectious agents involved in primary biliary cirrhosis? A PCR approach. J Hepatol 31:664–671PubMedGoogle Scholar
  88. 88.
    Nilsson HO, Mulchandani R, Stenram U et al (2001) Helicobacter species identified in liver from patients with cholangiocarcinoma and hepatocellular carcinoma. Gastroenterology 120:323–324PubMedCrossRefGoogle Scholar
  89. 89.
    Krasinskas AM, Yao Y, Randhawa P, Dore MP, Sepulveda AR (2007) Helicobacter pylori may play a contributory role in the pathogenesis of primary sclerosing cholangitis. Dig Dis Sci 52:2265–2270PubMedGoogle Scholar
  90. 90.
    Leong RW, Sung JJ (2002) Review article: Helicobacter species and hepatobiliary diseases. Aliment Pharmacol Ther 16:1037–1045PubMedGoogle Scholar
  91. 91.
    Fox JG, Schauer DB, Wadström T (2001) Curr Opin Gastroenterol 17:S28–S31Google Scholar
  92. 92.
    Mathai E, Arora A, Cafferkey M, Keane CT, M’Morain C (1991) The effect of bile acids on the growth and adherence of Helicobacter pylori. Aliment Pharmacol Ther 5:653–658PubMedGoogle Scholar
  93. 93.
    Magnuson TH, Lillemoe KD, Zarkin BA, Pitt HA (1992) Patients with uncomplicated cholelithiasis acidify bile normally. Dig Dis Sci 37:1517–1522PubMedGoogle Scholar
  94. 94.
    Rudi J, Rudy A, Maiwald M et al (1999) Helicobacter sp. are not detectable in bile from German patients with biliary disease. Gastroenterology 116:1016–1017PubMedGoogle Scholar
  95. 95.
    Durazzo M, Pellicano R, Premoli A et al (2002) Helicobacter pylori seroprevalence in patients with autoimmune hepatitis. Dig Dis Sci 47:380–383PubMedGoogle Scholar
  96. 96.
    Boomkens SY, de Rave S, Pot RG et al (2005) The role of Helicobacter spp. in the pathogenesis of primary biliary cirrhosis and primary sclerosing cholangitis. FEMS Immunol Med Microbiol 44:221–225PubMedGoogle Scholar
  97. 97.
    Nilsson I, Kornilovska I, Lindgren S, Ljungh A, Wadström T (2003) Increased prevalence of seropositivity for non-gastric Helicobacter species in patients with autoimmune liver disease. J Med Microbiol 52:949–953PubMedGoogle Scholar
  98. 98.
    Ward JM, Benveniste RE, Fox CH, Buttles JK, Gonda MA, Tully JG (1996) Autoimmunity in chronic active Helicobacter hepatitis of mice. Serum antibodies and expression of heat shock protein 70 in liver. Am J Pathos 148:509–517Google Scholar
  99. 99.
    Appelmelk BJ, Faller G, Clayes D, Kirschner T, Van den Brouke-Grauls CMJE (1998) Bugs on trial: the case of Helicobacter pylori and autoimmunity. Immunol Today 19:296–299PubMedGoogle Scholar
  100. 100.
    Hobson CH, Butt TJ, Ferry DM, Hunter J, Chadwick VS, Broom MF (1988) Enterohepatic circulation of bacterial chemotactic peptide in rats with experimental colitis. Gastroenterology 94:1006–1013PubMedGoogle Scholar
  101. 101.
    Yamada S, Ishii M, Liang LS, Yamamoto T, Toyota T (1994) Small duct cholangitis induced by N-formyl L-methionine L-leucine L-tyrosine in rats. Gastronenterol 29:631–636Google Scholar
  102. 102.
    Takeuchi O, Sato S, Horiuchi T et al (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169:10–14PubMedGoogle Scholar
  103. 103.
    Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immuno 21:335–376Google Scholar
  104. 104.
    Li M, Carpio DF, Zheng Y et al (2001) An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J Immunol 166:7128–7135PubMedGoogle Scholar
  105. 105.
    Kyburz D, Rethage J, Seibl R et al (2003) Bacterial peptidoglycans but not CpG oligodeoxynucleotides activate synovial fibroblasts by toll-like receptor signaling. Arthitis Rheum 48:642–650Google Scholar
  106. 106.
    Joosten LA, Koenders MI, Smeets RL et al (2003) Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88. J Immunol 171:6145–6153PubMedGoogle Scholar
  107. 107.
    Seibl R, Birchler T, Loeliger S et al (2003) Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am J Pathol 162:1221–1227PubMedGoogle Scholar
  108. 108.
    Tsan MF, Gao B (2004) Endogenous ligands of Toll-like receptors. J Leukoc Biol 76:514–519PubMedGoogle Scholar
  109. 109.
    Andonegui G, Bonder CS, Green F, Mullaly SC, Zbytnuik L, Raharjo E, Kubes P (2003) Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J Clin Invest 111:1011–1020PubMedGoogle Scholar
  110. 110.
    Netea MG, Radstake T, Joosten LA, van der Meer JW, Barrera P, Kulberg BJ (2003) Salmonella septicemia in rheumatoid arthritis patients receiving anti-tumor necrosis factor therapy: association with decreased interferon-gamma production and Toll-like receptor 4 expression. Arthitis Rheum 48:1853–1857Google Scholar
  111. 111.
    Arbour NC, Lorenz E, Schutte BC et al (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25:187–191PubMedGoogle Scholar
  112. 112.
    Kilding R, Akil M, Till S et al (2003) A biologically important single nucleotide polymorphism within the toll-like receptor-4 gene is not associated with rheumatoid arthritis. Clin Exp Rheumatol 21:340–342PubMedGoogle Scholar
  113. 113.
    Feterowski C, Emmanuilidis K, Miethke T et al (2003) Effects of functional Toll-like receptor-4 mutations on the immune response to human and experimental sepsis. Immunology 109:426–431PubMedGoogle Scholar
  114. 114.
    Alexopouloou L, Holt AC, Medhzitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NFkappa-B by Toll-like receptor 3. Nature 413:732–738Google Scholar
  115. 115.
    Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373PubMedGoogle Scholar
  116. 116.
    Hemmi H, Kaisho T, Takeuchi O et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200PubMedGoogle Scholar
  117. 117.
    Krieg AM, Yi AK, Matson S et al (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:646–549Google Scholar
  118. 118.
    Hemmi H, Takeuchi O, Kawai T et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745PubMedGoogle Scholar
  119. 119.
    Kerkmann M, Costa LT, Richter C et al (2005) Spontaneous formation of nucleic acid-based nanoparticles is responsible for high interferon-alpha induction by CpG-A in plasmacytoid dendritic cells. J Biol Chem 280:8086–8093PubMedGoogle Scholar
  120. 120.
    Yasuda K, Rutz M, Schlatter B et al (2006) CpG motif-independent activation of TLR9 upon endosomal translocation of “natural” phosphodiester DNA. Eur J Immunol 36:431–436PubMedGoogle Scholar
  121. 121.
    Latz E, Schoenemeyer A, Visintin A et al (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5:190–198PubMedGoogle Scholar
  122. 122.
    Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Sholomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–607PubMedGoogle Scholar
  123. 123.
    Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A (2005) Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6:769–776PubMedGoogle Scholar
  124. 124.
    Pasare C, Medhzitov R (2005) Control of B-cell responses by Toll-like receptors. Nature 438:364–368PubMedGoogle Scholar
  125. 125.
    Deng GM, Nilsson IM, Verdrengh M, Collins LV, Tarkowski A (1999) Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat Med 5:702–705PubMedGoogle Scholar
  126. 126.
    Fairweather D, Frisancho-Kiss S, Rose NR (2005) Viruses as adjuvants for autoimmunity: evidence from Coxsackievirus-induced myocarditis. Rev Med Virol 15:17–27PubMedGoogle Scholar
  127. 127.
    Kasapcopur O, Ergul Y, Kutlug S, Candan C, Camcioglu Y, Arisoy N (2006) Systemic lupus erythematosus due to Epstein-Barr virus or Epstein-Barr virus infection provocating acute exacerbation of systemic lupus erythematosus? Rheumatol Int 26:765–767PubMedGoogle Scholar
  128. 128.
    Prinz M, Garbe F, Schmidt H et al (2006) Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J Clin Invest 116:456–464PubMedGoogle Scholar
  129. 129.
    Marshak-Rothstein A (2006) Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6:823–835PubMedGoogle Scholar
  130. 130.
    Zipris D, Lien E, Nair A et al (2007) TLR9-signaling pathways are involved in Kilham rat virus-induced autoimmune diabetes in the biobreeding diabetes-resistant rat. J Immunol 178:693–701PubMedGoogle Scholar
  131. 131.
    Liu G, Zhao Y (2007) Toll-like receptors and immune regulation: their direct and indirect modulation on regulatory CD4+ CD25+ T cells. Immunology 122:149–156PubMedGoogle Scholar
  132. 132.
    Crellin NK, Garcia RV, Hadisfar O, Allan SE, Steiner TS, Levings MK (2005) Toll-like receptors and immune regulation: their direct and indirect modulation on regulatory CD4+ CD25+ T cells. Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells. J Immunol 175:8051–8059PubMedGoogle Scholar
  133. 133.
    Sutmuller RP, den Brok MH, Kramer M et al (2006) Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116:485–494Google Scholar
  134. 134.
    Liu H, Komai-Koma M, Xu D, Liew FY (2006) Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc Natl Acad Sci USA 103:7048–7053PubMedGoogle Scholar
  135. 135.
    Gelman AE, Zhang J, Choi Y, Turka LA (2004) Toll-like receptor ligands directly promote activated CD4+ T cell survival. J Immunol 172:6065–6073PubMedGoogle Scholar
  136. 136.
    Cottalorda A, Verschelde C, Marcais A et al (2006) TLR2 engagement on CD8 T cells lowers the threshold for optimal antigen-induced T cell activation. Eur J Immunol 36:1684–1693PubMedGoogle Scholar
  137. 137.
    Marsland BJ, Nembrini C, Grün K et al (2007) TLR ligands act directly upon T cells to restore proliferation in the absence of protein kinase C-theta signaling and promote autoimmune myocarditis. J Immunol 178:3466–3473PubMedGoogle Scholar
  138. 138.
    Lee J, Mo JH, Katakura K et al (2006) Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8:1327–1336PubMedGoogle Scholar
  139. 139.
    Probert CS, Christ AD, Saubermann LJ et al (1997) Analysis of human common bile duct-associated T cells: evidence for oligoclonality, T cell clonal persistence, and epithelial cell recognition. J Immunol 158:1941–1948PubMedGoogle Scholar
  140. 140.
    Grant AJ, Lalor PF, Salmi M, Jalkanen S, Adams DH (2002) Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease. Lancet 359:150–157PubMedGoogle Scholar
  141. 141.
    Eksteen B, Grant AJ, Miles A et al (2004) Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J Exp Med 200:1511–1517PubMedGoogle Scholar
  142. 142.
    Grant AJ, Lalor PF, Hübscher SG, Briskin M, Adams DH (2001) MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease). Hepatology 33:1065–1072PubMedGoogle Scholar
  143. 143.
    Adams DH, Eksteen B (2006) Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat Rev Immunol 6:244–251PubMedGoogle Scholar
  144. 144.
    Kuehn R, Loehler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274Google Scholar
  145. 145.
    Seibold F, Brandwein S, Simpson S, Terhorst C, Elson CO (1998) pANCA represents a cross-reactivity to enteric bacterial antigens. J Clin Immunol 18:153–160PubMedGoogle Scholar
  146. 146.
    Sacher T, Knolle P, Nichterlein T, Arnold B, Hämmerling GJ, Limmer A (2002) CpG-ODN-induced inflammation is sufficient to cause T-cell-mediated autoaggression against hepatocytes. Eur J Immunol 32:3628–3637PubMedGoogle Scholar
  147. 147.
    Radbruch A, Muehlinghaus G, Luger EO et al (2006) Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 6:741–750PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  1. 1.Department of Internal MedicineUniversity of BonnBonnGermany

Personalised recommendations