Clinical Reviews in Allergy & Immunology

, Volume 34, Issue 3, pp 283–299 | Cite as

Infections and Autoimmunity: A Panorama

  • V. Pordeus
  • M. Szyper-Kravitz
  • R. A. Levy
  • N. M. Vaz
  • Y. ShoenfeldEmail author


For more than 2,000 years, it was thought that malignant spirits caused diseases. By the end of nineteenth century, these beliefs were displaced by more modern concepts of disease, namely, the formulation of the “germ theory,” which asserted that bacteria or other microorganisms caused disease. With the emergence of chronic degenerative and of autoimmune diseases in the last century, the causative role of microorganisms has been intensely debated; however, no clear explanatory models have been achieved. In this review, we examine the current available literature regarding the relationships between infections and 16 autoimmune diseases. We critically analyzed clinical, serological, and molecular associations, and reviewed experimental models of induction of and, alternatively, protection from autoimmune diseases by infection. After reviewing several studies and reports, a clinical and experimental pattern emerges: Chronic and multiple infections with viruses, such as Epstein–Barr virus and cytomegalovirus, and bacteria, such as H. pylori, may, in susceptible individuals, play a role in the evolvement of autoimmune diseases. As the vast majority of infections pertain to our resident microbiota and endogenous retroviruses and healthy carriage of infections is the rule, we propose to focus on understanding the mechanisms of this healthy carrier state and what changes its configurations to infectious syndromes, to the restoration of health, or to the sustaining of illness into a chronic state and/or autoimmune disease. It seems that in the development of this healthy carriage state, the infection or colonization in early stages of ontogenesis with key microorganisms, also called ‘old friends’ (lactobacilli, bifidobacteria among others), are important for the healthy living and for the protection from infectious and autoimmune syndromes.


Infections Autoimmune diseases Chronic infection Multiple infections Old friends Healthy carriage 


  1. 1.
    Nutton V (2005) The fatal embrace: Galen and the history of ancient medicine. Sci Context 18:111–121PubMedCrossRefGoogle Scholar
  2. 2.
    De Flora S, Quaglia A, Bennicelli C, Vercelli M (2005) The epidemiological revolution of the 20th century. FASEB J 19:892–897PubMedCrossRefGoogle Scholar
  3. 3.
    Shoenfeld Y, Rose NR (2004) Infection and autoimmunity, 1st edn. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Ramos-Casals M, Jara LJ, Medina F et al (2005) Systemic autoimmune diseases co-existing with chronic hepatitis C virus infection (the HISPAMEC Registry): patterns of clinical and immunological expression in 180 cases. J Intern Med 257:549–557PubMedCrossRefGoogle Scholar
  5. 5.
    Yamazaki M, Kitamura R, Kusano S et al (2005) Elevated immunoglobulin G antibodies to the proline-rich amino-terminal region of Epstein–Barr virus nuclear antigen-2 in sera from patients with systemic connective tissue diseases and from a subgroup of Sjogren’s syndrome patients with pulmonary involvements. Clin Exp Immunol 139:558–568PubMedCrossRefGoogle Scholar
  6. 6.
    Pender MP (2004) Epstein–Barr virus and autoimmunity. In: Shoenfeld Y, Rose NR (eds) Infection and autoimmunity. 1st edn. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Severin MC, Shoenfeld Y (2004) Parvovirus B19 infection and its association with autoimmune disease. In: Shoenfeld Y, Rose NR (eds) Infection and autoimmunity. 1st edn. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Lundqvist A, Isa A, Tolfvenstam T, Kvist G, Broliden K (2005) High frequency of parvovirus B19 DNA in bone marrow samples from rheumatic patients. J Clin Virol 33:71–74PubMedCrossRefGoogle Scholar
  9. 9.
    Subair H, Tiwana H, Fielder M et al (1995) Elevation in anti-proteus antibodies in patients with rheumatoid arthritis from Bermuda and England. J Rheumatol 22:1825–1828PubMedGoogle Scholar
  10. 10.
    Newkirk MM, Goldbach-Mansky R, Senior BW, Klippel J, Schumacher HR Jr, El-Gabalawy HS (2005) Elevated levels of IgM and IgA antibodies to Proteus mirabilis and IgM antibodies to Escherichia coli are associated with early rheumatoid factor (RF)-positive rheumatoid arthritis. Rheumatology (Oxford, England) 44:1433–1441CrossRefGoogle Scholar
  11. 11.
    Yoshitomi H, Sakaguchi N, Kobayashi K, Brown GD, Tagami T, Sakihama T, Hirota K, Tanaka S, Nomura T, Miki I, Gordon S, Akira S, Nakamura T, Sakaguchi S (2005) A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. JEM 201:949–960CrossRefGoogle Scholar
  12. 12.
    Kai H, Shibuya K, Wang Y, Kameta H, Kameyama T, Tahara-Hanaoka S, Miyamoto A, Honda S, Matsumoto I, Koyama A, Sumida T, Shibuya A (2006) Critical role of M. tuberculosis for dendritic cell maturation to induce collagen-induced arthritis in H-2b background of C57BL/6 mice. Immunology 118:233–239PubMedCrossRefGoogle Scholar
  13. 13.
    Quinones MP, Jimenez F, Martinez H et al (2006) CC chemokine receptor (CCR)-2 prevents arthritis development following infection by Mycobacterium avium. J Mol Med (Berlin, Germany) 84:503–512Google Scholar
  14. 14.
    Yamanishi S, Iizumi T, Watanabe E et al (2006) Implications for induction of autoimmunity via activation of B-1 cells by Helicobacter pylori urease. Infect Immun 74:248–256PubMedCrossRefGoogle Scholar
  15. 15.
    Rocha F (2006) Protective role of helminthiasis in the development of autoimmune diseases. Clin Dev Immunol 13:159–162PubMedCrossRefGoogle Scholar
  16. 16.
    Kato I, Endo-Tanaka K, Yokokura T (1998) Suppressive effects of the oral administration of Lactobacillus casei on type II collagen-induced arthritis in DBA/1 mice. Life Sci 63:635–644PubMedCrossRefGoogle Scholar
  17. 17.
    Costalonga M, Hodges JS, Herzberg MC (2002) Streptococcus sanguis modulates type II collagen-induced arthritis in DBA/1J mice. J Immunol 169:2189–2195PubMedGoogle Scholar
  18. 18.
    Schattner A (2005) Cosequence or coincidence? The occurrence, pathogenesis and significance of autoimmune manifestations after viral vaccines. Vaccine 23:3876–3886PubMedCrossRefGoogle Scholar
  19. 19.
    Tishler M, Shoenfeld Y (2004) Vaccination may be associated with autoimmune diseases. IMAJ 6:430–432PubMedGoogle Scholar
  20. 20.
    Tinazzi E, Ficarra V, Simeoni S, Artibani W, Lunardi C (2006) Reactive arthritis following BCG immunotherapy for urinary bladder carcinoma: a systematic review. Rheumatol Int 26:481–488PubMedCrossRefGoogle Scholar
  21. 21.
    Vasudev M, Zacharisen MC (2006) New onset rheumatoid arthritis after anthrax vaccination. Ann Allergy Asthma Immun 97:110–112CrossRefGoogle Scholar
  22. 22.
    Shoenfeld Y, Aron-Maor A (2000) Vaccination and autoimmunity—‘vaccinosis’: a dangerous liaison? J Autoimmun 14:1–10PubMedCrossRefGoogle Scholar
  23. 23.
    DeLorenze GN, Munger KL, Lennette ET, Orentreich N, Vogelman JH, Ascherio A (2006) Epstein-Barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up. Arch Neurol 63:839–844PubMedCrossRefGoogle Scholar
  24. 24.
    Levin LI, Munger KL, Rubertone MV et al (2005) Temporal relationship between elevation of Epstein–Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. J Am Med Assoc 293:2496–2500CrossRefGoogle Scholar
  25. 25.
    Haahr S, Hollsberg P (2006) Multiple sclerosis is linked to Epstein–Barr virus infection. Rev Med Virol 16:297–310PubMedCrossRefGoogle Scholar
  26. 26.
    Bagos PG, Nikolopoulos G, Ioannidis A (2006) Chlamydia pneumoniae infection and the risk of multiple sclerosis: a meta-analysis. Mult Scler (Houndmills, Basingstoke, England) 12:397–411CrossRefGoogle Scholar
  27. 27.
    Kissler H (2001) Is multiple sclerosis caused by a silent infection with malarial parasites? A historico-epidemiological approach: part I. Med Hypotheses 57:280–291PubMedCrossRefGoogle Scholar
  28. 28.
    Rubio N, Sanz-Rodriguez F, Lipton HL (2006) Theiler’s virus induces the MIP-2 chemokine (CXCL2) in astrocytes from genetically susceptible but not from resistant mouse strains. Cell Immunol 239:31–40PubMedCrossRefGoogle Scholar
  29. 29.
    Croxford JL, Olson JK, Anger HA, Miller SD (2005) Initiation and exacerbation of autoimmune demyelination of the central nervous system via virus-induced molecular mimicry: implications for the pathogenesis of multiple sclerosis. J Virol 79:8581–8590PubMedCrossRefGoogle Scholar
  30. 30.
    Merkler D, Horvath E, Bruck W, Zinkernagel RM, Del la Torre JC, Pinschewer DD (2006) “Viral deja vu” elicits organ-specific immune disease independent of reactivity to self. J Clin Invest 116:1254–1263PubMedCrossRefGoogle Scholar
  31. 31.
    Oldstone MB, von Herrath M, Evans CF, Horwitz MS (1996) Virus-induced autoimmune disease: transgenic approach to mimic insulin-dependent diabetes mellitus and multiple sclerosis. Curr Top Microbiol Immunol 206:67–83PubMedGoogle Scholar
  32. 32.
    Westall FC (2006) Molecular mimicry revisited: gut bacteria and multiple sclerosis. J Clin Microbiol 44:2099–2104PubMedCrossRefGoogle Scholar
  33. 33.
    Mohindru M, Kang B, Kim BS (2006) Initial capsid-specific CD4(+) T cell responses protect against Theiler’s murine encephalomyelitisvirus-induced demyelinating disease. Eur J Immunol 36:2106–2115PubMedCrossRefGoogle Scholar
  34. 34.
    McCoy L, Tsunoda I, Fujinami RS (2006) Multiple sclerosis and virus induced immune responses: autoimmunity can be primed by molecular mimicry and augmented by bystander activation. Autoimmunity 39:9–19PubMedCrossRefGoogle Scholar
  35. 35.
    Jun S, Gilmore W, Callis G, Rynda A, Haddad A, Pascual DW (2005) A live diarrheal vaccine imprints a Th2 cell bias and acts as an anti-inflammatory vaccine. J Immunol 175:6733–6740PubMedGoogle Scholar
  36. 36.
    Sewell DL, Reinke EK, Co DO et al (2003) Infection with Mycobacterium bovis BCG diverts traffic of myelin oligodendroglial glycoprotein autoantigen-specific T cells away from the central nervous system and ameliorates experimental autoimmune encephalomyelitis. Clin Diagn Lab Immunol 10:564–572PubMedCrossRefGoogle Scholar
  37. 37.
    Green J, Casabonne D, Newton R (2004) Coxsackie B virus serology and type 1 diabetes mellitus: a systematic review of published case-control studies. Diabet Med 21:507–514PubMedCrossRefGoogle Scholar
  38. 38.
    Filippi C, von Herrath M (2005) How viral infections affect the autoimmune process leading to type 1 diabetes. Cell Immunol 233:125–132PubMedCrossRefGoogle Scholar
  39. 39.
    Jun HS, Yoon JW (2004) Viral Infections and type1 diabetes. In: Shoenfeld Y, Rose NR (eds) Infection and autoimmunity. 1st edn. Elsevier, Amsterdam, pp 229–249Google Scholar
  40. 40.
    Altobelli E, Petrocelli R, Verrotti A, Valenti M (2003) Infections and risk of type I diabetes in childhood: a population-based case-control study. Eur J Epidemiol 18:425–430PubMedCrossRefGoogle Scholar
  41. 41.
    King C, Ilic A, Koelsch K, Sarvetnick N (2004) Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117:265–277PubMedCrossRefGoogle Scholar
  42. 42.
    Gronski MA, Boulter JM, Moskophidis D et al (2004) TCR affinity and negative regulation limit autoimmunity. Nat Med 10:1234–1239PubMedCrossRefGoogle Scholar
  43. 43.
    Serreze DV, Wasserfall C, Ottendorfer EW et al (2005) Diabetes acceleration or prevention by a coxsackievirus B4 infection: critical requirements for both interleukin-4 and gamma interferon. J Virol 79:1045–1052PubMedCrossRefGoogle Scholar
  44. 44.
    Alyanakian MA, Grela F, Aumeunier A et al (2006) Transforming growth factor-beta and natural killer T-cells are involved in the protective effect of a bacterial extract on type 1 diabetes. Diabetes 55:179–185PubMedCrossRefGoogle Scholar
  45. 45.
    Raine T, Zaccone P, Mastroeni P, Cooke A (2006) Salmonella typhimurium infection in nonobese diabetic mice generates immunomodulatory dendritic cells able to prevent type 1 diabetes. J Immunol 177:2224–2233PubMedGoogle Scholar
  46. 46.
    Saunders KA, Raine T, Cooke A, Lawrence CE (2006) Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun 75:397–407PubMedCrossRefGoogle Scholar
  47. 47.
    Harley JB, James JA (2006) Epstein–Barr virus infection induces lupus autoimmunity. Bull Hosp Joint Dis 64:45–50Google Scholar
  48. 48.
    Harley JB, Harley IT, Guthridge JM, James JA (2006) The curiously suspicious: a role for Epstein–Barr virus in lupus. Lupus 15:768–777PubMedCrossRefGoogle Scholar
  49. 49.
    James JA, Neas BR, Moser KL et al (2001) Systemic lupus erythematosus in adults is associated with previous Epstein–Barr virus exposure. Arthritis Rheum 44:1122–1136PubMedCrossRefGoogle Scholar
  50. 50.
    Parks CG, Cooper GS, Hudson LL et al (2005) Association of Epstein–Barr virus with systemic lupus erythematosus: effect modification by race, age, and cytotoxic T lymphocyte-associated antigen 4 genotype. Arthritis Rheum 52:1148–1159PubMedCrossRefGoogle Scholar
  51. 51.
    Chen CJ, Lin KH, Lin SC et al (2005) High prevalence of immunoglobulin A antibody against Epstein–Barr virus capsid antigen in adult patients with lupus with disease flare: case control studies. J Rheumatol 32:44–47PubMedGoogle Scholar
  52. 52.
    Mockridge CI, Rahman A, Buchan S et al (2004) Common patterns of B cell perturbation and expanded V4–34 immunoglobulin gene usage in autoimmunity and infection. Autoimmunity 37:9–15PubMedCrossRefGoogle Scholar
  53. 53.
    Bengtsson A, Widell A, Elmstahl S, Sturfelt G (2000) No serological indications that systemic lupus erythematosus is linked with exposure to human parvovirus B19. Ann Rheum Dis 59:64–66PubMedCrossRefGoogle Scholar
  54. 54.
    Hemauer A, Beckenlehner K, Wolf H, Lang B, Modrow S (1999) Acute parvovirus B19 infection in connection with a flare of systemic lupus erythematodes in a female patient. J Clin Virol 14:73–77PubMedCrossRefGoogle Scholar
  55. 55.
    Seishima M, Oyama Z, Yamamura M (2003) Two-year follow-up study after human parvovirus B19 infection. Dermatology 206:192–196PubMedCrossRefGoogle Scholar
  56. 56.
    Hrycek A, Kusmierz D, Mazurek U, Wilczok T (2005) Human cytomegalovirus in patients with systemic lupus erythematosus. Autoimmunity 38:487–491PubMedCrossRefGoogle Scholar
  57. 57.
    Wang H, Nicholas MW, Conway KL et al (2006) EBV latent membrane protein 2A induces autoreactive B cell activation and TLR hypersensitivity. J Immunol 177:27932–802Google Scholar
  58. 58.
    Chang M, Pan MR, Chen DY, Lan JL (2006) Human cytomegalovirus pp65 lower matrix protein: a humoral immunogen for systemic lupus erythematosus patients and autoantibody accelerator for NZB/W F1 mice. Clin Exp Immunol 143:167–179PubMedCrossRefGoogle Scholar
  59. 59.
    Mittleman BB, Morse HC 3rd, Payne SM, Shearer GM, Mozes E (1996) Amelioration of experimental systemic lupus erythematosus (SLE) by retrovirus infection. J Clin Immunol 16:230–236PubMedCrossRefGoogle Scholar
  60. 60.
    Kuroda Y, Nacionales DC, Akaogi J, Reeves WH, Satoh M (2004) Autoimmunity induced by adjuvant hydrocarbon oil components of vaccine. Biomed Pharmacother 58:325–337PubMedCrossRefGoogle Scholar
  61. 61.
    Satoh M, Hamilton KJ, Ajmani AK et al (1996) Autoantibodies to ribosomal P antigens with immune complex glomerulonephritis in SJL mice treated with pristane. J Immunol 157:3200–3206PubMedGoogle Scholar
  62. 62.
    Saikku P, Leinonen M, Mattila K et al (1988) Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 2:983–986PubMedCrossRefGoogle Scholar
  63. 63.
    Danesh J, Whincup P, Walker M (2003) Chlamydia pneumoniae IgA titres and coronary heart disease: prospective study and meta-analysis. Eur Heart J 24:881PubMedCrossRefGoogle Scholar
  64. 64.
    Degre M (2002) Has cytomegalovirus infection any role in the development of atherosclerosis? Clin Microbiol Infect 8:191–195PubMedCrossRefGoogle Scholar
  65. 65.
    Beck JD, Eke P, Lin D et al (2005) Associations between IgG antibody to oral organisms and carotid intima-medial thickness in community-dwelling adults. Atherosclerosis 183:342–348PubMedCrossRefGoogle Scholar
  66. 66.
    Frostegård J (2004) Infection and atherosclerosis. In: Shoenfeld Y, Rose NR (eds) Infections and autoimmunity. Elsevier, Amsterdam, pp 701–709CrossRefGoogle Scholar
  67. 67.
    Lunardi C, Bason C, Corrocher R, Puccetti A (2005) Induction of endothelial cell damage by hCMV molecular mimicry. Trends Immunol 26:19–24PubMedCrossRefGoogle Scholar
  68. 68.
    Vliegen I, Herngreen SB, Grauls GE, Bruggeman CA, Stassen FR (2005) Mouse cytomegalovirus antigenic immune stimulation is sufficient to aggravate atherosclerosis in hypercholesterolemic mice. Atherosclerosis 181:39–44PubMedCrossRefGoogle Scholar
  69. 69.
    Lalla E, Lamster IB, Hofmann MA et al (2003) Oral infection with a periodontal pathogen accelerates early atherosclerosis in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 23:1405–1411PubMedCrossRefGoogle Scholar
  70. 70.
    Caligiuri G, Rottenberg M, Nicoletti A, Wigzell H, Hansson GK (2001) Chlamydia pneumoniae infection does not induce or modify atherosclerosis in mice. Circulation 103:2834283–2834288Google Scholar
  71. 71.
    Binder CJ, Horkko S, Dewan A et al (2003) Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 9:736–743PubMedCrossRefGoogle Scholar
  72. 72.
    Cervera R, Asherson RA, Acevedo ML et al (2004) Antiphospholipid syndrome associated with infections: clinical and microbiological characteristics of 100 patients. Ann Rheum Dis 63:1312–1317PubMedCrossRefGoogle Scholar
  73. 73.
    Uthman I, Tabbarah Z, Gharavi AE (1999) Hughes syndrome associated with cytomegalovirus infection. Lupus 8:775–777PubMedCrossRefGoogle Scholar
  74. 74.
    van Hal S, Senanayake S, Hardiman R (2005) Splenic infarction due to transient antiphospholipid antibodies induced by acute Epstein–Barr virus infection. J Clin Virol 32:245–247PubMedCrossRefGoogle Scholar
  75. 75.
    Faghiri Z, Wilson WA, Taheri F, Barton EN, Morgan OS, Gharavi AE (1999) Antibodies to cardiolipin and beta2-glycoprotein-1 in HTLV-1-associated myelopathy/tropical spastic paraparesis. Lupus 8:210–214PubMedCrossRefGoogle Scholar
  76. 76.
    Blank M, Asherson RA, Cervera R, Shoenfeld Y (2004) Antiphospholipid syndrome infectious origin. J Clin Immunol 24:12–23PubMedCrossRefGoogle Scholar
  77. 77.
    Blank M, Krause I, Magrini L et al (2006) Overlapping humoral autoimmunity links rheumatic fever and the antiphospholipid syndrome. Rheumatology (Oxford, England) 45:833–841CrossRefGoogle Scholar
  78. 78.
    Cervera R, Gomez-Puerta JA, Espinosa G, Cucho M, Font J (2003) “CAPS registry”. A review of 200 cases from the International Registry of patients with the Catastrophic Antiphospholipid Syndrome (CAPS). Ann Rheum Dis 62(Suppl 1):88Google Scholar
  79. 79.
    Bucciarelli S, Espinosa G, Cervera R et al (2006) Mortality in the catastrophic antiphospholipid syndrome: causes of death and prognostic factors in a series of 250 patients. Arthritis Rheum 54:2568–2576PubMedCrossRefGoogle Scholar
  80. 80.
    Gharavi EE, Chaimovich H, Cucurull E et al (1999) Induction of antiphospholipid antibodies by immunization with synthetic viral and bacterial peptides. Lupus 8:449–455PubMedCrossRefGoogle Scholar
  81. 81.
    Zampieri S, Ghirardello A, Iaccarino L et al (2006) Polymyositis–dermatomyositis and infections. Autoimmunity 39:191–196PubMedCrossRefGoogle Scholar
  82. 82.
    Nishikai M (1994) Coxsackievirus infection and the development of polymyositis/dermatomyositis. Rheumatol Int 14:43–46PubMedCrossRefGoogle Scholar
  83. 83.
    Mamyrova G, Rider LG, Haagenson L, Wong S, Brown KE (2005) Parvovirus B19 and onset of juvenile dermatomyositis. J Am Med Assoc 294:2170–2171CrossRefGoogle Scholar
  84. 84.
    Tam PE, Weber-Sanders ML, Messner RP (2003) Multiple viral determinants mediate myopathogenicity in coxsackievirus B1-induced chronic inflammatory myopathy. J Virol 77:11849–11854PubMedCrossRefGoogle Scholar
  85. 85.
    Morrison TE, Whitmore AC, Shabman RS, Lidbury BA, Mahalingam S, Heise MT (2006) Characterization of Ross River virus tropism and virus-induced inflammation in a mouse model of viral arthritis and myositis. J Virol 80:737–749PubMedCrossRefGoogle Scholar
  86. 86.
    Andrade SG, Campos RF, Sobral KS, Magalhaes JB, Guedes RS, Guerreiro ML (2006) Reinfections with strains of Trypanosoma cruzi, of different biodemes as a factor of aggravation of myocarditis and myositis in mice. Rev Soc Bras Med Trop 39:1–8PubMedGoogle Scholar
  87. 87.
    Ohtsuka T, Yamazaki S (2005) Altered prevalence of human parvovirus B19 component genes in systemic sclerosis skin tissue. Br J Dermatol 152:1078–1080PubMedCrossRefGoogle Scholar
  88. 88.
    Namboodiri AM, Rocca KM, Kuwana M, Pandey JP (2006) Antibodies to human cytomegalovirus protein UL83 in systemic sclerosis. Clin Exp Rheumatol 24:176–178PubMedGoogle Scholar
  89. 89.
    Kalabay L, Fekete B, Czirjak L et al (2002) Helicobacter pylori infection in connective tissue disorders is associated with high levels of antibodies to mycobacterial hsp65 but not to human hsp60. Helicobacter 7:250–256PubMedCrossRefGoogle Scholar
  90. 90.
    Lunardi C, Bason C, Navone R et al (2000) Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells. Nat Med 6:1183–1186PubMedCrossRefGoogle Scholar
  91. 91.
    Gavanescu I, Pihan G, Halilovic E, Szomolanyi-Tsuda E, Welsh RM, Doxsey S (2004) Mycoplasma infection induces a scleroderma-like centrosome autoantibody response in mice. Clin Exp Immunol 137:288–297PubMedCrossRefGoogle Scholar
  92. 92.
    Rodriguez-Pla A, Stone JH (2006) Vasculitis and systemic infections. Curr Opin Rheumatol 18:39–47PubMedCrossRefGoogle Scholar
  93. 93.
    Eden A, Mahr A, Servant A et al (2003) Lack of association between B19 or V9 erythrovirus infection and ANCA-positive vasculitides: a case-control study. Rheumatology (Oxford) 42:660–664CrossRefGoogle Scholar
  94. 94.
    Helweg-Larsen J, Tarp B, Obel N, Baslund B (2002) No evidence of parvovirus B19, Chlamydia pneumoniae or human herpes virus infection in temporal artery biopsies in patients with giant cell arteritis. Rheumatology (Oxford) 41:445–449CrossRefGoogle Scholar
  95. 95.
    Chang LY, Chiang BL, Kao CL et al (2006) Lack of association between infection with a novel human coronavirus (HCoV), HCoV-NH, and Kawasaki disease in Taiwan. J Infect Dis 193:283–286PubMedCrossRefGoogle Scholar
  96. 96.
    Robinson JL, Spady DW, Prasad E, McColl D, Artsob H (2005) Bartonella seropositivity in children with Henoch–Schonlein purpura. BMC Infec Dis 5(1):21CrossRefGoogle Scholar
  97. 97.
    Steed AL, Barton ES, Tibbetts SA et al (2006) Gamma interferon blocks gammaherpesvirus reactivation from latency. J Virol 80:192–200PubMedCrossRefGoogle Scholar
  98. 98.
    Shinohara H, Nagi-Miura N, Ishibashi K et al (2006) Beta-mannosyl linkages negatively regulate anaphylaxis and vasculitis in mice, induced by CAWS, fungal PAMPS composed of mannoprotein-beta-glucan complex secreted by Candida albicans. Biol Pharm Bull 29:1854–1861PubMedCrossRefGoogle Scholar
  99. 99.
    Malipiero U, Koedel U, Pfister HW et al (2006) TGFbeta receptor II gene deletion in leucocytes prevents cerebral vasculitis in bacterial meningitis. Brain 129(Pt 9):2404–2415PubMedCrossRefGoogle Scholar
  100. 100.
    Huugen D, Xiao H, van Esch A et al (2005) Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-alpha. Am J Pathol 167:47–58PubMedGoogle Scholar
  101. 101.
    Gottenberg JE, Pallier C, Ittah M et al (2006) Failure to confirm coxsackievirus infection in primary Sjogren's syndrome. Arthritis Rheum 54:2026–2028PubMedCrossRefGoogle Scholar
  102. 102.
    Fleck M, Kern ER, Zhou T, Lang B, Mountz JD (1998) Murine cytomegalovirus induces a Sjogren’s syndrome-like disease in C57Bl/6-lpr/lpr mice. Arthritis Rheum 41:2175–2184PubMedCrossRefGoogle Scholar
  103. 103.
    Watanabe S, Suzuki K, Kawauchi Y et al (2003) Kinetic analysis of the development of pancreatic lesions in mice infected with a murine retrovirus. Clin Immunol 109:212–223PubMedCrossRefGoogle Scholar
  104. 104.
    Corapcioglu D, Tonyukuk V, Kiyan M et al (2002) Relationship between thyroid autoimmunity and Yersinia enterocolitica antibodies. Thyroid 12:613–617PubMedCrossRefGoogle Scholar
  105. 105.
    Maki-Ikola O, Heesemann J, Toivanen A, Granfors K (1997) High frequency of Yersinia antibodies in healthy populations in Finland and Germany. Rheumatol Int 16:227–229PubMedCrossRefGoogle Scholar
  106. 106.
    Hansen PS, Wenzel BE, Brix TH, Hegedus L (2006) Yersinia enterocolitica infection does not confer an increased risk of thyroid antibodies: evidence from a Danish twin study. Clin Exp Immunol 146:32–38PubMedCrossRefGoogle Scholar
  107. 107.
    Mandac JC, Chaudhry S, Sherman KE, Tomer Y (2006) The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology (Baltimore) 43:661–672Google Scholar
  108. 108.
    Minelli R, Coiro V, Valli MA et al (2005) Graves’ disease in interferon-alpha-treated and untreated patients with chronic hepatitis C virus infection. J Investig Med 53:26–30PubMedCrossRefGoogle Scholar
  109. 109.
    Nagayama Y, Saitoh O, McLachlan SM, Rapoport B, Kano H, Kumazawa Y (2004) TSH receptor-adenovirus-induced Graves’ hyperthyroidism is attenuated in both interferon-gamma and interleukin-4 knockout mice; implications for the Th1/Th2 paradigm. Clin Exp Immunol 138:417–422PubMedCrossRefGoogle Scholar
  110. 110.
    Saitoh O, Nagayama Y (2006) Regulation of Graves’ hyperthyroidism with naturally occurring CD4+CD25+ regulatory T cells in a mouse model. Endocrinology 147:2417–2422PubMedCrossRefGoogle Scholar
  111. 111.
    Harii N, Lewis CJ, Vasko V et al (2005) Thyrocytes express a functional toll-like receptor 3: overexpression can be induced by viral infection and reversed by phenylmethimazole and is associated with Hashimoto’s autoimmune thyroiditis. Mol Endocrinol (Baltimore) 19:1231–1250Google Scholar
  112. 112.
    Nagayama Y, Watanabe K, Niwa M, McLachlan SM, Rapoport B (2004) Schistosoma mansoni and alpha-galactosylceramide: prophylactic effect of Th1 Immune suppression in a mouse model of Graves’ hyperthyroidism. J Immunol 173:2167–2173PubMedGoogle Scholar
  113. 113.
    Cunha-Neto E, Bilate AM, Hyland KV, Fonseca SG, Kalil J, Engman DM (2006) Induction of cardiac autoimmunity in Chagas heart disease: a case for molecular mimicry. Autoimmunity 39:41–54PubMedCrossRefGoogle Scholar
  114. 114.
    Fairweather D, Rose NR (2005) Inflammatory heart disease: a role for cytokines. Lupus 14:646–651PubMedCrossRefGoogle Scholar
  115. 115.
    Kotilainen P, Lehtopolku M, Hakanen AJ (2006) Myopericarditis in a patient with Campylobacter enteritis: a case report and literature review. Scand J Infec Dis 38(6–7):549–552CrossRefGoogle Scholar
  116. 116.
    Fairweather D, Frisancho-Kiss S, Yusung SA et al (2005) IL-12 protects against coxsackievirus B3-induced myocarditis by increasing IFN-gamma and macrophage and neutrophil populations in the heart. J Immunol 174:261–269PubMedGoogle Scholar
  117. 117.
    Omura T, Yoshiyama M, Hayashi T et al (2005) Core protein of hepatitis C virus induces cardiomyopathy. Circ Res 96:148–150PubMedCrossRefGoogle Scholar
  118. 118.
    Richer MJ, Fang D, Shanina I, Horwitz MS (2006) Toll-like receptor 4-induced cytokine production circumvents protection conferred by TGF-beta in coxsackievirus-mediated autoimmune myocarditis. Clin Immunol 121(3):339–349PubMedCrossRefGoogle Scholar
  119. 119.
    Afanasyeva M, Rose NR (2004) Viral infection and heart disease: autoimmune mechanisms. In: Shoenfeld Y, Rose NR (eds) Infection and autoimmunity. Elsevier, AmsterdamGoogle Scholar
  120. 120.
    Green C, Elliott L, Beaudoin C, Bernstein CN (2006) A population-based ecologic study of inflammatory bowel disease: searching for etiologic clues. Am J Epidemiol 164:615–623 (discussion 24–28)PubMedCrossRefGoogle Scholar
  121. 121.
    Oliveira AG, Rocha GA, Rocha AM et al (2006) Isolation of Helicobacter pylori from the intestinal mucosa of patients with Crohn’s disease. Helicobacter 11:2–9PubMedCrossRefGoogle Scholar
  122. 122.
    Pronai L, Schandl L, Orosz Z, Magyar P, Tulassay Z (2004) Lower prevalence of Helicobacter pylori infection in patients with inflammatory bowel disease but not with chronic obstructive pulmonary disease—antibiotic use in the history does not play a significant role. Helicobacter 9:278–283PubMedCrossRefGoogle Scholar
  123. 123.
    Saebo A, Vik E, Lange OJ, Matuszkiewicz L (2005) Inflammatory bowel disease associated with Yersinia enterocolitica O:3 infection. Eur J Intern Med 16:176–182PubMedCrossRefGoogle Scholar
  124. 124.
    Romero C, Hamdi A, Valentine JF, Naser SA (2005) Evaluation of surgical tissue from patients with Crohn’s disease for the presence of Mycobacterium avium subspecies paratuberculosis DNA by in situ hybridization and nested polymerase chain reaction. Inflamm Bowel Dis 11:116–125PubMedCrossRefGoogle Scholar
  125. 125.
    Polymeros D, Bogdanos DP, Day R, Arioli D, Vergani D, Forbes A (2006) Does cross-reactivity between Mycobacterium avium paratuberculosis and human intestinal antigens characterize Crohn’s disease? Gastroenterology 131:85–96PubMedCrossRefGoogle Scholar
  126. 126.
    Weinstock JV (2004) Inflammatory bowel disease. In: Shoenfeld Y, Rose NR (eds) Infection and Autoimmunity. 1st edn. Elsevier, Amsterdam, pp 649–673Google Scholar
  127. 127.
    Gionchetti P, Rizzello F, Lammers KM et al (2006) Antibiotics and probiotics in treatment of inflammatory bowel disease. World J Gastroenterol 12:3306–3313PubMedGoogle Scholar
  128. 128.
    Sydora BC, Tavernini MM, Doyle JS, Fedorak RN (2005) Association with selected bacteria does not cause enterocolitis in IL-10 gene-deficient mice despite a systemic immune response. Dig Dis Sci 50:905–913PubMedCrossRefGoogle Scholar
  129. 129.
    Moreels TG, Nieuwendijk RJ, De Man JG et al (2004) Concurrent infection with Schistosoma mansoni attenuates inflammation induced changes in colonic morphology, cytokine levels, and smooth muscle contractility of trinitrobenzene sulphonic acid induced colitis in rats. Gut 53:99–107PubMedCrossRefGoogle Scholar
  130. 130.
    Hunter MM, Wang A, Hirota CL, McKay DM (2005) Neutralizing anti-IL-10 antibody blocks the protective effect of tapeworm infection in a murine model of chemically induced colitis. J Immunol 174:7368–7375PubMedGoogle Scholar
  131. 131.
    Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128:825–832PubMedCrossRefGoogle Scholar
  132. 132.
    Szyper-Kravitz M, Shoenfeld Y (2005) Thrombocytopenic conditions—autoimmunity and hypercoagulability: commonalities and differences in ITP, TTP, HIT and APS. Am J Hematol 80:232–242CrossRefGoogle Scholar
  133. 133.
    Suzuki T, Matsushima M, Masui A et al (2005) Effect of Helicobacter pylori eradication in patients with chronic idiopathic thrombocytopenic purpura—a randomized controlled trial. Am J Gastroenterol 100:1265–1270PubMedCrossRefGoogle Scholar
  134. 134.
    Stasi R, Rossi Z, Stipa E, Amadori S, Newland AC, Provan D (2005) Helicobacter pylori eradication in the management of patients with idiopathic thrombocytopenic purpura. Am J Med 118:414–419PubMedCrossRefGoogle Scholar
  135. 135.
    Musaji A, Meite M, Detalle L et al (2005) Enhancement of autoantibody pathogenicity by viral infections in mouse models of anemia and thrombocytopenia. Autoimmunity Rev 4:247–252CrossRefGoogle Scholar
  136. 136.
    Li Z, Nardi MA, Karpatkin S (2005) Role of molecular mimicry to HIV-1 peptides in HIV-1-related immunologic thrombocytopenia. Blood 106:572–576PubMedCrossRefGoogle Scholar
  137. 137.
    van Sorge NM, van den Berg LH, Jansen MD, van de Winkel JGJ, van der Pol WL (2004) Infection and Guillain-Barré syndrome. In: Shoenfeld Y, Rose NR (eds) Infection and autoimmunity. Elsevier, Amsterdam, pp 591–612Google Scholar
  138. 138.
    Tam CC, Rodrigues LC, Petersen I, Islam A, Hayward A, O'Brien SJ (2006) Incidence of Guillain–Barre syndrome among patients with Campylobacter infection: a general practice research database study. J Infect Dis 194:95–97PubMedCrossRefGoogle Scholar
  139. 139.
    Kountouras J, Deretzi G, Zavos C et al (2005) Association between Helicobacter pylori infection and acute inflammatory demyelinating polyradiculoneuropathy. Eur J Neurol 12:139–143PubMedCrossRefGoogle Scholar
  140. 140.
    Watanabe K, Kim S, Nishiguchi M, Suzuki H, Watarai M (2005) Brucella melitensis infection associated with Guillain–Barre syndrome through molecular mimicry of host structures. FEMS Iimmunol Med Microbiol 45:121–127CrossRefGoogle Scholar
  141. 141.
    Godschalk PC, Heikema AP, Gilbert M et al (2004) The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain–Barre syndrome. J Clin Invest 114:1659–1665PubMedGoogle Scholar
  142. 142.
    Geier MR, Geier DA, Zahalsky AC (2003) Influenza vaccination and Guillain–Barre syndrome. Clin Immunol 107:116–121PubMedCrossRefGoogle Scholar
  143. 143.
    Fae KC, Oshiro SE, Toubert A, Charron D, Kalil J, Guilherme L (2005) How an autoimmune reaction triggered by molecular mimicry between streptococcal M protein and cardiac tissue proteins leads to heart lesions in rheumatic heart disease. J Autoimmun 24:101–109PubMedCrossRefGoogle Scholar
  144. 144.
    Fae K, Kalil J, Toubert A, Guilherme L (2004) Heart infiltrating T cell clones from a rheumatic heart disease patient display a common TCR usage and a degenerate antigen recognition pattern. Mol Immunol 40:1129–1135PubMedCrossRefGoogle Scholar
  145. 145.
    Guilherme L, Fae K, Oshiro SE, Kalil J (2005) Molecular pathogenesis of rheumatic fever and rheumatic heart disease. Expert Rev Mol Med 7:1–15PubMedCrossRefGoogle Scholar
  146. 146.
    Olive C, Ho MF, Dyer J et al (2006) Immunization with a tetraepitopic lipid core peptide vaccine construct induces broadly protective immune responses against group A streptococcus. J Infect Dis 193:1666–1676PubMedCrossRefGoogle Scholar
  147. 147.
    Giovannoni G (2006) PANDAS: overview of the hypothesis. Adv Neurol 99:159–165PubMedGoogle Scholar
  148. 148.
    Perlmutter SJ, Leitman SF, Garvey MA et al (1999) Therapeutic plasma exchange and intravenous immunoglobulin for obsessive–compulsive disorder and tic disorders in childhood. Lancet 354:1153–1158PubMedCrossRefGoogle Scholar
  149. 149.
    Singer HS, Loiselle CR, Lee O, Minzer K, Swedo S, Grus FH (2004) Anti-basal ganglia antibodies in PANDAS. Mov Disord 19:406–415PubMedCrossRefGoogle Scholar
  150. 150.
    Jablonka E, Lamb M (2005) Evolution in four dimensions, 1st edn. MIT Press, BostonGoogle Scholar
  151. 151.
    Lederberg J (2000) Infectious history. Science 288:287–293PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • V. Pordeus
    • 1
    • 4
  • M. Szyper-Kravitz
    • 4
  • R. A. Levy
    • 2
  • N. M. Vaz
    • 3
  • Y. Shoenfeld
    • 4
    Email author
  1. 1.Clinical ResearchPro Cardiaco Hospital Research Center—PROCEPRio de JaneiroBrazil
  2. 2.Rheumatology Discipline, Faculty of MedicineUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Department of Immunology and Biochemistry–ICBUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  4. 4.Center for Autoimmune diseases, Department of Medicine BSheba Medical CenterTel HashomerIsrael

Personalised recommendations