Clinical Reviews in Allergy & Immunology

, Volume 32, Issue 3, pp 238–251 | Cite as

Sjögren’s Syndrome—Study of Autoantigens and Autoantibodies



The presence of autoantibodies is the hallmark of systemic autoimmune diseases. During the past 30 years, intense clinical and basic research have dissected the clinical value of autoantibodies in many autoimmune diseases and offered new insights into a better understanding of the molecular and functional properties of the targeted autoantigens. Unraveling the immunologic mechanisms underlying the autoimmune tissue injury, provided useful conclusions on the generation of autoantibodies and the perpetuation of the autoimmune response. Primary Sjögren’s syndrome (pSS) is characterized by the presence of autoantibodies binding on a vast array of organ and non-organ specific autoantigens. The most common autoantibodies are those targeting the Ro/La RNP complex, and they serve as disease markers, as they are included in the European–American Diagnostic Criteria for pSS. Other autoantibodies are associated with particular disease manifestations, such as anti-centromere antibodies with Raynaud’s phenomenon, anti-carbonic anhydrase II with distal renal tubular acidosis, anti-mitochondrial antibodies with liver pathology, and cryoglobulins with the evolution to non-Hodgkin’s lymphoma. Finally, autoantibodies against autoantigens such as alpha- and beta-fodrin, islet cell autoantigen, poly(ADP)ribose polymerase (PARP), NuMA, Golgins, and NOR-90 are found in a subpopulation of SS patients without disease specificity, and their utility remains to be elucidated. In this review, the molecular and clinical characteristics (divided according to their clinical utility) of the autoantigens and autoantibodies associated with pSS are discussed.


Sjogren’s syndrome Autoantigens Ro(SS-A) La(SS-B) Carbonic anhydrase Fodrin Poly(ADP)ribose polymerase Muscarinic receptor 


  1. 1.
    Vitali C, Bombardieri S, Jonsson R, Moutsopoulos HM, Alexander EL, Carsons SE, Daniels TE, Fox PC, Fox RI, Kassan SS, Pillemer SR, Tala N, Weisman MH (2002) Classification criteria for Sjogren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis 61:554–558PubMedGoogle Scholar
  2. 2.
    Routsias JG, Vlachoyiannopoulos PG, Tzioufas AG (2006) Autoantibodies to intracellular autoantigens and their B-cell epitopes: molecular probes to study the autoimmune response. Crit Rev Clin Lab Sci 43:203–248PubMedGoogle Scholar
  3. 3.
    Iwasaki K, Okawa-Takatsuji M, Aotsuka S, Ono T (2003) Detection of anti-SS-A/Ro and anti-SS-B/La antibodies of IgA and IgG isotypes in saliva and sera of patients with Sjogren’s syndrome. Nihon Rinsho Meneki Gakkai Kaishi 26:346–354PubMedGoogle Scholar
  4. 4.
    Hammi AR, Al-Hashimi IH, Nunn ME, Zipp M (2005) Assessment of SS-A and SS-B in parotid saliva of patients with Sjogren’s syndrome. J Oral Pathol Med 34:198–203PubMedGoogle Scholar
  5. 5.
    Halse A, Harley JB, Kroneld U, Jonsson R (1999) Ro/SS-A reative B lymphocytes in salivary glands and peripheral blood of patients with Sjogren’s syndrome. Clin Exp Immunol 115:203–207PubMedGoogle Scholar
  6. 6.
    Salomonsson S, Jonsson MV, Skarstein K, Brokstad KA, Hjelmstrom P, Wahren-Herlenius M, Jonsson R (2003) Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patiens with Sjogren’s syndrome. Arthritis Rheum 48:3187–3201PubMedGoogle Scholar
  7. 7.
    Salomonsson S, Larsson P, Tengner P, Mellquist E, Hjelmstrom P, Wahren-Herlenius M (2002) Expression of the B cell-attracting chemokine CXCL13 in the target organ and autoantibody production in ectopic lymphoid tissue in the chronic inflammatory disease Sjogren’s syndrome. Scand J Immunol 55:336–342PubMedGoogle Scholar
  8. 8.
    Tzioufas AG, Hantoumi I, Polihronis M, Xanthou G, Moutsopoulos HM (1999) Autoantibodies to La/SSB in patients with primary Sjogren’s syndrome (pSS) are associated with upregulation of La/SSB mRNA in minor salivary gland biopsies (MSGs). J Autoimmun 13:429–434PubMedGoogle Scholar
  9. 9.
    Yannopoulos DI, Roncin S, Lamour A, Pennec YL, Moutsopoulos HM, Youinou P (1992) Conjunctival epithelial cells from patients with Sjogren’s syndrome inappropriately express major histocompatibility complex molecules, La(SSB) antigen, and heat-shock proteins. J Clin Immunol 12:259–265PubMedGoogle Scholar
  10. 10.
    Kapsogeorgou EK, Abu-Helu RF, Moutsopoulos HM, Manoussakis MN (2005) Salivary gland epithelial cell exosomes: a source of autoantigenic ribonucleoproteins. Arthritis Rheum 52:1517–1521PubMedGoogle Scholar
  11. 11.
    Ben-Chetrit E, Chan EK, Sullivan KF, Tan EM (1988) A 52-kD protein is a novel component of the SS-A/Ro antigenic particle. J Exp Med 167:1560–1571PubMedGoogle Scholar
  12. 12.
    Slobbe RL, Pluk W, van Venrooij WJ, Pruijn GJ (1992) Ro ribonucleoprotein assembly in vitro. Identification of RNA-protein and protein-protein interactions. J Mol Biol 227:361–366PubMedGoogle Scholar
  13. 13.
    Cheng ST, Nguyen TQ, Yang YS, Capra JD, Sontheimer RD (1996) Calreticulin binds hYRNA and the 52-kDa polypeptide component of the Ro/SS-A ribonucleoprotein autoantigen. J Immunol 156:4484–4491PubMedGoogle Scholar
  14. 14.
    Fouraux MA, Bouvet P, Verkaart S, van Venrooij WJ, Pruijn GJ (2002) Nucleolin associates with a subset of the human Ro ribonucleoprotein complexes. J Mol Biol 320:475–488PubMedGoogle Scholar
  15. 15.
    Peek R, Pruijn GJ, van der Kemp AJ, van Venrooij WJ (1993) Subcellular distribution of Ro ribonucleoprotein complexes and their constituents. J Cell Sci 106:929–935PubMedGoogle Scholar
  16. 16.
    Simons FH, Pruijn GJ, van Venrooij WJ (1994) Analysis of the intracellular localization and assembly of Ro ribonucleoprotein particles by microinjection into Xenopus laevis oocytes. J Cell Biol 125:981–988PubMedGoogle Scholar
  17. 17.
    Krishna SS, Majumdar I, Grishin NV (2003) Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31:532–550PubMedGoogle Scholar
  18. 18.
    Barlow PN, Luisi B, Milner A, Elliott M, Everett R (1994) Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy. A new structural class of zinc-finger. J Mol Biol 237:201–211PubMedGoogle Scholar
  19. 19.
    Hershko A, Ciechanover A (1998) The ubquitin system. Annu Rev Biochem 67:425–479PubMedGoogle Scholar
  20. 20.
    Borden KL, Martin SR, O’Reilly NJ, Lally JM, Reddy BA, Etkin LD, Reemont PS (1993) Characterisation of a novel cysteine/histidine-rich metal binding domain from Xenopus nuclear factor XNF7. FEBS Lett 335:255–260PubMedGoogle Scholar
  21. 21.
    Wang D, Buyon JP, Yang Z, Di Donato F, Miranda-Carus ME, Chan EK (2001) Leucine zipper domain of 52 kDa SS-A/Ro promotes protein dimer formation and inhibits in vitro transcription activity. Biochim Biophys Acta 1568:155–161PubMedGoogle Scholar
  22. 22.
    Frank MB (1999) Charaterization of DNA binding properties and sequence specificity of the human 52 kDa Ro/SS-A (Ro52) zinc finger protein. Biochem Biophys Res Commun 259:665–670PubMedGoogle Scholar
  23. 23.
    Espinosa A, Zhou W, Ek M, Hedlund M, Brauner S, Popovic K, Horvath L, Wallerskog T, Oukka M, Nyberg F, Kuchroo VK, Wahren-Herlenius M (2006) The Sjogren’s syndrome-associated autoantigen Ro52 is an E3 ligase that regulates proliferation and cell death. J Immunol 176:6277–6285PubMedGoogle Scholar
  24. 24.
    Blange I, Ringertz NR, Pettersson I (1994) Identification of antigenic regions of the human 52kD Ro/SS-A protein recognized by patient sera. J Autoimmun 7:263–274PubMedGoogle Scholar
  25. 25.
    Kato T, Sasakawa H, Suzuki S, Shirako M, Tashiro F, Nishioka K, Yamamoto K (1995) Autoepitopes of the 52-kd SS-A/Ro molecule. Arthritis Rheum 38:990–998PubMedGoogle Scholar
  26. 26.
    Dorner T, Feist E, Wagenmann A, Kato T, Yamamoto K, Nishioka K, Burmester GR, Hiepe F (1996) Anti-52 kDa Ro(SSA) autoantibodies in different autoimmune diseases preferentially recognize epitopes on the central region of the antigen. J Rheumatol 23:462–468PubMedGoogle Scholar
  27. 27.
    Salomonsson S, Dorner T, Theander E, Bremme K, Larsson P, Wahren-Herlenius M (2002) A serologic marker for fetal risk of congenital heart block. Arthritis Rheum 46:1233–1241PubMedGoogle Scholar
  28. 28.
    Salomonsson S, Sonesson SE, Ottosson L, Muhallab S, Olsson T, Sunnerhagen M, Kuchroo VK, Thoren P, Herlenius E, Wahren-Herlenius M (2005) Ro/SSA autoantibodies directly bind cardiomyocytes, disturb calcium homeostasis, and mediate congenital heart block. J Exp Med 201:11–17PubMedGoogle Scholar
  29. 29.
    Dorner T, Feist E, Held C, Conrad K, Burmester GR, Hiepe F (1996) Differential recognition of the 52-kd Ro(SS-A) antigen by sera from patients with primary biliary cirrhosis and primary Sjogren’s syndrome. Hepatology 24:1404–1407PubMedGoogle Scholar
  30. 30.
    Chen X, Wolin SL (2004) The Ro 60 kDa autoantigen: insights into cellular function and role in autoimmunity. J Mol Med 82:232–239PubMedGoogle Scholar
  31. 31.
    Stein AJ, Fuchs G, Fu C, Wolin SL, Reinisch KM (2005) Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity. Cell 121:529–539PubMedGoogle Scholar
  32. 32.
    Chen X, Quinn AM, Wolin SL (2000) Ro ribonucleoproteins contribute to the resistance of Deincoccus radiodurans to ultraviolet irradiation. Genes Dev 14:777–782PubMedGoogle Scholar
  33. 33.
    Xue D, Shi H, Smith JD, Chen X, Noe DA, Cedervall T, Yang DD, Eynon E, Brash DE, Kashgarian M, Flavell RA, Wolin SL (2003) A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein, a major lupus autoantigen. Proc Natl Acad Sci U S A 100:7503–7508PubMedGoogle Scholar
  34. 34.
    Moutsopoulos NM, Routsias JG, Vlachoyiannopoulos PG, Tzioufas AG, Moutsopoulos HM (2000) B-cell epitopes of intracellular autoantigens: myth and reality. Mol Med 6:141–151PubMedGoogle Scholar
  35. 35.
    Wahren-Herlenius M, Muller S, Isenberg D (1999) Analysis of B-cell epitopes of the Ro/SS-A autoantigen. Immunol Today 20:234–240PubMedGoogle Scholar
  36. 36.
    McCauliffe DP, Yin H, Wang LX, Lucas L (1994) Autoimmune sera react with multiple epitopes on recombinant 52 and 60 kDa Ro(SSA) proteins. J Rheumatol 21:1073–1080PubMedGoogle Scholar
  37. 37.
    Saitta MR, Arnett FC, Keene JD (1994) 60-kDa Ro protein autoepitopes identified using recombinant polypeptides. J Immunol 152:4192–4202PubMedGoogle Scholar
  38. 38.
    Wahren M, Ruden U, Andersson B, Ringertz NR, Pettersson I (1992) Identification of antigenic regions of the human Ro 60 kDa protein using recombinant antigen and synthetic peptides. J Autoimmun 5:319–332PubMedGoogle Scholar
  39. 39.
    Scofield RH, Dickey WD, Jackson KW, James JA, Harley JB (1991) A common autoepitope near the carboxyl terminus of the 60-kD Ro ribonucleoprotein: sequence similarity with a viral protein. J Clin Immunol 11:378–388PubMedGoogle Scholar
  40. 40.
    Scofield RH, Harley JB (1991) Autoantigenicity of Ro/SSA antigen is related to a nucleocapsid protein of vesicular stomatitis virus. Proc Natl Acad Sci USA 88:3343–3347PubMedGoogle Scholar
  41. 41.
    Routsias JG, Tzioufas AG, Sakarellos-Daitsiotis M, Sakarellos C, Moutsopoulos HM (1996) Epitope mapping of the Ro/SSA60KD autoantigen reveals disease-specific antibody-binding profiles. Eur J Clin Invest 26:514–521PubMedGoogle Scholar
  42. 42.
    Routsias JG, Sakarellos-Daitsiotis M, Tsikaris V, Sakarellos C, Moutsopoulos HM, Tzioufas AG (1998) Structural, molecular and immunological properties of linear B-cell epitopes of Ro60KD autoantigen. Scand J Immunol 47:280–287PubMedGoogle Scholar
  43. 43.
    McClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, James JA (2005) Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med 11:85–89PubMedGoogle Scholar
  44. 44.
    Poole BD, Scofield RH, Harley JB, James JA (2006) Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity 39:63–70PubMedGoogle Scholar
  45. 45.
    Staikou EV, Routsias JG, Makri AA, Terzoglou A, Sakarellos-Daitsiotis M, Sakarellos C, Panayotou G, Moutsopoulos HM, Tzioufas AG (2003) Calreticulin binds preferentially with B cell linear epitopes of Ro60 kD autoantigen, enhancing recognition by anti-Ro60 kD autoantibodies. Clin Exp Immunol 134:143–150PubMedGoogle Scholar
  46. 46.
    Wolin SL, Cedervall T (2002) The La protein. Annu Rev Biochem 71:375–403PubMedGoogle Scholar
  47. 47.
    Routsias JG, Tzioufas AG, Moutsopoulos HM (2004) The clinical value of intracellular autoantigens B-cell epitopes in systemic rheumatic diseases. Clin Chim Acta 340:1–25PubMedGoogle Scholar
  48. 48.
    Jacks A, Babon J, Kelly G, Manolaridis I, Cary PD, Curry S, Conte MR (2003) Structure of the C-terminal domain of human La protein reveals a novel RNA recognition motif coupled to a helical nuclear retention element. Structure 11:833–843PubMedGoogle Scholar
  49. 49.
    Alfano C, Sanfelice D, Bbon J, Kelly G, Jacks A, Curry S, Conte MR (2004) Structural analysis of cooperative RNA binding by the La motif and central RRM domain of human La protein. Nat Struct Mol Biol 11:323–329PubMedGoogle Scholar
  50. 50.
    Maraia RJ, Intine RV (2001) Recognition of nascent RNA by the human La antigen: conserved and divergent features of structure and function. Mol Cell Biol 21:367–379PubMedGoogle Scholar
  51. 51.
    Tzioufas AG, Yiannaki E, Sakarellos-Daitsiotis M, Routsias JG, Sakarellos C, Moutsopoulos HM (1997) Fine specificity of autoantibodies to La/SSB: epitope mapping, and characterization. Clin Exp Immunol 108:191–198PubMedGoogle Scholar
  52. 52.
    Harley JB, Alexander EL, Bias WB, Fox OF, Provost TT, Reichlin M, Yamagata H, Arnett FC (1986) Anti-Ro (SS-A) and anti-La (SS-B) in patients with Sjogren’s syndrome. Arthritis Rheum 29:196–206PubMedGoogle Scholar
  53. 53.
    Manoussakis MN, Georgopoulou C, Zintzaras E, Spyropoulou M, Stavropoulou A, Skopouli FN, Moutsopoulos HM (2004) Sjogren’s syndrome associated with systemic lupus erythematosus: clinical and laboratory profiles and comparison with primary Sjogren’s syndrome. Arthritis Rheum 50:882–891PubMedGoogle Scholar
  54. 54.
    Buyon JP (1996) Neonatal lupus. Curr Opin Rheumatol 8:485–490PubMedGoogle Scholar
  55. 55.
    Buyon JP, Clancy RM (2005) Neonatal lupus: basic research and clinical perspectives. Rheum Dis Clin North Am 31:299–313:viiPubMedGoogle Scholar
  56. 56.
    Stea EA, Routsias JG, Clancy RM, Buyon JP, Moutsopoulos HM, Tzioufas AG (2006) Anti-La/SSB antiidiotypic antibodies in maternal serum: a marker of low risk for neonatal lupus in an offspring. Arthritis Rheum 54:2228–2234PubMedGoogle Scholar
  57. 57.
    Vlachoyiannopoulos PG, Drosos AA, Wiik A, Moutsopoulos HM (1993) Patients with anticentromere antibodies, clinical features, diagnoses and evolution. Br J Rheumatol 32:297–301PubMedGoogle Scholar
  58. 58.
    Caramaschi P, Biasi D, Carletto A, Manzo T, Randon M, Zeminian S, Bambara LM (1997) Sjogren’s syndrome with anticentromere antibodies. Rev Rhum Engl Ed 64:785–788PubMedGoogle Scholar
  59. 59.
    Pillemer SR, Casciola-Rosen L, Baum BJ, Rosen A, Gelber AC (2004) Centromere protein C is a target of autoantibodies in Sjogren’s syndrome and is uniformly associated with antibodies to Ro and La. J Rheumatol 31:1121–1125PubMedGoogle Scholar
  60. 60.
    Hsu TC, Chang CH, Lin MC, Liu ST, Yen TJ, Tsay GJ (2006) Anti-CENP-H antibodies in patients with Sjogren’s syndrome. Rheumatol Int 26:298–303PubMedGoogle Scholar
  61. 61.
    Kino-Ohsaki J, Nishimori I, Morita M, Okazaki K, Yamamoto Y, Onishi S, Hollingsworth MA (1996) Serum antibodies to carbonic anhydrase I and II in patients with idiopathic chronic pancreatitis and Sjogren’s syndrome. Gastroenterology 110:1579–1586PubMedGoogle Scholar
  62. 62.
    Itoh Y, Reichlin M (1992) Antibodies to carbonic anhydrase in systemic lupus erythematosus and other rheumatic diseases. Arthritis Rheum 35:73–82PubMedGoogle Scholar
  63. 63.
    Inagaki Y, Jinno-Yoshida Y, Hamasaki Y, Ueki H (1991) A novel autoantibody reactive with carbonic anhydrase in sera from patients with systemic lupus erythematosus and Sjogren’s syndrome. J Dermatol Sci 2:147–154PubMedGoogle Scholar
  64. 64.
    Maren TH (1967) Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev 47:595–781PubMedGoogle Scholar
  65. 65.
    Lonnerholm G, Ridderstrale Y (1980) Intracellular distribution of carbonic anhydrase in the rat kidney. Kidney Int 17:162–174PubMedGoogle Scholar
  66. 66.
    Nishimori I, Bratanova T, Toshkov I, Caffrey T, Mogaki M, Shibata Y, Hollingsworth MA (1995) Induction of experimental autoimmune sialoadenitis by immunization of PL/J mice with carbonic anhydrase II. J Immunol 154:4865–4873PubMedGoogle Scholar
  67. 67.
    Takemoto F, Hoshino J, Sawa N, Tamura Y, Tagami T, Yokota M, Katori H, Yokoyama K, Ubara Y, Hara S, Takaichi K, Yamada A, Uchida S (2005) Autoantibodies against carbonic anhydrase II are increased in renal tubular acidosis associated with Sjogren syndrome. Am J Med 118:181–184PubMedGoogle Scholar
  68. 68.
    Birdsall NJ, Hulme EC, Stockton J, Burgen AS, Berrie CP, Hammer R, Wong EH, Zigmond MJ (1983) Muscarinic receptor subclasses: evidence from binding studies. Adv Biochem Psychopharmacol 37:323–329PubMedGoogle Scholar
  69. 69.
    Bonner TI, Buckley NJ, Young AC, Brann MR (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237:527–532PubMedGoogle Scholar
  70. 70.
    Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ (1987) Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J 6:3923–3929PubMedGoogle Scholar
  71. 71.
    Caulfield MP, Birdsall NJ (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290PubMedGoogle Scholar
  72. 72.
    Ehlert FJ, Ostrom RS, Sawyer GW (1997) Subtypes of the muscarinic receptor in smooth muscle. Life Sci 61:1729–1740PubMedGoogle Scholar
  73. 73.
    Dai YS, Ambudkar IS, Horn VJ, Yeh CK, Kousvelari EE, Wall SJ, Li M, Yasuda RP, Wolfe BB, Baum BJ (1991) Evidence that M3 muscarinic receptors in rat parotid gland couple to two second messenger systems. Am J Physiol 261:C1063–C1073PubMedGoogle Scholar
  74. 74.
    Nakamura T, Matsui M, Uchida K, Futatsugi A, Kusakawa S, Matsumoto N, Nakamura K, Manabe T, Taketo MM, Mikoshiba K (2004) M(3) muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol 558:561–575PubMedGoogle Scholar
  75. 75.
    Li J, Ha YM, Ku NY, Choi SY, Lee SJ, Oh SB, Kim JS, Lee JH, Lee EB, Song YW, Park K (2004) Inhibitory effects of autoantibodies on the muscarinic receptors in Sjogren’s syndrome. Lab Invest 84:1430–1438PubMedGoogle Scholar
  76. 76.
    Bacman S, Perez Leiros C, Sterin-Borda L, Hubscher O, Arana R, Borda E (1998) Autoantibodies against lacrimal gland M3 muscarinic acetylcholine receptors in patients with primary Sjogren’s syndrome. Invest Ophthalmol Vis Sci 39:151–156PubMedGoogle Scholar
  77. 77.
    Robinson CP, Brayer J, Yamachika S, Esch TR, Peck AB, Stewart CA, Peen E, Jonsson R, Humphreys-Beher MG (1998) Transfer of human serum IgG to nonobese diabetic Igmu null mice reveals a role for autoantibodies in the loss of secretory function of exocrine tissues in Sjogren’s syndrome. Proc Natl Acad Sci U S A 95:7538–7543PubMedGoogle Scholar
  78. 78.
    Cavill D, Waterman SA, Gordon TP (2004) Antibodies raised against the second extracellular loop of the human muscarinic M3 receptor mimic functional autoantibodies in Sjogren’s syndrome. Scand J Immunol 59:261–266PubMedGoogle Scholar
  79. 79.
    Wang F, Jackson MW, Maughan V, Cavill D, Smith AJ, Waterman SA, Gordon TP (2004) Passive transfer of Sjogren’s syndrome IgG produces the pathophysiology of overactive bladder. Arthritis Rheum 50:3637–3645PubMedGoogle Scholar
  80. 80.
    Cavill D, Waterman SA, Gordon TP (2003) Antiidiotypic antibodies neutralize autoantibodies that inhibit cholinergic neurotransmission. Arthritis Rheum 48:3597–3602PubMedGoogle Scholar
  81. 81.
    Bacman SR, Berra A, Sterin-Borda L, Borda ES (1998) Human primary Sjogren’s syndrome autoantibodies as mediators of nitric oxide release coupled to lacrimal gland muscarinic acetylcholine receptors. Curr Eye Res 17:1135–1142PubMedGoogle Scholar
  82. 82.
    Bacman S, Berra A, Sterin-Borda L, Borda E (2001) Muscarinic acetylcholine receptor antibodies as a new marker of dry eye Sjogren syndrome. Invest Ophthalmol Vis Sci 42:321–327PubMedGoogle Scholar
  83. 83.
    Berra A, Sterin-Borda L, Bacman S, Borda E (2002) Role of salivary IgA in the pathogenesis of Sjogren syndrome. Clin Immunol 104:49–57PubMedGoogle Scholar
  84. 84.
    Dawson LJ, Allison HE, Stanbury J, Fitzgerald D, Smith PM (2004) Putative anti-muscarinic antibodies cannot be detected in patients with primary Sjogren’s syndrome using conventional immunological approaches. Rheumatology (Oxford) 43:1488–1495Google Scholar
  85. 85.
    Gao J, Cha S, Jonsson R, Opalko J, Peck AB (2004) Detection of antitype 3 muscarinic acetylcholine receptor autoantibodies in the sera of Sjogren’s syndrome patients by use of a transfected cell line assay. Athritis Rheum 50:2615–2621Google Scholar
  86. 86.
    Marczinovits I, Kovacs L, Gyorgy A, Toth GK, Dorgai L, Molnar J, Pokorny G (2005) A peptide of human muscarinic acetylcholine receptor 3 is antigenic in primary Sjogren’s syndrome. J Autoimmune 24:47–54Google Scholar
  87. 87.
    Kovacs L, Marczinovits I, Gyorgy A, Toth GK, Dorgai L, Pal J, Molnar J, Pokorny G (2005) Clinical associations of autoantibodies to human muscarinic acetylcholine receptor 3(213-228) in primary Sjogren’s syndrome. Rheumatology (Oxford) 44:1021–1025Google Scholar
  88. 88.
    Nagaraju K, Cox A, Casciola-Rosen L, Rosen A (2001) Novel fragments of the Sjogren’s syndrome autoantigens alpha-fodrin and type 3 muscarinic acetylcholine receptor generated during cytotoxic lymphocyte granule-induced cell death. Arthritis Rheum 44:2376–2386PubMedGoogle Scholar
  89. 89.
    Dawson L, Tobin A, Smith P, Gordon T (2005) Antimuscarinic antibodies in Sjogren’s syndrome: where are we, and where are we going? Arthritis Rheum 52:2984–2995PubMedGoogle Scholar
  90. 90.
    Waterman SA, Gordon TP, Rischmueller M (2000) Inhibitory effects of muscarinic receptor autoantibodies on parasympathetic neurotransmission in Sjogren’s syndrome. Arthritis Rheum 43:1647–1654PubMedGoogle Scholar
  91. 91.
    Bacman S, Sterin-Borda L, Camusso JJ, Arana R, Hubscher O, Borda E (1996) Circulating antibodies against rat parotid gland M3 muscarinic receptors in primary Sjogren’s syndrome. Clin Exp Immunol 104:454–459PubMedGoogle Scholar
  92. 92.
    Pedersen AM, Dissing S, Fahrenkrug J, Hannibal J, Reibel J, Nauntofte B (2000) Innervation pattern and Ca2+ signalling in labial salivary glands of healthy individuals and patients with primary Sjogren’s syndrome (pSS). J Oral Pathol Med 29:97–109PubMedGoogle Scholar
  93. 93.
    Dawson LJ, Field EA, Harmer AR, Smith PM (2001) Acetylcholine-evoked calcium mobilization and ion channel activation in human labial gland acinar cells from patients with primary Sjogren’s syndrome. Clin Exp Immunol 124:480–485PubMedGoogle Scholar
  94. 94.
    Humphreys-Beher MG, Brayer J, Yamachika S, Peck AB, Jonsson R (1999) An alternative perspective to the immune response in autoimmune exocrinopathy: induction of functional quiescence rather than destructive autoaggression. Scand J Immunol 49:7–10PubMedGoogle Scholar
  95. 95.
    Fox PC, Speight PM (1996) Current concepts of autoimmune exocrinopathy: immunologic mechanisms in the salivary pathology of Sjogren’s syndrome. Crit Rev Oral Biol Med 7:144–158PubMedGoogle Scholar
  96. 96.
    Walker J, Gordon T, Lester S, Downie-Doyle S, McEvoy D, Pile K, Waterman S, Rischmueller M (2003) Increased severity of lower urinary tract symptoms and daytime somnolence in primary Sjogren’s syndrome. J Rheumatol 30:2406–2412PubMedGoogle Scholar
  97. 97.
    Leppilahti M, Tammela TL, Huhtala H, Kiilholma P, Leppilahti K, Auvinen A (2003) Interstitial cystitis-like urinary symptoms among patients with Sjogren’s syndrome: a population-based study in Finland. Am J Med 115:62–65PubMedGoogle Scholar
  98. 98.
    Rosztoczy A, Kovacs L, Wittmann T, Lonovics J, Pokorny G (2001) Manometric assessment of impaired esophageal motor function in primary Sjogren’s syndrome. Clin Exp Rheumatol 19:147–152PubMedGoogle Scholar
  99. 99.
    Kovacs L, Torok T, Bari F, Keri Z, Kovacs A, Makula E, Pokorny G (2000) Impaired microvascular response to cholinergic stimuli in primary Sjogren’s syndrome. Ann Rheum Dis 59:48–53PubMedGoogle Scholar
  100. 100.
    Bachmeyer C, Zuber M, Dupont S, Blanche P, Dhote R, Mas JL (1997) Adie syndrome as the initial sign of primary Sjogren syndrome. Am J Ophthalmol 123:691–692PubMedGoogle Scholar
  101. 101.
    Tumiati B, Perazzoli F, Negro A, Pantaleoni M, Regolisti G (2000) Heart rate variability in patients with Sjogren’s syndrome. Clin Rheumatol 19:477–480PubMedGoogle Scholar
  102. 102.
    Kaplan MM (1996) Primary biliary cirrhosis. N Engl J Med 335:1570–1580PubMedGoogle Scholar
  103. 103.
    Czaja AJ, Homburger HA (2001) Autoantibodies in liver disease. Gastroenterology 120:239–249PubMedCrossRefGoogle Scholar
  104. 104.
    Skopouli FN, Barbatis C, Moutsopoulos HM (1994) Liver involvement in primary Sjogren’s syndrome. Br J Rheumatol 33:745–748PubMedGoogle Scholar
  105. 105.
    Csepregi A, Szodoray P, Zeher M (2002) Do autoantibodies predict autoimmune liver disease in primary Sjogren’s syndrome? Data of 180 patients upon a 5 year follow-up. Scand J Immunol 56:623–629PubMedGoogle Scholar
  106. 106.
    Waaler E (1940) On the occurrence of a factor in human serum activating the specific agglutination of sheep blood corpuscles. Acta Pathol Microbiol Scand 17:172–188Google Scholar
  107. 107.
    Pike RM, Sulkin SE, Coggeshall HC (1949) Serological reactions in rheumatoid arthritis. II. Concerning the nature of the factor in rheumatoid arthritis serum responsible for increased agglutination of sensitized sheep erythrocytes. J Immunol 63:448–463Google Scholar
  108. 108.
    Newkirk MM (2002) Rheumatoid factors: what do they tell us? J Rheumatol 29:2034–2040PubMedGoogle Scholar
  109. 109.
    Victor KD, Randen I, Thompson K, Forre O, Natvig JB, Fu SM, Capra JD (1991) Rheumatoid factors isolated from patients with autoimmune disorders are derived from germline genes distinct from those encoding the Wa, Po, and Bla cross-reactive idiotypes. J Clin Invest 87:1603–1613PubMedGoogle Scholar
  110. 110.
    Hogben DN, Devey ME (1986) Studies on rheumatoid factor: I. The effect of rheumatoid factor on the clearance of preformed immune complexes in mice. Clin Exp Immunol 66:648–653PubMedGoogle Scholar
  111. 111.
    Wolfe F, Cathey MA, Roberts FK (1991) The latex test revisited. Rheumatoid factor testing in 8,287 rheumatic disease patients. Arthritis Rheum 34:951–960PubMedGoogle Scholar
  112. 112.
    Pertovaara M, Pukkala E, Laippala P, Miettinen A, Pasternack A (2001) A longitudinal cohort study of Finnish patients with primary Sjogren’s syndrome: clinical, immunological, and epidemiological aspects. Ann Rheum Dis 60:467–472PubMedGoogle Scholar
  113. 113.
    Ioannidis JP, Vassiliou VA, Moutsopoulos HM (2002) Long-term risk of mortality and lymphoproliferative disease and predictive classification of primary Sjogren’s syndrome. Arthritis Rheum 46:741–747PubMedGoogle Scholar
  114. 114.
    Brouet JC, Clauvel JP, Danon F, Klein M, Seligmann M (1974) Biologic and clinical significance of cryoglobulins. A report of 86 cases. Am J Med 57:775–788PubMedGoogle Scholar
  115. 115.
    Ferri C, Mascia MT (2006) Cryoglobulinemic vasculitis. Curr Opin Rheumatol 18:54–63PubMedGoogle Scholar
  116. 116.
    Dammacco F, Sansonno D, Piccoli C, Tucci FA, Racanelli V (2001) The cryoglobulins: an overview. Eur J Clin Invest 31:628–638PubMedGoogle Scholar
  117. 117.
    Ohara T, Itoh Y, Itoh K (2000) Reevaluation of laboratory parameters in relation to histological findings in primary and secondary Sjogren’s syndrome. Intern Med 39:457–463PubMedGoogle Scholar
  118. 118.
    Zulman J, Jaffe R, Talal N (1978) Evidence that the malignant lymphoma of Sjogren’s syndrome is a monoclonal B-cell neoplasm. N Engl J Med 299:1215–1220PubMedCrossRefGoogle Scholar
  119. 119.
    Skopouli FN, Dafni U, Ioannidis JP, Moutsopoulos HM (2000) Clinical evolution, and morbidity and mortality of primary Sjogren’s syndrome. Semin Arthritis Rheum 29:296–304PubMedGoogle Scholar
  120. 120.
    Katsikis PD, Youinou PY, Galonopoulou V, Papadopoulos NM, Tzioufas AG, Moutsopoulos HM (1990) Monoclonal process in primary Sjogren’s syndrome and cross-reactive idiotype associated with rheumatoid factor. Clin Exp Immunol 82:509–514Google Scholar
  121. 121.
    Martin T, Weber JC, Levallois H, Labouret N, Soley A, Koenig S, Korganow AS, Pasquali JL (2000) Salivary gland lymphomas in patients with Sjogren’s syndrome may frequently develop from rheumatoid factor B cells. Arthritis Rheum 43:908–916PubMedGoogle Scholar
  122. 122.
    Mariette X (2001) Lymphomas complicating Sjogren’s syndrome and hepatitis C virus infection may share a common pathogenesis: chronic stimulation of rheumatoid factor B cells. Ann Rheum Dis 60:1007–1010PubMedGoogle Scholar
  123. 123.
    Tzioufas AG, Boumba DS, Skopouli FN, Moutsopoulos HM (1996) Mixed monoclonal cryoglobulinemia and monoclonal rheumatoid factor cross-reactive idiotypes as predictive factors for the development of lymphoma in primary Sjogren’s syndrome. Arthritis Rheum 39:767–772PubMedGoogle Scholar
  124. 124.
    Zhou D, Ursitti JA, Bloch RJ (1998) Developmental expression of spectrins in rat skeletal muscle. Mol Biol Cell 9:47–61PubMedGoogle Scholar
  125. 125.
    Bennett V (1990) Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol Rev 70:1029–1065PubMedGoogle Scholar
  126. 126.
    Perrin D, Aunis D (1985) Reorganization of alpha-fodrin induced by stimulation in secretory cells. Nature 315:589–592PubMedGoogle Scholar
  127. 127.
    Lukowski S, Lecomte MC, Mira JP, Marin P, Gautero H, Russo-Marie F, Geny B (1996) Inhibition of phospholipase D activity by fodrin. An active role for the cytoskeleton. J Biol Chem 271:24164–24171PubMedGoogle Scholar
  128. 128.
    Perrin D, Langley OK, Aunis D (1987) Anti-alpha-fodrin inhibits secretion from permeabilized chromaffin cells. Nature 326:498–501PubMedGoogle Scholar
  129. 129.
    Siman R, Baudry M, Lynch G (1985) Regulation of glutamate receptor binding by the cytoskeletal protein fodrin. Nature 313:225–228PubMedGoogle Scholar
  130. 130.
    Haneji N, Nakamura T, Takio K, Yanagi K, Higashiyama H, Saito I, Noji S, Sugino H, Hayashi Y (1997) Identification of alphafodrin as a candidate autoantigen in primary Sjogren’s syndrome. Science 276:604–607PubMedGoogle Scholar
  131. 131.
    Watanabe T, Tsuchida T, Kanda N, Mori K, Hayashi Y, Tamaki K (1999) Anti-alpha-fodrin antibodies in Sjogren syndrome and lupus erythematosus. Arch Dermatol 135:535–539PubMedGoogle Scholar
  132. 132.
    Witte T, Matthias T, Arnett FC, Peter HH, Hartung K, Sachse C, Wigand R, Braner A, Kalden JR, Lakomek HJ, Schmidt RE (2000) IgA and IgG autoantibodies against alpha-fodrin as markers for Sjogren’s syndrome. Systemic lupus erythematosus. J Rheumatol 27:2617–2620PubMedGoogle Scholar
  133. 133.
    Nordmark G, Rorsman F, Ronnblom L, Cajander S, Taussig MJ, Kampe O, Winqvist O (2003) Autoantibodies to alpha-fodrin in primary Sjogren’s syndrome and SLE detected by an in vitro transcription and translation assay. Clin Exp Rheumatol 21:49–56PubMedGoogle Scholar
  134. 134.
    Ruiz-Tiscar JL, Lopez-Longo FJ, Sanchez-Ramon S, Santamaria B, Urrea R, Carreno L, Estecha A, Vigil D, Fernandez-Cruz E, Rodriguez-Mahou M (2005) Prevalence of IgG anti-{alpha}-fodrin antibodies in Sjogren’s syndrome. Ann N Y Acad Sci 1050:210–216PubMedGoogle Scholar
  135. 135.
    Ulbricht KU, Schmidt RE, Witte T (2003) Antibodies against alpha-fodrin in Sjogren’s syndrome. Autoimmun Rev 2:109–113PubMedGoogle Scholar
  136. 136.
    Ruffatti A, Ostuni P, Grypiotis P, Botsios C, Tonello M, Grava C, Favaro M, Todesco S (2004) Sensitivity and specificity for primary Sjogren’s syndrome of IgA and IgG anti-alpha-fodrin antibodies detected by ELISA. J Rheumatol 31:504–507PubMedGoogle Scholar
  137. 137.
    Turkcapar N, Olmez U, Tutkak H, Duman M (2006) The importance of alpha-fodrin antibodies in the diagnosis of Sjogren’s syndrome. Rheumatol Int 26:354–359PubMedGoogle Scholar
  138. 138.
    Zandbelt MM, Vogelzangs J, Van De Putte LB, Van Venrooij WJ, Van Den Hoogen FH (2004) Anti-alpha-fodrin antibodies do not add much to the diagnosis of Sjogren’s syndrome. Arthritis Res Ther 6:R33–R38PubMedGoogle Scholar
  139. 139.
    Kuwana M, Okano T, Ogawa Y, Kaburaki J, Kawakami Y (2001) Autoantibodies to the amino-terminal fragment of beta-fodrin expressed in glandular epithelial cells in patients with Sjogren’s syndrome. J Immunol 167:5449–5456PubMedGoogle Scholar
  140. 140.
    Vanags DM, Porn-Ares MI, Coppola S, Burgess DH, Orrenius S (1996) Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem 271:31075–31085PubMedGoogle Scholar
  141. 141.
    Saegusa K, Ishimaru N, Yanagi K, Mishima K, Arakaki R, Suda T, Saito I, Hayashi Y (2002) Prevention and induction of autoimmune exocrinopathy is dependent on pathogenic autoantigen cleavage in murine Sjogren’s syndrome. J Immunol 169:1050–1057PubMedGoogle Scholar
  142. 142.
    Wang Y, Virji AS, Howard P, Sayani Y, Zhang J, Achu P, McArthur C (2006) Detection of cleaved alpha-fodrin autoantigen in Sjogren’s syndrome: apoptosis and co-localisation of cleaved alphafodrin with activated caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP) in labial salivary glands. Arch Oral Biol 51:558–566PubMedGoogle Scholar
  143. 143.
    Winer S, Astsaturov I, Cheung R, Tsui H, Song A, Gaedigk R, Winer D, Sampson A, McKerlie C, Bookman A, Dosch HM (2002) Primary Sjogren’s syndrome and deficiency of ICA69. Lancet 360:1063–1069PubMedGoogle Scholar
  144. 144.
    Burkle A (2005) Poly(ADP-ribose). The most elaborate metabolite of NAD+. Febs J 272:4576–4589PubMedGoogle Scholar
  145. 145.
    de Murcia G, Menissier-de Murcia J, Schreiber V (1991) Poly(ADP-ribose) polymerase: molecular biological aspects. Bioessays 13:455–462PubMedGoogle Scholar
  146. 146.
    de Murcia G, Menissier-de Murcia J (1994) Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 19:172–176PubMedGoogle Scholar
  147. 147.
    Yamanaka H, Willis EH, Carson DA (1989) Human autoantibodies to poly(adenosine diphosphate-ribose) polymerase recognize cross-reactive epitopes associated with the catalytic site of the enzyme. J Clin Invest 83:180–186PubMedGoogle Scholar
  148. 148.
    Yamanaka H, Willis EH, Penning CA, Peebles CL, Tan EM, Carson DA (1987) Human autoantibodies to poly(adenosine diphosphate-ribose) polymerase. J Clin Invest 80:900–904PubMedCrossRefGoogle Scholar
  149. 149.
    Negri C, Scovassi AI, Cerino A, Negroni M, Borzi RM, Meliconi R, Facchini A, Montecucco CM, Astaldi Ricotti GC (1990) Autoantibodies to poly(ADP-ribose)polymerase in autoimmune diseases. Autoimmunity 6:203–209PubMedGoogle Scholar
  150. 150.
    Muller S, Briand JP, Barakat S, Lagueux J, Poirier GG, de Murcia G, Isenberg DA (1994) Autoantibodies reacting with poly(ADP-ribose) and with a zinc-finger functional domain of poly(ADP-ribose) polymerase involved in the recognition of damaged DNA. Clin Immunol Immunopathol 73:187–196PubMedGoogle Scholar
  151. 151.
    Jimenez F, Aiba-Masago S, Al Hashimi I, Vela-Roch N, Fernandes G, Yeh CK, Talal N, Dang H (2002) Activated caspase 3 and cleaved poly(ADP-ribose)polymerase in salivary epithelium suggest a pathogenetic mechanism for Sjogren’s syndrome. Rheumatology (Oxford) 41:338–342Google Scholar
  152. 152.
    Price CM, McCarty GA, Pettijohn DE (1984) NuMA protein is a human autoantigen. Arthritis Rheum 27:774–779PubMedGoogle Scholar
  153. 153.
    Andrade LE, Chan EK, Peebles CL, Tan EM (1996) Two major autoantigen-antibody systems of the mitotic spindle apparatus. Arthritis Rheum 39:1643–1653PubMedGoogle Scholar
  154. 154.
    Grypiotis P, Ruffatti A, Tonello M, Winzler C, Radu C, Zampieri S, Favaro M, Calligaro A, Todesco S (2002) Clinical significance of fluoroscopic patterns specific for the mitotic spindle in patients with rheumatic diseases. Reumatismo 54:232–237PubMedGoogle Scholar
  155. 155.
    Rodriguez JL, Gelpi C, Thomson TM, Real FJ, Fernandez J (1982) Anti-golgi complex autoantibodies in a patient with Sjogren syndrome and lymphoma. Clin Exp Immunol 49:579–586PubMedGoogle Scholar
  156. 156.
    Nozawa K, Fritzler MJ, von Muhlen CA, Chan EK (2004) Giantin is the major Golgi autoantigen in human anti-Golgi complex sera. Arthritis Res Ther 6:R95–R102PubMedGoogle Scholar
  157. 157.
    Chan EKL, Fritzler MJ (1998) Golgins: coiled-coil proteins associated with the Golgi complex. Electronic J Biotechnol 1:1–10Google Scholar
  158. 158.
    Griffith KJ, Chan EK, Lung CC, Hamel JC, Guo X, Miyachi K, Fritzler MJ (1997) Molecular cloning of a novel 97-kd Golgi complex autoantigen associated with Sjogren’s syndrome. Arthritis Rheum 40:1693–1702PubMedGoogle Scholar
  159. 159.
    Fujii T, Mimori T, Akizuki M (1996) Detection of autoantibodies to nucleolar transcription factor NOR 90/hUBF in sera of patients with rheumatic diseases, by recombinant autoantigenbased assays. Arthritis Rheum 39:1313–1318PubMedGoogle Scholar
  160. 160.
    von Muhlen CA, Tan EM (1995) Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin Arthritis Rheum 24:323–358Google Scholar
  161. 161.
    Imai H, Fritzler MJ, Neri R, Bombardieri S, Tan EM, Chan EK (1994) Immunocytochemical characterization of human NOR-90 (upstream binding factor) and associated antigens reactive with autoimmune sera. Two MR forms of NOR-90/hUBF autoantigens. Mol Biol Rep 19:115–124PubMedGoogle Scholar
  162. 162.
    Navone R, Lunardi C, Gerli R, Tinazzi E, Peterlana D, Bason C, Corrocher R, Puccetti A (2005) Identification of tear lipocalin as a novel autoantigen target in Sjogren’s syndrome. J Autoimmun 25:229–234PubMedGoogle Scholar
  163. 163.
    Gachon AM, Lacazette E (1998) Tear lipocalin and the eye’s front line of defence. Br J Ophthalmol 82:453–455PubMedGoogle Scholar
  164. 164.
    Redl B (2000) Human tear lipocalin. Biochim Biophys Acta 1482:241–248PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department of Pathophysiology, Medical SchoolNational University of AthensAthensGreece

Personalised recommendations