Clinical Reviews in Allergy & Immunology

, Volume 33, Issue 1–2, pp 15–26 | Cite as

Innate Immunity: A Cutaneous Perspective

  • Heidi Goodarzi
  • Janet Trowbridge
  • Richard L. Gallo


The first responsibility for protection against microbial infection rests on the normal function of the innate immune system. This system establishes an antimicrobial barrier, recognizes attempts to breach this barrier, and responds rapidly to danger, all based on an innate defense system. Here, we review this system as it applies to mammalian skin, highlighting how a physical, cellular, and chemical barrier is formed to resist infection. When challenged, the diverse cellular components of the skin recognize the nature of the challenge and respond with an appropriate antimicrobial program including the release of antimicrobial peptides and, when necessary, recruitment and coordination with adaptive immune responses. Recent insights into these processes have advanced the understanding of disease pathogenesis and provided new therapeutic options for a variety of skin diseases.


Cutaneous immune defense mechanisms Innate immunity Adaptive immunity 


  1. 1.
    Clark R, Kupper T (2005) Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol 125:629–637PubMedGoogle Scholar
  2. 2.
    Roth RR, James WD (1989) Microbiology of the skin: resident flora, ecology, infection. J Am Acad Dermatol 20:367–390PubMedGoogle Scholar
  3. 3.
    Gotte M, Echtermeyer F (2003) Syndecan-1 as a regulator of chemokine function. ScientificWorldJournal 3:1327–1331PubMedGoogle Scholar
  4. 4.
    Rose MJ, Page C (2004) Glycosaminoglycans and the regulation of allergic inflammation. Curr Drug Targets Inflamm Allergy 3:221–225PubMedGoogle Scholar
  5. 5.
    Tkachenko E, Rhodes JM, Simons M (2005) Syndecans: new kids on the signaling block. Circ Res 96:488–500PubMedGoogle Scholar
  6. 6.
    Trowbridge JM, Gallo RL (2002) Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12:117R–125RPubMedGoogle Scholar
  7. 7.
    Fraser JR, Laurent TC, Laurent UB (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242:27–33PubMedGoogle Scholar
  8. 8.
    Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, Simon JC (2002) Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195:99–111PubMedGoogle Scholar
  9. 9.
    Taylor KR, Trowbridge JM, Rudisill JA, Termeer CC, Simon JC, Gallo RL (2004) Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J Biol Chem 279:17079–17084PubMedGoogle Scholar
  10. 10.
    Laurent TC, Fraser JR (1992) Hyaluronan. FASEB J 6:2397–2404PubMedGoogle Scholar
  11. 11.
    Mohamadzadeh M, DeGrendele H, Arizpe H, Estess P, Siegelman M (1998) Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA-dependent primary adhesion. J Clin Invest 101:97–108PubMedGoogle Scholar
  12. 12.
    Sayo T, Sugiyama Y, Takahashi Y, Ozawa N, Sakai S, Ishikawa O, Tamura M, Inoue S (2002) Hyaluronan synthase 3 regulates hyaluronan synthesis in cultured human keratinocytes. J Invest Dermatol 118:43–48PubMedGoogle Scholar
  13. 13.
    Siegelman MH, DeGrendele HC, Estess P (1999) Activation and interaction of CD44 and hyaluronan in immunological systems. J Leukoc Biol 66:315–321PubMedGoogle Scholar
  14. 14.
    Mummert ME, Mummert D, Edelbaum D, Hui F, Matsue H, Takashima A (2002) Synthesis and surface expression of hyaluronan by dendritic cells and its potential role in antigen presentation. J Immunol 169:4322–4331PubMedGoogle Scholar
  15. 15.
    Palaniyar N, Nadesalingam J, Reid KB (2002) Pulmonary innate immune proteins and receptors that interact with gram-positive bacterial ligands. Immunobiology 205:575–594PubMedGoogle Scholar
  16. 16.
    Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220PubMedGoogle Scholar
  17. 17.
    Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:31–37PubMedGoogle Scholar
  18. 18.
    Gamen S, Hanson DA, Kaspar A, Naval J, Krensky AM, Anel A (1998) Granulysin-induced apoptosis. I. Involvement of at least two distinct pathways. J Immunol 161:1758–1764PubMedGoogle Scholar
  19. 19.
    Liu CC, Walsh CM, Young JD (1995) Perforin: structure and function. Immunol Today 16:194–201PubMedGoogle Scholar
  20. 20.
    Liu CC, Persechini PM, Young JD (1995) Perforin and lymphocyte-mediated cytolysis. Immunol Rev 146:145–175PubMedGoogle Scholar
  21. 21.
    Sato K, Hida S, Takayanagi H, Yokochi T, Kayagaki N, Takeda K, Yagita H, Okumura K, Tanaka N, Taniguchi T, Ogasawara K (2001) Antiviral response by natural killer cells through TRAIL gene induction by IFN-alpha/beta. Eur J Immunol 31:3138–3146PubMedGoogle Scholar
  22. 22.
    Ali H, Panettieri RA Jr (2005) Anaphylatoxin C3a receptors in asthma. Respir Res 6:19PubMedGoogle Scholar
  23. 23.
    Godau J, Heller T, Hawlisch H, Trappe M, Howells E, Best J, Zwirner J, Verbeek JS, Hogarth PM, Gerard C, Van Rooijen N, Klos A, Gessner JE, Kohl J (2004) C5a initiates the inflammatory cascade in immune complex peritonitis. J Immunol 173:3437–3445PubMedGoogle Scholar
  24. 24.
    Dragon-Durey MA, Fremeaux-Bacchi V (2006) Complement component deficiencies in human disease. Presse Med 35:861–870PubMedGoogle Scholar
  25. 25.
    Zipfel PF, Heinen S, Jozsi M, Skerka C (2006) Complement and diseases: defective alternative pathway control results in kidney and eye diseases. Mol Immunol 43:97–106PubMedGoogle Scholar
  26. 26.
    Beadling C, Slifka MK (2006) Regulation of innate and adaptive immune responses by the related cytokines IL-12, IL-23, and IL-27. Arch Immunol Ther Exp (Warsz) 54:15–24Google Scholar
  27. 27.
    Gay NJ, Keith FJ (1991) Drosophila Toll and IL-1 receptor. Nature 351:355–356PubMedGoogle Scholar
  28. 28.
    Fisher CJ Jr, Dhainaut JF, Opal SM, Pribble JP, Balk RA, Slotman GJ, Iberti TJ, Rackow EC, Shapiro MJ, Greenman RL et al (1994) Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA 271:1836–1843PubMedGoogle Scholar
  29. 29.
    Abraham E, Wunderink R, Silverman H, Perl TM, Nasraway S, Levy H, Bone R, Wenzel RP, Balk R, Allred R et al (1995) Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. JAMA 273:934–941PubMedGoogle Scholar
  30. 30.
    Labow M, Shuster D, Zetterstrom M, Nunes P, Terry R, Cullinan EB, Bartfai T, Solorzano C, Moldawer LL, Chizzonite R, McIntyre KW (1997) Absence of IL-1 signaling and reduced inflammatory response in IL-1 type I receptor-deficient mice. J Immunol 159:2452–2461PubMedGoogle Scholar
  31. 31.
    Horino T, Matsumoto T, Uramatsu M, Tanabe M, Tateda K, Miyazaki S, Nakane A, Iwakura Y, Yamaguchi K (2005) Interleukin-1-deficient mice exhibit high sensitivity to gut-derived sepsis caused by Pseudomonas aeruginosa. Cytokine 30:339–346PubMedGoogle Scholar
  32. 32.
    Murphey ED, Lin CY, McGuire RW, Toliver-Kinsky T, Herndon DN, Sherwood ER (2004) Diminished bacterial clearance is associated with decreased IL-12 and interferon-gamma production but a sustained proinflammatory response in a murine model of postseptic immunosuppression. Shock 21:415–425PubMedGoogle Scholar
  33. 33.
    Hikosaka S, Hara I, Miyake H, Hara S, Kamidono S (2004) Antitumor effect of simultaneous transfer of interleukin-12 and interleukin-18 genes and its mechanism in a mouse bladder cancer model. Int J Urol 11:647–652PubMedGoogle Scholar
  34. 34.
    Dinarello CA (1999) IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 103:11–24PubMedGoogle Scholar
  35. 35.
    Laurincova B (2000) Interleukin-1 family: from genes to human disease. Acta Univ Palacki Olomuc Fac Med 143:19–29PubMedGoogle Scholar
  36. 36.
    Wang KS, Frank DA, Ritz J (2000) Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4. Blood 95:3183–3190PubMedGoogle Scholar
  37. 37.
    Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44PubMedGoogle Scholar
  38. 38.
    Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429PubMedGoogle Scholar
  39. 39.
    McAlindon ME, Hawkey CJ, Mahida YR (1998) Expression of interleukin 1 beta and interleukin 1 beta converting enzyme by intestinal macrophages in health and inflammatory bowel disease. Gut 42:214–219PubMedCrossRefGoogle Scholar
  40. 40.
    Yamamura M (1992) Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 255:12PubMedGoogle Scholar
  41. 41.
    Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720PubMedGoogle Scholar
  42. 42.
    Oppenheim JJ, Biragyn A, Kwak LW, Yang D (2003) Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis 62(Suppl 2):ii17–ii21PubMedGoogle Scholar
  43. 43.
    Tosi MF (2005) Innate immune responses to infection. J Allergy Clin Immunol 116:241–249 (quiz 250)PubMedGoogle Scholar
  44. 44.
    Braff MH, Bardan A, Nizet V, Gallo RL (2005) Cutaneous defense mechanisms by antimicrobial peptides. J Invest Dermatol 125:9–13PubMedGoogle Scholar
  45. 45.
    Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, Yahata Y, Dai X, Tohyama M, Nagai H, Yang L, Higashiyama S, Yoshimura A, Sugai M, Hashimoto K (2005) Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 175:4662–4668PubMedGoogle Scholar
  46. 46.
    Braff MH, Di Nardo A, Gallo RL (2005) Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies. J Invest Dermatol 124:394–400PubMedGoogle Scholar
  47. 47.
    Menzies BE, Kenoyer A (2006) Signal transduction and nuclear responses in Staphylococcus aureus-induced expression of human beta-defensin-3 in skin keratinocytes. Infect Immun 74(12):6847–6854PubMedGoogle Scholar
  48. 48.
    Vora P, Youdim A, Thomas LS, Fukata M, Tesfay SY, Lukasek K, Michelsen KS, Wada A, Hirayama T, Arditi M, Abreu MT (2004) Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J Immunol 173:5398–5405PubMedGoogle Scholar
  49. 49.
    Hertz CJ, Wu Q, Porter EM, Zhang YJ, Weismuller KH, Godowski PJ, Ganz T, Randell SH, Modlin RL (2003) Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human beta defensin-2. J Immunol 171:6820–6826PubMedGoogle Scholar
  50. 50.
    Gombart AF, Borregaard N, Koeffler HP (2005) Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 19:1067–1077PubMedGoogle Scholar
  51. 51.
    Mempel M, Schmidt T, Weidinger S, Schnopp C, Foster T, Ring J, Abeck D (1998) Role of Staphylococcus aureus surface-associated proteins in the attachment to cultured HaCaT keratinocytes in a new adhesion assay. J Invest Dermatol 111:452–456PubMedGoogle Scholar
  52. 52.
    Gallo RL, Ono M, Povsic T, Page C, Eriksson E, Klagsbrun M, Bernfield M (1994) Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci U S A 91:11035–11039PubMedGoogle Scholar
  53. 53.
    Harder J, Bartels J, Christophers E, Schroder JM (1997) A peptide antibiotic from human skin. Nature 387:861PubMedGoogle Scholar
  54. 54.
    Dorschner RA, Lin KH, Murakami M, Gallo RL (2003) Neonatal skin in mice and humans expresses increased levels of antimicrobial peptides: innate immunity during development of the adaptive response. Pediatr Res 53:566–572PubMedGoogle Scholar
  55. 55.
    Yoshio H, Tollin M, Gudmundsson GH, Lagercrantz H, Jornvall H, Marchini G, Agerberth B (2003) Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications for newborn innate defense. Pediatr Res 53:211–216PubMedGoogle Scholar
  56. 56.
    Marchini G, Lindow S, Brismar H, Stabi B, Berggren V, Ulfgren AK, Lonne-Rahm S, Agerberth B, Gudmundsson GH (2002) The newborn infant is protected by an innate antimicrobial barrier: peptide antibiotics are present in the skin and vernix caseosa. Br J Dermatol 147:1127–1134PubMedGoogle Scholar
  57. 57.
    Bibel DJ, Miller SJ, Brown BE, Pandey BB, Elias PM, Shinefield HR, Aly R (1989) Antimicrobial activity of stratum corneum lipids from normal and essential fatty acid-deficient mice. J Invest Dermatol 92:632–638PubMedGoogle Scholar
  58. 58.
    Kang SS, Kauls LS, Gaspari AA (2006) Toll-like receptors: applications to dermatologic disease. J Am Acad Dermatol 54:951–983 (quiz 983–956)PubMedGoogle Scholar
  59. 59.
    Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216PubMedGoogle Scholar
  60. 60.
    Akira S, Hemmi H (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85:85–95PubMedGoogle Scholar
  61. 61.
    Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9:4–9PubMedGoogle Scholar
  62. 62.
    Matsushita M, Fujita T (1992) Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J Exp Med 176:1497–1502PubMedGoogle Scholar
  63. 63.
    Kuhlman M, Joiner K, Ezekowitz RA (1989) The human mannose-binding protein functions as an opsonin. J Exp Med 169:1733–1745PubMedGoogle Scholar
  64. 64.
    Schweinle JE, Ezekowitz RA, Tenner AJ, Kuhlman M, Joiner KA (1989) Human mannose-binding protein activates the alternative complement pathway and enhances serum bactericidal activity on a mannose-rich isolate of Salmonella. J Clin Invest 84:1821–1829PubMedCrossRefGoogle Scholar
  65. 65.
    Hawlisch H, Kohl J (2006) Complement and Toll-like receptors: key regulators of adaptive immune responses. Mol Immunol 43:13–21PubMedGoogle Scholar
  66. 66.
    Fraser IP, Koziel H, Ezekowitz RA (1998) The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin Immunol 10:363–372PubMedGoogle Scholar
  67. 67.
    Pearson AM (1996) Scavenger receptors in innate immunity. Curr Opin Immunol 8:20–28PubMedGoogle Scholar
  68. 68.
    Thomas CA, Li Y, Kodama T, Suzuki H, Silverstein SC, El Khoury J (2000) Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med 191:147–156PubMedGoogle Scholar
  69. 69.
    Elomaa O, Kangas M, Sahlberg C, Tuukkanen J, Sormunen R, Liakka A, Thesleff I, Kraal G, Tryggvason K (1995) Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80:603–609PubMedGoogle Scholar
  70. 70.
    Clemens MJ, Elia A (1997) The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res 17:503–524PubMedGoogle Scholar
  71. 71.
    Williams BR (1999) PKR; a sentinel kinase for cellular stress. Oncogene 18:6112–6120PubMedGoogle Scholar
  72. 72.
    Kumar M, Carmichael GG (1998) Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 62:1415–1434PubMedGoogle Scholar
  73. 73.
    Vowels BR, Yang S, Leyden JJ (1995) Induction of proinflammatory cytokines by a soluble factor of Propionibacterium acnes: implications for chronic inflammatory acne. Infect Immun 63:3158–3165PubMedGoogle Scholar
  74. 74.
    Kim J, Ochoa MT, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, Brightbill HD, Holland D, Cunliffe WJ, Akira S, Sieling PA, Godowski PJ, Modlin RL (2002) Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 169:1535–1541PubMedGoogle Scholar
  75. 75.
    Liu PT, Krutzik SR, Kim J, Modlin RL (2005) Cutting edge: all-trans retinoic acid down-regulates TLR2 expression and function. J Immunol 174:2467–2470PubMedGoogle Scholar
  76. 76.
    Baker BS, Ovigne JM, Powles AV, Corcoran S, Fry L (2003) Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol 148:670–679PubMedGoogle Scholar
  77. 77.
    Mascarenhas MM, Day RM, Ochoa CD, Choi WI, Yu L, Ouyang B, Garg HG, Hales CA, Quinn DA (2004) Low molecular weight hyaluronan from stretched lung enhances interleukin-8 expression. Am J Respir Cell Mol Biol 30:51–60PubMedGoogle Scholar
  78. 78.
    Jiang D, Liang J, Li Y, Noble PW (2006) The role of Toll-like receptors in non-infectious lung injury. Cell Res 16:693–701PubMedGoogle Scholar
  79. 79.
    Martinon F, Tschopp J (2005) NLRs join TLRs as innate sensors of pathogens. Trends Immunol 26:447–454PubMedGoogle Scholar
  80. 80.
    Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 276:4812–4818PubMedGoogle Scholar
  81. 81.
    Inohara N, Ogura Y, Chen FF, Muto A, Nunez G (2001) Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J Biol Chem 276:2551–2554PubMedGoogle Scholar
  82. 82.
    Bertin J, Nir WJ, Fischer CM, Tayber OV, Errada PR, Grant JR, Keilty JJ, Gosselin ML, Robison KE, Wong GH, Glucksmann MA, DiStefano PS (1999) Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB. J Biol Chem 274:12955–12958PubMedGoogle Scholar
  83. 83.
    Inohara N, Koseki T, del Peso L, Hu Y, Yee C, Chen S, Carrio R, Merino J, Liu D, Ni J, Nunez G (1999) Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem 274:14560–14567PubMedGoogle Scholar
  84. 84.
    Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603PubMedGoogle Scholar
  85. 85.
    Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606PubMedGoogle Scholar
  86. 86.
    Opitz B, Puschel A, Schmeck B, Hocke AC, Rosseau S, Hammerschmidt S, Schumann RR, Suttorp N, Hippenstiel S (2004) Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem 279:36426–36432PubMedGoogle Scholar
  87. 87.
    Ferwerda G, Girardin SE, Kullberg BJ, Le Bourhis L, de Jong DJ, Langenberg DM, van Crevel R, Adema GJ, Ottenhoff TH, Van der Meer JW, Netea MG (2005) NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 1:279–285PubMedGoogle Scholar
  88. 88.
    Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nat Genet 29:301–305PubMedGoogle Scholar
  89. 89.
    Dode C, Le Du N, Cuisset L, Letourneur F, Berthelot JM, Vaudour G, Meyrier A, Watts RA, Scott DG, Nicholls A, Granel B, Frances C, Garcier F, Edery P, Boulinguez S, Domergues JP, Delpech M, Grateau G (2002) New mutations of CIAS1 that are responsible for Muckle–Wells syndrome and familial cold urticaria: a novel mutation underlies both syndromes. Am J Hum Genet 70:1498–1506PubMedGoogle Scholar
  90. 90.
    Zaiou M, Gallo RL (2002) Cathelicidins, essential gene-encoded mammalian antibiotics. J Mol Med 80:549–561PubMedGoogle Scholar
  91. 91.
    Ramanathan B, Davis EG, Ross CR, Blecha F (2002) Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect 4:361–372PubMedGoogle Scholar
  92. 92.
    Gennaro R, Zanetti M (2000) Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 55:31–49PubMedGoogle Scholar
  93. 93.
    Raj PA, Dentino AR (2002) Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiol Lett 206:9–18PubMedGoogle Scholar
  94. 94.
    Cole AM, Ganz T (2000) Human antimicrobial peptides: analysis and application. Biotechniques 29:822–826, 828, 830–831Google Scholar
  95. 95.
    Braff MH, Zaiou M, Fierer J, Nizet V, Gallo RL (2005) Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens. Infect Immun 73:6771–6781PubMedGoogle Scholar
  96. 96.
    Steinstraesser L, Tippler B, Mertens J, Lamme E, Homann HH, Lehnhardt M, Wildner O, Steinau HU, Uberla K (2005) Inhibition of early steps in the lentiviral replication cycle by cathelicidin host defense peptides. Retrovirology 2:2PubMedGoogle Scholar
  97. 97.
    Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273:3718–3724PubMedGoogle Scholar
  98. 98.
    Gutsmann T, Hagge SO, Larrick JW, Seydel U, Wiese A (2001) Interaction of CAP18-derived peptides with membranes made from endotoxins or phospholipids. Biophys J 80:2935–2945PubMedCrossRefGoogle Scholar
  99. 99.
    Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341(Pt 3):501–513PubMedGoogle Scholar
  100. 100.
    Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim Biophys Acta 1758(9):1184–1202PubMedGoogle Scholar
  101. 101.
    Hoover DM, Rajashankar KR, Blumenthal R, Puri A, Oppenheim JJ, Chertov O, Lubkowski J (2000) The structure of human beta-defensin-2 shows evidence of higher order oligomerization. J Biol Chem 275:32911–32918PubMedGoogle Scholar
  102. 102.
    Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, Kwak LW (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:1025–1029PubMedGoogle Scholar
  103. 103.
    Yang D, Chertov O, Oppenheim JJ (2001) Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J Leukoc Biol 69:691–697PubMedGoogle Scholar
  104. 104.
    Hoover DM, Boulegue C, Yang D, Oppenheim JJ, Tucker K, Lu W, Lubkowski J (2002) The structure of human macrophage inflammatory protein-3alpha /CCL20. Linking antimicrobial and CC chemokine receptor-6-binding activities with human beta-defensins. J Biol Chem 277:37647–37654PubMedGoogle Scholar
  105. 105.
    Niyonsaba F, Ogawa H, Nagaoka I (2004) Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils. Immunology 111:273–281PubMedGoogle Scholar
  106. 106.
    Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I (2002) Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol 14:421–426PubMedGoogle Scholar
  107. 107.
    De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074Google Scholar
  108. 108.
    Perregaux DG, Bhavsar K, Contillo L, Shi J, Gabel CA (2002) Antimicrobial peptides initiate IL-1 beta posttranslational processing: a novel role beyond innate immunity. J Immunol 168:3024–3032PubMedGoogle Scholar
  109. 109.
    Pena SV, Krensky AM (1997) Granulysin, a new human cytolytic granule-associated protein with possible involvement in cell-mediated cytotoxicity. Semin Immunol 9:117–125PubMedGoogle Scholar
  110. 110.
    Krensky AM (2000) Granulysin: a novel antimicrobial peptide of cytolytic T lymphocytes and natural killer cells. Biochem Pharmacol 59:317–320PubMedGoogle Scholar
  111. 111.
    Sorensen OE, Cowland JB, Theilgaard-Monch K, Liu L, Ganz T, Borregaard N (2003) Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol 170:5583–5589PubMedGoogle Scholar
  112. 112.
    Cole AM, Shi J, Ceccarelli A, Kim YH, Park A, Ganz T (2001) Inhibition of neutrophil elastase prevents cathelicidin activation and impairs clearance of bacteria from wounds. Blood 97:297–304PubMedGoogle Scholar
  113. 113.
    Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, Gudmundsson GH (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272:15258–15263PubMedGoogle Scholar
  114. 114.
    Leung DY (2003) Infection in atopic dermatitis. Curr Opin Pediatr 15:399–404PubMedGoogle Scholar
  115. 115.
    Grice K, Sattar H, Baker H, Sharratt M (1975) The relationship of transepidermal water loss to skin temperature in psoriasis and eczema. J Invest Dermatol 64:313–315PubMedGoogle Scholar
  116. 116.
    Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347:1151–1160PubMedGoogle Scholar
  117. 117.
    Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY (2003) Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171:3262–3269PubMedGoogle Scholar
  118. 118.
    Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL, Leung DY (2004) Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J Immunol 172:1763–1767PubMedGoogle Scholar
  119. 119.
    Conner K, Nern K, Rudisill J, O’Grady T, Gallo RL (2002) The antimicrobial peptide LL-37 is expressed by keratinocytes in condyloma acuminatum and verruca vulgaris. J Am Acad Dermatol 47:347–350PubMedGoogle Scholar
  120. 120.
    Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, Schiller JT (2006) Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci U S A 103:1516–1521PubMedGoogle Scholar
  121. 121.
    Miller LS, O’Connell RM, Gutierrez MA, Pietras EM, Shahangian A, Gross CE, Thirumala A, Cheung AL, Cheng G, Modlin RL (2006) MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 24:79–91PubMedGoogle Scholar
  122. 122.
    Schon MP, Schon M, Klotz KN (2006) The small antitumoral immune response modifier imiquimod interacts with adenosine receptor signaling in a TLR7- and TLR8-independent fashion. J Invest Dermatol 126:1338–1347PubMedGoogle Scholar
  123. 123.
    Gibson SJ, Imbertson LM, Wagner TL, Testerman TL, Reiter MJ, Miller RL, Tomai MA (1995) Cellular requirements for cytokine production in response to the immunomodulators imiquimod and S-27609. J Interferon Cytokine Res 15:537–545PubMedGoogle Scholar
  124. 124.
    Reiter MJ, Testerman TL, Miller RL, Weeks CE, Tomai MA (1994) Cytokine induction in mice by the immunomodulator imiquimod. J Leukoc Biol 55:234–240PubMedGoogle Scholar
  125. 125.
    Wagner TL, Horton VL, Carlson GL, Myhre PE, Gibson SJ, Imbertson LM, Tomai MA (1997) Induction of cytokines in cynomolgus monkeys by the immune response modifiers, imiquimod, S-27609 and S-28463. Cytokine 9:837–845PubMedGoogle Scholar
  126. 126.
    Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, Dorschner RA, Bonnart C, Descargues P, Hovnanian A, Morhenn VB, Gallo RL (2007) Elevated serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nature Medicine 13(8):975–980PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Heidi Goodarzi
    • 1
    • 2
  • Janet Trowbridge
    • 1
  • Richard L. Gallo
    • 1
  1. 1.Division of DermatologyUniversity of CaliforniaSan DiegoUSA
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations