Clinical Reviews in Allergy & Immunology

, Volume 33, Issue 1–2, pp 35–44

Current Aspects of Innate and Adaptive Immunity in Atopic Dermatitis



Atopic dermatitis (AD) is a highly pruritic, chronic, multifactorial skin disease predisposing to bacterial and viral infections based on abnormalities of the innate and acquired immune system. The innate system quickly mobilizes an inflexible, standardized first-line response against different pathogens. Epidermal barrier dysfunction results in increased protein allergen penetration through the epidermis and predisposes to secondary skin infections. Two loss-of-function mutations in the epidermal filaggrin gene are associated with AD. Langerhans cells and inflammatory dendritic epidermal cells (IDEC) express high affinity IgE receptors, which are functional in IgE-mediated antigen presentation. Inducible antimicrobial peptides including the antiviral cathelicidin and the antibacterial beta-defensins show defective upregulation in lesional AD skin. The desmosomal protein nectin-1 is unmasked in AD lesions, thus becoming a relevant herpes simplex virus (HSV) entry receptor. Type I IFN-producing plasmacytoid dendritic cells are decreased and dysfunctional in AD skin, predisposing the patients to viral skin infections. Molluscum contagiosum virus produces a unique IL-18 binding protein to evade antiviral defense mechanisms. Innate and adaptive immunity do not simply coexist but are linked to one another in a complex network of skin immunobiology.


Innate immunity Secondary infections Atopic dermatitis 



atopic dermatitis


antimicrobial peptides


antigen presenting cell


dendritic cell


eczema herpeticum


eczema molluscatum


high affinity IgE receptor


formyl peptide receptor


human beta-defensin


herpes simplex virus


inflammatory dendritic epidermal cell




interleukin-18 binding protein


inducible NO synthetase


Kaposi’s varicelliform eruption


Langerhans cell


molluscum contagiosum virus

NK cell

natural killer cell


pathogen-associated molecular pattern


plasmacytoid dendritic cell


pathogen recognition receptor

S. aureus

Staphylococcus aureus


toll-like receptor


  1. 1.
    Wollenberg A, Bieber T (2000) Atopic dermatitis: from the genes to skin lesions. Allergy 55:205–213PubMedCrossRefGoogle Scholar
  2. 2.
    Leung DY, Bieber T (2003) Atopic dermatitis. Lancet 361:151–160PubMedCrossRefGoogle Scholar
  3. 3.
    Wollenberg A, Wetzel S, Burgdorf WHC, Haas J (2003) Viral infections in atopic dermatitis: pathogenic aspects and clinical management. J Allergy Clin Immunol 112:667–674PubMedCrossRefGoogle Scholar
  4. 4.
    Baker BS (2006) The role of microorganisms in atopic dermatitis. Clin Exp Immunol 144:1–9PubMedCrossRefGoogle Scholar
  5. 5.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801PubMedCrossRefGoogle Scholar
  6. 6.
    Kaisho T, Shizuo A (2006) Toll like receptor function and signaling. J Allergy Clin Immunol 117:979–987PubMedCrossRefGoogle Scholar
  7. 7.
    Wollenberg A, Mommaas M, Oppel T, Schottdorf EM, Günther S, Moderer M (2002) Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases. J Invest Dermatol 118:327–334PubMedCrossRefGoogle Scholar
  8. 8.
    Gordon S (2002) Pattern recognition receptors: doubling up for the innate immune response. Cell 111:927–930PubMedCrossRefGoogle Scholar
  9. 9.
    Braff MH, Bardan A, Nizet V, Gallo RL (2005) Cutaneous defense mechanisms by antimicrobial peptides. J Invest Dermatol 125:9–13PubMedCrossRefGoogle Scholar
  10. 10.
    Mudde GC, Van Reijsen FC, Boland GJ, de Gast GC, Bruijnzeel PL, Bruijnzeel-Koomen CA (1990) Allergen presentation by epidermal Langerhans’ cells from patients with atopic dermatitis is mediated by IgE. Immunology 69:335–341PubMedGoogle Scholar
  11. 11.
    Maurer D, Fiebiger E, Ebner C, Reininger B, Fischer GF, Wichlas S, Jouvin M-H, Schmitt-Egenolf M, Kraft D, Kinet J-P, Stingl G (1996) Peripheral blood dendritic cells express FcεRI as a complex composed of FcεRIα and FcεRIγ- 2 Chains and can use this Receptor for IgE-mediated Allergen presentation. J Immunol 157:607–616PubMedGoogle Scholar
  12. 12.
    von Bubnoff D, Koch S, Bieber T (2003) Dendritic cells and atopic eczema/dermatitis syndrome. Curr Opin Allergy Clin Immunol 3:353–358PubMedCrossRefGoogle Scholar
  13. 13.
    Wollenberg A, Bieber T (2002) Antigen presenting cells. In: Bieber T, Leung DYM editors. Atopic dermatitis. First Edition ed. New York: Marcel Dekker; 2002 pp 267–283Google Scholar
  14. 14.
    Wollenberg A, Schuller E (1999) Langerhans Zellen und Immunantwort. In: Plewig G, Wolff H (eds). Fortschritte der praktischen Dermatologie und Venerologie. Springer, Berlin Heidelberg New York, pp 41–48Google Scholar
  15. 15.
    Schuler G, Steinman RM (1985) Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 161:526–546PubMedCrossRefGoogle Scholar
  16. 16.
    Romani N, Lenz A, Glassel H, Stanzl H, Majdic O, Fritsch P, Schuler G (1989) Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function. J Invest Dermatol 93:600–609PubMedCrossRefGoogle Scholar
  17. 17.
    Wollenberg A, Kraft S, Hanau D, Bieber T (1996) Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J Invest Dermatol 106:446–453PubMedCrossRefGoogle Scholar
  18. 18.
    Wollenberg A, Geiger E, Schaller M, Wolff H (2000) Dorfman-Chanarin syndrome in a Turkish kindred: conductor diagnosis requires analysis of multiple eosinophils. Acta Derm Venereol 80:39–43PubMedCrossRefGoogle Scholar
  19. 19.
    Wollenberg A, Wen S, Bieber T (1999) Phenotyping of epidermal dendritic cells - clinical applications of a flow cytometric micromethod. Cytometry 37:147–155PubMedCrossRefGoogle Scholar
  20. 20.
    Pastore S, Fanales Belasio E, Albanesi C, Chinni LM, Giannetti A, Girolomoni G (1997) Granulocyte macrophage colony-stimulating factor is overproduced by keratinocytes in atopic dermatitis. Implications for sustained dendritic cell activation in the skin. J Clin Invest 99:3009–3017PubMedCrossRefGoogle Scholar
  21. 21.
    Horsmanheimo L, Harvima IT, Jarvikallio A, Harvima RJ, Naukkarinen A, Horsmanheimo M (1994) Mast cells are one major source of interleukin-4 in atopic dermatitis. Br J Dermatol 131:348–353PubMedCrossRefGoogle Scholar
  22. 22.
    Akdis M, Simon HU, Weigl L, Kreyden O, Blaser K, Akdis CA (1999) Skin homing (cutaneous lymphocyte-associated antigen-positive) CD8+ T cells respond to superantigen and contribute to eosinophilia and IgE production in atopic dermatitis. J Immunol 163:466–475PubMedGoogle Scholar
  23. 23.
    van der Ploeg I, Matuseviciene G, Fransson J, Wahlgren CF, Olsson T, Scheynius A (1999) Localization of interleukin-13 gene-expressing cells in tuberculin reactions and lesional skin from patients with atopic dermatitis. Scand J Immunol 49:447–453PubMedCrossRefGoogle Scholar
  24. 24.
    Kerschenlohr K, Decard S, Przybilla B, Wollenberg A (2003) Atopy patch test reactions show a rapid influx of inflammatory dendritic epidermal cells (IDEC) in extrinsic and intrinsic atopic dermatitis patients. J Allergy Clin Immunol 111:869–874PubMedCrossRefGoogle Scholar
  25. 25.
    Wollenberg A, Wen S, Bieber T (1995) Langerhans cell phenotyping: A new tool for differential diagnosis of inflammatory skin diseases. Lancet 346:1626–1627PubMedCrossRefGoogle Scholar
  26. 26.
    Oppel T, Schuller E, Günther S, Moderer M, Haberstok J, Bieber T, Wollenberg A (2000) Phenotyping of epidermal dendritic cells allows the differentiation between extrinsic and intrinsic form of atopic dermatitis. Br J Dermatol 143:1193–1198PubMedCrossRefGoogle Scholar
  27. 27.
    Schuller E, Teichmann B, Haberstok J, Moderer M, Bieber T, Wollenberg A (2001) In situ-expression of the costimulatory molecules CD80 and CD86 on Langerhans cells and inflammatory dendritic epidermal cells (IDEC) in atopic dermatitis. Arch Dermatol Res 293:448–454PubMedCrossRefGoogle Scholar
  28. 28.
    Novak N, Kraft S, Haberstok J, Geiger E, Allam P, Bieber T (2002) A reducing microenvironment leads to the generation of FcepsilonRIhigh inflammatory dendritic epidermal cells (IDEC). J Invest Dermatol 119:842–849PubMedCrossRefGoogle Scholar
  29. 29.
    Novak N, Valenta R, Bohle B, Laffer S, Haberstok J, Kraft S, Bieber T (2004) FcepsilonRI engagement of Langerhans cell-like dendritic cells and inflammatory dendritic epidermal cell-like dendritic cells induces chemotactic signals and different T-cell phenotypes in vitro. J Allergy Clin Immunol 113:949–957PubMedCrossRefGoogle Scholar
  30. 30.
    Wollenberg A, Sharma S, von Bubnoff D, Geiger E, Haberstok J, Bieber T (2001) Topical tacrolimus (FK506) leads to profound phenotypic and functional alterations of epidermal antigen-presenting dendritic cells in atopic dermatitis. J Allergy Clin Immunol. 107:519–525PubMedCrossRefGoogle Scholar
  31. 31.
    Hoetzenecker W, Ecker R, Kopp T, Stuetz A, Stingl G, Elbe-Burger A (2005) Pimecrolimus leads to an apoptosis-induced depletion of T cells but not Langerhans cells in patients with atopic dermatitis. J Allergy Clin Immunol 115:1276–1283PubMedCrossRefGoogle Scholar
  32. 32.
    Schuller E, Oppel T, Bornhövd E, Wetzel S, Wollenberg A (2004) Tacrolimus ointment causes inflammatory dendritic epidermal cell depletion but no Langerhans cell apoptosis in patients with atopic dermatitis. J Allergy Clin Immunol 114:137–143PubMedCrossRefGoogle Scholar
  33. 33.
    Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, Colonna M (1999) Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 5:919–923PubMedCrossRefGoogle Scholar
  34. 34.
    Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, Liu YJ (1999) Reciprocal control of T helper cell and dendritic cell differentiation. Science 283:1183–1186PubMedCrossRefGoogle Scholar
  35. 35.
    Gilliet M, Liu YJ (2002) Human plasmacytoid-derived dendritic cells and the induction of T-regulatory cells. Hum Immunol 63:1149–1155PubMedCrossRefGoogle Scholar
  36. 36.
    Krug A, Rothenfusser S, Selinger S, Bock C, Kerkmann M, Battiany J, Sarris A, Giese T, Speiser D, Endres S, Hartmann G (2003) CpG-A oligonucleotides induce a monocyte-derived dendritic cell-like phenotype that preferentially activates CD8 T cells. J Immunol 170:3468–3477PubMedGoogle Scholar
  37. 37.
    Farkas L, Beiske K, Lund-Johansen F, Brandtzaeg P, Jahnsen FL (2001) Plasmacytoid dendritic cells (natural interferon- alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am J Pathol 159:237–243PubMedGoogle Scholar
  38. 38.
    Wollenberg A, Wagner M, Günther S, Towarowski A, Tuma E, Moderer M, Rothenfusser S, Wetzel S, Endres S, Hartmann G (2002) Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J Invest Dermatol 119:1096–1102PubMedCrossRefGoogle Scholar
  39. 39.
    Wollenberg A, Pavicic T, Wetzel S, Hartmann G (2005) Expression of high affinity IgE receptors on skin- and blood derived plasmacytoid dendritic cells in inflammatory skin diseases. Allergy Clin Immunol Int 2:42–44Google Scholar
  40. 40.
    Novak N, Allam JP, Hagemann T, Jenneck C, Laffer S, Valenta R, Kochan J, Bieber T (2004) Characterization of FcepsilonRI-bearing CD123 blood dendritic cell antigen-2 plasmacytoid dendritic cells in atopic dermatitis. J Allergy Clin Immunol 114:364–370PubMedCrossRefGoogle Scholar
  41. 41.
    Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20:123–137PubMedCrossRefGoogle Scholar
  42. 42.
    Aktas E, Akdis M, Bilgic S, Disch R, Falk CS, Blaser K, Akdis C, Deniz G (2005) Different natural killer (NK) receptor expression and immunoglobulin E (IgE) regulation by NK1 and NK2 cells. Clin Exp Immunol 140:301–309PubMedCrossRefGoogle Scholar
  43. 43.
    Katsuta M, Takigawa Y, Kimishima M, Inaoka M, Takahashi R, Shiohara T (2006) NK cells and gamma delta+ T cells are phenotypically and functionally defective due to preferential apoptosis in patients with atopic dermatitis. J Immunol 176:7736–7744PubMedGoogle Scholar
  44. 44.
    Buentke E, Heffler LC, Wilson JL, Wallin RP, Lofman C, Chambers BJ, Ljunggren HG, Scheynius A (2002) Natural killer and dendritic cell contact in lesional atopic dermatitis skin--Malassezia-influenced cell interaction. J Invest Dermatol 119:850–857PubMedCrossRefGoogle Scholar
  45. 45.
    Buentke E, D’Amato M, Scheynius A (2004) Malassezia enhances natural killer cell-induced dendritic cell maturation. Scand J Immunol 59:511–516PubMedCrossRefGoogle Scholar
  46. 46.
    Rajka G (1989) Essential aspects of atopic dermatitis. Springer, Berlin Heidelberg New YorkGoogle Scholar
  47. 47.
    Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347:1151–1160PubMedCrossRefGoogle Scholar
  48. 48.
    Mihm MC, Soter NA, Dvorak HF, Austen KF (1976) The structure of normal skin and the morphology of atopic eczema. J Invest Dermatol 67:305–312PubMedCrossRefGoogle Scholar
  49. 49.
    Traidl-Hoffmann C, Mariani V, Hochrein H, Karg K, Wagner H, Ring J, Mueller MJ, Jakob T, Behrendt H (2005) Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J Exp Med 201:627–636PubMedCrossRefGoogle Scholar
  50. 50.
    Darsow U, Laifaoui J, Kerschenlohr K, Wollenberg A, Przybilla B, Wüthrich B, Borelli SjF, Giusti F, Seidenari S, Drzimalla K, Simon D, Disch R, Borelli S, Devillers ACA, Oranje AP, De Raeve L, Hachem JP, Dangoisse C, Blondeel A, Song M, Breuer K, Wulf A, Werfel T, Roul S, Taieb A, Bolhaar S, Bruijnzeel-Koomen C, Brönnimann M, Braathen LR, Didierlaurent A, André C, Ring J (2004) The prevalence of positive reactions in the atopy patch test with aeroallergens and food allergens in subjects with atopic eczema: a European multicenter study. Allergy 59:1318–1325PubMedCrossRefGoogle Scholar
  51. 51.
    Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, Liao H, Evans AT, Goudie DR, Lewis-Jones S, Arseculeratne G, Munro CS, Sergeant A, O’Regan G, Bale SJ, Compton JG, DiGiovanna JJ, Presland RB, Fleckman P, McLean WH (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris.Nat Genet 38:337–342PubMedCrossRefGoogle Scholar
  52. 52.
    Braun-Falco O, Plewig G, Wolff H, Burgdorf W (2000) Dermatology. 3rd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  53. 53.
    Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie DR, Sandilands A, Campbell LE, Smith FJ, O’Regan GM, Watson RM, Cecil JE, Bale SJ, Compton JG, Di Giovanna JJ, Fleckman P, Lewis-Jones S, Arseculeratne G, Sergeant A, Munro CS, El Houate B, McElreavey K, Halkjaer LB, Bisgaard H, Mukhopadhyay S, McLean WH (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38:441–446PubMedCrossRefGoogle Scholar
  54. 54.
    Weidinger S, Illig T, Baurecht H, Irvine AD, Rodriguez E, Diaz-Lacava A, Klopp N, Wagenpfeil S, Zhao Y, Liao H, Lee SP, Palmer CN, Jenneck C, Maintz L, Hagemann T, Behrendt H, Ring J, Nothen MM, McLean WH, Novak N (2006) Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. J Allergy Clin Immunol 118:214–219PubMedCrossRefGoogle Scholar
  55. 55.
    Sandilands A, O’Regan GM, Liao H, Zhao Y, Terron-Kwiatkowski A, Watson RM, Cassidy AJ, Goudie DR, Smith FJ, McLean WH, Irvine AD (2006) Prevalent and rare mutations in the gene encoding filaggrin cause ichthyosis vulgaris and predispose individuals to atopic dermatitis. J Invest Dermatol, in pressGoogle Scholar
  56. 56.
    Darsow U, Lubbe J, Taieb A, Seidenari S, Wollenberg A, Calza A, Giusti F, Ring J (2005) Position paper on diagnosis and treatment of atopic dermatitis. J Eur Acad Dermatol Venereol 19:286–295PubMedCrossRefGoogle Scholar
  57. 57.
    Leung D (2005) Superantigens, steroid insensitivity and innate immunity in atopic eczema, Acta Derm Venereol Suppl 215:11–15CrossRefGoogle Scholar
  58. 58.
    Abeck D, Mempel M (1998) Staphylococcus aureus colonization in atopic dermatitis and its therapeutic implications. Br J Dermatol 139(Suppl 53):13–16PubMedCrossRefGoogle Scholar
  59. 59.
    Breuer K, Wittmann M, Kempe K, Kapp A, Mai U, Dittrich-Breiholz O, Kracht M, Mrabet-Dahbi S, Werfel T (2005) Alpha-toxin is produced by skin colonizing Staphylococcus aureus and induces a T helper type 1 response in atopic dermatitis. Clin Exp Allergy 35:1088–1095PubMedCrossRefGoogle Scholar
  60. 60.
    Ide F, Matsubara T, Kaneko M, Ichiyama T, Mukouyama T, Furukawa S (2004) Staphylococcal enterotoxin-specific IgE antibodies in atopic dermatitis. Pediatr Int 46:337–341PubMedCrossRefGoogle Scholar
  61. 61.
    Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY (2003) Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171:3262–3269PubMedGoogle Scholar
  62. 62.
    de Jongh GJ, Zeeuwen PL, Kucharekova M, Pfundt R, van der Valk PG, Blokx W, Dogan A, Hiemstra PS, van de Kerkhof PC, Schalkwijk J (2005) High expression levels of keratinocyte antimicrobial proteins in psoriasis compared with atopic dermatitis. J Invest Dermatol 125:1163–1173PubMedCrossRefGoogle Scholar
  63. 63.
    Howell MD, Novak N, Bieber T, Pastore S, Girolomoni G, Boguniewicz M, Streib J, Wong C, Gallo RL, Leung DY (2005) Interleukin-10 downregulates anti-microbial peptide expression in atopic dermatitis. J Invest Dermatol 125:738–745PubMedCrossRefGoogle Scholar
  64. 64.
    Rieg S, Steffen H, Seeber S, Humeny A, Kalbacher H, Dietz K, Garbe C, Schittek B (2005) Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J Immunol 174:8003–8010PubMedGoogle Scholar
  65. 65.
    Solomon L, Telner P (1966) Eruptive molluscum contagiosum in atopic dermatitis. CMAJ 95:978–979Google Scholar
  66. 66.
    Senkevich TG, Bugert JJ, Sisler JR, Koonin EV, Darai G, Moss B (1996) Genome sequence of a human tumorigenic poxvirus: prediction of specific host response-evasion genes. Science 273:813–816PubMedCrossRefGoogle Scholar
  67. 67.
    Xiang Y, Moss B (2003) Molluscum contagiosum virus interleukin-18 (IL-18) binding protein is secreted as a full-length form that binds cell surface glycosaminoglycans through the C-terminal tail and a furin-cleaved form with only the IL-18 binding domain. J Virol 77:2623–2630PubMedCrossRefGoogle Scholar
  68. 68.
    Heng MC, Steuer ME, Levy A, McMahon S, Richman M, Allen SG, Blackhart B (1989) Lack of host cellular immune response in eruptive molluscum contagiosum. Am J Dermatopathol 11:248–254PubMedCrossRefGoogle Scholar
  69. 69.
    Syed TA, Goswami J, Ahmadpour OA, Ahmad SA (1998) Treatment of molluscum contagiosum in males with an analog of imiquimod 1% in cream: a placebo-controlled, double-blind study. J Dermatol 25:309–313PubMedGoogle Scholar
  70. 70.
    Wollenberg A, Zoch C, Wetzel S, Plewig G, Przybilla B (2003) Predisposing factors and clinical features of eczema herpeticum - a retrospective analysis of 100 cases. J Am Acad Dermatol 49:198–205PubMedCrossRefGoogle Scholar
  71. 71.
    Engler RJM, Kenner J, Leung DY (2002) Smallpox vaccination: risk considerations for patients with atopic dermatitis. J Allergy Clin Immunol 110:357–365PubMedCrossRefGoogle Scholar
  72. 72.
    Yoon M, Spear PG (2002) Disruption of adherens junctions liberates nectin-1 to serve as receptor for herpes simplex virus and pseudorabies virus entry. J Virol 76:7203–7208PubMedCrossRefGoogle Scholar
  73. 73.
    Howell MD, Wollenberg A, Gallo RL, Flaig M, Streib JE, Wong C, Pavicic T, Boguniewicz M, Leung DY (2006) Cathelicidin deficiency predisposes to eczema herpeticum. J Allergy Clin Immunol 117:836–841PubMedCrossRefGoogle Scholar
  74. 74.
    Uchida Y, Kurasawa K, Nakajima H, Nakagawa N, Tanabe E, Sueishi M, Saito Y, Iwamoto I (2001) Increase of dendritic cells of type 2 (DC2) by altered response to IL-4 in atopic patients. J Allergy Clin Immunol 108:1005–1011PubMedCrossRefGoogle Scholar
  75. 75.
    Wollenberg A, Baldauf C, Ruëff F, Przybilla B (2000) Allergische Kontaktdermatitis und Arzneiexanthem auf Aciclovir - Kreuzreaktion auf Ganciclovir. Allergo J 9:96–99Google Scholar
  76. 76.
    Wollenberg A, Engler R (2004) Smallpox, vaccination and adverse reactions to smallpox. Curr Opin Allergy Clin Immunol 4:271–275PubMedCrossRefGoogle Scholar
  77. 77.
    Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL, Leung DY (2004) Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J Immunol 172:1763–1767PubMedGoogle Scholar
  78. 78.
    Howell MD, Gallo RL, Boguniewicz M, Jones JF, Wong C, Streib JE, Leung DY (2006) Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity 24:341–348PubMedCrossRefGoogle Scholar
  79. 79.
    Harrison JM, Ramshaw IA (2006) Cytokines, skin, and smallpox-a new link to an antimicrobial peptide. Immunity 24:245–247PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department of Dermatology and AllergyLudwig-Maximilian-University of MunichMunichGermany
  2. 2.Department of DermatologyFriedrich-Wilhelm-UniversityBonnGermany

Personalised recommendations