Skip to main content

Advertisement

Log in

A Phase I Study to Evaluate Two Doses of Wharton’s Jelly-Derived Mesenchymal Stromal Cells for the Treatment of De Novo High-Risk or Steroid-Refractory Acute Graft Versus Host Disease

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

Because of their well-described immunosuppressive properties, allogeneic adult human mesenchymal stromal cells (MSC) derived from bone marrow have demonstrated safety and efficacy in steroid refractory acute graft versus host disease (SR aGVHD). Clinical trials have resulted in variable success and an optimal source of MSC has yet to be defined. Based on the importance of maternal-fetal interface immune tolerance, extraembryonic fetal tissues, such as the umbilical cord, may provide an superior tissue source of MSC to mediate immunomodulation in aGVHD.

Methods

A two-dose cohort trial allogeneic Wharton’s Jelly-derived mesenchymal stromal cells (WJMSC, referred to as MSCTC-0010, here) were tested in 10 patients with de novo high risk (HR) or SR aGVHD post allogeneic hematopoietic stem cell transplantation (allo-HCT). Following Good Manufacturing Practices isolation, expansion and cryostorage, WJMSC were thawed and administered via intravenous infusions on days 0 and 7 at one of two doses (low dose cohort, 2 × 106/kg, n = 5; high dose cohort, 10 × 106/kg, n = 5). To evaluate safety, patients were monitored for infusion related toxicity, Treatment Related Adverse Events (TRAE) til day 42, or ectopic tissue formation at day 90. Clinical responses were monitored at time points up to 180 days post infusion. Serum biomarkers ST2 and REG3α were acquired 1 day prior to first MSCTC-0010 infusion and on day 14.

Results

Safety was indicated, e.g., no infusion-related toxicity, no development of TRAE, nor ectopic tissue formation in either low or high dose cohort was observed. Clinical response was suggested at day 28: the overall response rate (ORR) was 70%, 4 of 10 patients had a complete response (CR) and 3 had a partial response (PR). By study day 90, the addition of escalated immunosuppressive therapy was necessary in 2 of 9 surviving patients. Day 100 and 180 post infusion survival was 90% and 60%, respectively. Serum biomarker REG3α decreased, particularly in the high dose cohort, and with REG3α decrease correlated with clinical response.

Conclusions

Treatment of patients with de novo HR or SR aGVHD with low or high dose MSCTC-0010 was safe: the infusion was well-tolerated, and no TRAEs or ectopic tissue formation was observed. A clinical improvement was seen in about 70% patients, with 4 of 10 showing a complete response that may have been attributable to MSCTC-0010 infusions. These observations indicate safety of two different doses of MSCTC-0010, and suggest that the 10 × 106 cells/ kg dose be tested in an expanded randomized, controlled Phase 2 trial.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gooley, T. A., et al. (2010). Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med, 363(22), 2091–2101. https://doi.org/10.1056/NEJMoa1004383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bacigalupo, A. (2007). Management of acute graft-versus-host disease. Br J Haematol, 137(2), 87–98. https://doi.org/10.1111/j.1365-2141.2007.06533.x.

    Article  CAS  PubMed  Google Scholar 

  3. Lee, S. J. (2005). New approaches for preventing and treating chronic graft-versus-host disease. Blood, 105(11), 4200–4206. https://doi.org/10.1182/blood-2004-10-4023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wagner, J. E., et al. (2005). Effect of graft-versus-host disease prophylaxis on 3-year disease-free survival in recipients of unrelated donor bone marrow (T-cell Depletion Trial): a multi-centre, randomised phase II-III trial. Lancet, 366(9487), 733–741. https://doi.org/10.1016/s0140-6736(05)66996-6.

    Article  CAS  PubMed  Google Scholar 

  5. Pidala, J., & Anasetti, C. (2010). Glucocorticoid-refractory acute graft-versus-host disease. Biol Blood Marrow Transplant, 16(11), 1504–1518. https://doi.org/10.1016/j.bbmt.2010.01.007.

    Article  PubMed  Google Scholar 

  6. Wolff, D., et al. (2010). Consensus conference on clinical practice in chronic graft-versus-host disease (GVHD): first-line and topical treatment of chronic GVHD. Biol Blood Marrow Transplant, 16(12), 1611–1628. https://doi.org/10.1016/j.bbmt.2010.06.015.

    Article  PubMed  Google Scholar 

  7. Glucksberg, H., et al. (1974). Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation, 18(4), 295–304. https://doi.org/10.1097/00007890-197410000-00001.

    Article  CAS  PubMed  Google Scholar 

  8. Gratwohl, A., et al. (1995). Acute graft-versus-host disease: grade and outcome in patients with chronic myelogenous leukemia. Working Party Chronic Leukemia of the European Group for Blood and Marrow Transplantation. Blood, 86(2), 813–818.

    Article  CAS  PubMed  Google Scholar 

  9. Choi, S. W., & Reddy, P. (2014). Current and emerging strategies for the prevention of graft-versus-host disease. Nat Rev Clin Oncol, 11(9), 536–547. https://doi.org/10.1038/nrclinonc.2014.102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bryant, A. R., & Perales, M.-A. (2019). Advances in ex vivo T cell depletion – where do we stand? ADVANCES IN CELL AND GENE THERAPY, 2(1), e29. https://doi.org/10.1002/acg2.29.

    Article  Google Scholar 

  11. Qin, B.-Z., et al.Role of ATG in patients with hematologic diseases undergoing umbilical cord blood transplantation: A systematic review and meta-analysis. Clinical Transplantation, n/a(n/a), e13876. https://doi.org/10.1111/ctr.13876.

  12. Nunes, N. S., & Kanakry, C. G. (2019). Mechanisms of Graft-versus-Host Disease Prevention by Post-transplantation Cyclophosphamide: An Evolving Understanding. Front Immunol, 10, 2668. https://doi.org/10.3389/fimmu.2019.02668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. MacMillan, M. L., et al. (2015). A refined risk score for acute graft-versus-host disease that predicts response to initial therapy, survival, and transplant-related mortality. Biol Blood Marrow Transplant, 21(4), 761–767. https://doi.org/10.1016/j.bbmt.2015.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Levine, J. E., et al. (2015). A prognostic score for acute graft-versus-host disease based on biomarkers: a multicentre study. Lancet Haematol, 2(1), e21–e29. https://doi.org/10.1016/s2352-3026(14)00035-0.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Le Blanc, K., et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363(9419), 1439–1441. https://doi.org/10.1016/s0140-6736(04)16104-7.

    Article  PubMed  Google Scholar 

  16. Ringden, O., et al. (2006). Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 81(10), 1390–1397. https://doi.org/10.1097/01.tp.0000214462.63943.14.

    Article  PubMed  Google Scholar 

  17. Arima, N., et al. (2010). Single intra-arterial injection of mesenchymal stromal cells for treatment of steroid-refractory acute graft-versus-host disease: a pilot study. Cytotherapy, 12(2), 265–268. https://doi.org/10.3109/14653240903390795.

    Article  PubMed  Google Scholar 

  18. Baron, F., et al. (2010). Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biol Blood Marrow Transplant, 16(6), 838–847. https://doi.org/10.1016/j.bbmt.2010.01.011.

    Article  PubMed  Google Scholar 

  19. Fang, B., et al. (2006). Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells. Bone Marrow Transplant, 38(5), 389–390. https://doi.org/10.1038/sj.bmt.1705457.

    Article  CAS  PubMed  Google Scholar 

  20. Fang, B., et al. (2007). Using human adipose tissue-derived mesenchymal stem cells as salvage therapy for hepatic graft-versus-host disease resembling acute hepatitis. Transplant Proc, 39(5), 1710–1713. https://doi.org/10.1016/j.transproceed.2007.02.091.

    Article  CAS  PubMed  Google Scholar 

  21. Fang, B., et al. (2007). Human adipose tissue-derived mesenchymal stromal cells as salvage therapy for treatment of severe refractory acute graft-vs.-host disease in two children. Pediatr Transplant, 11(7), 814–817. https://doi.org/10.1111/j.1399-3046.2007.00780.x.

  22. Fang, B., et al. (2009). Cotransplantation of haploidentical mesenchymal stem cells to enhance engraftment of hematopoietic stem cells and to reduce the risk of graft failure in two children with severe aplastic anemia. Pediatr Transplant, 13(4), 499–502. https://doi.org/10.1111/j.1399-3046.2008.01002.x.

    Article  PubMed  Google Scholar 

  23. Kebriaei, P., et al. (2009). Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant, 15(7), 804–811. https://doi.org/10.1016/j.bbmt.2008.03.012.

    Article  CAS  PubMed  Google Scholar 

  24. Kurtzberg, J., et al. (2014). Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant, 20(2), 229–235. https://doi.org/10.1016/j.bbmt.2013.11.001.

    Article  PubMed  Google Scholar 

  25. Le Blanc, K., et al. (2008). Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 371(9624), 1579–1586. https://doi.org/10.1016/s0140-6736(08)60690-x.

    Article  PubMed  Google Scholar 

  26. Lucchini, G., et al. (2010). Platelet-lysate-expanded mesenchymal stromal cells as a salvage therapy for severe resistant graft-versus-host disease in a pediatric population. Biol Blood Marrow Transplant, 16(9), 1293–1301. https://doi.org/10.1016/j.bbmt.2010.03.017.

    Article  PubMed  Google Scholar 

  27. Martin, P. J., et al. (2010). Prochymal Improves Response Rates In Patients With Steroid-Refractory Acute Graft Versus Host Disease (SR-GVHD) Involving The Liver And Gut: Results Of A Randomized, Placebo-Controlled, Multicenter Phase III Trial In GVHD. Biology of Blood and Marrow Transplantation, 16(2), S169–S170. https://doi.org/10.1016/j.bbmt.2009.12.057.

    Article  Google Scholar 

  28. Muller, I., et al. (2008). Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells Mol Dis, 40(1), 25–32. https://doi.org/10.1016/j.bcmd.2007.06.021.

    Article  PubMed  Google Scholar 

  29. von Bonin, M., et al. (2009). Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant, 43(3), 245–251. https://doi.org/10.1038/bmt.2008.316.

    Article  CAS  Google Scholar 

  30. Weng, J. Y., et al. (2010). Mesenchymal stem cell as salvage treatment for refractory chronic GVHD. Bone Marrow Transplant, 45(12), 1732–1740. https://doi.org/10.1038/bmt.2010.195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou, H., et al. (2010). Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: clinical report. Biol Blood Marrow Transplant, 16(3), 403–412. https://doi.org/10.1016/j.bbmt.2009.11.006.

    Article  CAS  PubMed  Google Scholar 

  32. Ball, L. M., et al. (2013). Multiple infusions of mesenchymal stromal cells induce sustained remission in children with steroid-refractory, grade III-IV acute graft-versus-host disease. Br J Haematol, 163(4), 501–509. https://doi.org/10.1111/bjh.12545.

    Article  CAS  PubMed  Google Scholar 

  33. Introna, M., et al. (2014). Treatment of graft versus host disease with mesenchymal stromal cells: a phase I study on 40 adult and pediatric patients. Biol Blood Marrow Transplant, 20(3), 375–381. https://doi.org/10.1016/j.bbmt.2013.11.033.

    Article  PubMed  Google Scholar 

  34. Resnick, I. B., et al. (2013). Treatment of severe steroid resistant acute GVHD with mesenchymal stromal cells (MSC). Am J Blood Res, 3(3), 225–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ringden, O., et al. (2013). Fetal membrane cells for treatment of steroid-refractory acute graft-versus-host disease. Stem Cells, 31(3), 592–601. https://doi.org/10.1002/stem.1314.

    Article  CAS  PubMed  Google Scholar 

  36. Sanchez-Guijo, F., et al. (2014). Sequential third-party mesenchymal stromal cell therapy for refractory acute graft-versus-host disease. Biol Blood Marrow Transplant, 20(10), 1580–1585. https://doi.org/10.1016/j.bbmt.2014.06.015.

    Article  PubMed  Google Scholar 

  37. Wu, K. H., et al. (2011). Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells. Transplantation, 91(12), 1412–1416. https://doi.org/10.1097/TP.0b013e31821aba18.

    Article  PubMed  Google Scholar 

  38. Kurtzberg, J., et al. (2020). A Phase 3, Single-Arm, Prospective Study of Remestemcel-L, Ex Vivo Culture-Expanded Adult Human Mesenchymal Stromal Cells for the Treatment of Pediatric Patients Who Failed to Respond to Steroid Treatment for Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant. https://doi.org/10.1016/j.bbmt.2020.01.018.

  39. Kurtzberg, J., et al. (2020). Study 275: Updated Expanded Access Program for Remestemcel-L in Steroid-Refractory Acute Graft-versus-Host Disease in Children. Biol Blood Marrow Transplant. https://doi.org/10.1016/j.bbmt.2020.01.026.

  40. Kebriaei, P., et al. (2019). A Phase 3 Randomized Study of Remestemcel-L versus Placebo Added to Second-Line Therapy in Patients with Steroid-Refractory Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant. https://doi.org/10.1016/j.bbmt.2019.08.029.

  41. Tse, W. T., et al. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 75(3), 389–397. https://doi.org/10.1097/01.Tp.0000045055.63901.A9.

    Article  CAS  PubMed  Google Scholar 

  42. Di Nicola, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843. https://doi.org/10.1182/blood.v99.10.3838.

    Article  PubMed  Google Scholar 

  43. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822. https://doi.org/10.1182/blood-2004-04-1559.

    Article  CAS  PubMed  Google Scholar 

  44. Dander, E., et al. (2010). Understanding the Immunomodulatory Effect of Mesenchymal Stem Cell Infused In Transplanted Patients with Steroid-Refractory GvHD. Blood, 116(21), 2306–2306. https://doi.org/10.1182/blood.V116.21.2306.2306.

    Article  Google Scholar 

  45. Baksh, D., Yao, R., & Tuan, R. S. (2007). Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells, 25(6), 1384–1392. https://doi.org/10.1634/stemcells.2006-0709.

    Article  CAS  PubMed  Google Scholar 

  46. Lund, R. D., et al. (2007). Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells, 25(3), 602–611. https://doi.org/10.1634/stemcells.2006-0308.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, L., et al. (2009). A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng Part A, 15(8), 2259–2266. https://doi.org/10.1089/ten.tea.2008.0393.

    Article  CAS  PubMed  Google Scholar 

  48. Yoo, K. H., et al. (2009). Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol, 259(2), 150–156. https://doi.org/10.1016/j.cellimm.2009.06.010.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, H., et al. (2005). Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy. Am J Physiol Heart Circ Physiol, 289(5), H2089–H2096. https://doi.org/10.1152/ajpheart.00019.2005.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, Z. Y., et al. (2009). Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells, 27(1), 126–137. https://doi.org/10.1634/stemcells.2008-0456.

    Article  CAS  PubMed  Google Scholar 

  51. Deuse, T., et al. (2011). Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant, 20(5), 655–667. https://doi.org/10.3727/096368910x536473.

    Article  PubMed  Google Scholar 

  52. Zeddou, M., et al. (2010). The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood. Cell Biol Int, 34(7), 693–701. https://doi.org/10.1042/cbi20090414.

    Article  PubMed  Google Scholar 

  53. Najar, M., et al. (2010). Adipose-tissue-derived and Wharton's jelly-derived mesenchymal stromal cells suppress lymphocyte responses by secreting leukemia inhibitory factor. Tissue Eng Part A, 16(11), 3537–3546. https://doi.org/10.1089/ten.TEA.2010.0159.

    Article  CAS  PubMed  Google Scholar 

  54. Prasanna, S. J., et al. (2010). Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One, 5(2), e9016. https://doi.org/10.1371/journal.pone.0009016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weiss, M. L., et al. (2008). Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem Cells, 26(11), 2865–2874. https://doi.org/10.1634/stemcells.2007-1028.

    Article  CAS  PubMed  Google Scholar 

  56. Li, H., et al. (2014). CCR7 guides migration of mesenchymal stem cell to secondary lymphoid organs: a novel approach to separate GvHD from GvL effect. Stem Cells, 32(7), 1890–1903. https://doi.org/10.1002/stem.1656.

    Article  CAS  PubMed  Google Scholar 

  57. Liu, G. Y., et al. (2013). Secreted galectin-3 as a possible biomarker for the immunomodulatory potential of human umbilical cord mesenchymal stromal cells. Cytotherapy, 15(10), 1208–1217. https://doi.org/10.1016/j.jcyt.2013.05.011.

    Article  CAS  PubMed  Google Scholar 

  58. Gieseke, F., et al. (2010). Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood, 116(19), 3770–3779. https://doi.org/10.1182/blood-2010-02-270777.

    Article  CAS  PubMed  Google Scholar 

  59. Sioud, M., et al. (2010). Evidence for the involvement of galectin-3 in mesenchymal stem cell suppression of allogeneic T-cell proliferation. Scand J Immunol, 71(4), 267–274. https://doi.org/10.1111/j.1365-3083.2010.02378.x.

    Article  CAS  PubMed  Google Scholar 

  60. Ungerer, C., et al. (2014). Galectin-9 is a suppressor of T and B cells and predicts the immune modulatory potential of mesenchymal stromal cell preparations. Stem Cells Dev, 23(7), 755–766. https://doi.org/10.1089/scd.2013.0335.

    Article  CAS  PubMed  Google Scholar 

  61. Bartosh, T. J., et al. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A, 107(31), 13724–13729. https://doi.org/10.1073/pnas.1008117107.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Choi, H., et al. (2011). Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood, 118(2), 330–338. https://doi.org/10.1182/blood-2010-12-327353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kota, D. J., et al. (2013). TSG-6 produced by hMSCs delays the onset of autoimmune diabetes by suppressing Th1 development and enhancing tolerogenicity. Diabetes, 62(6), 2048–2058. https://doi.org/10.2337/db12-0931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, R. H., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5(1), 54–63. https://doi.org/10.1016/j.stem.2009.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Oh, J. Y., et al. (2010). Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proc Natl Acad Sci U S A, 107(39), 16875–16880. https://doi.org/10.1073/pnas.1012451107.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Roddy, G. W., et al. (2011). Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-alpha stimulated gene/protein 6. Stem Cells, 29(10), 1572–1579. https://doi.org/10.1002/stem.708.

    Article  CAS  PubMed  Google Scholar 

  67. Oh, J. Y., et al. (2012). Intravenous mesenchymal stem cells prevented rejection of allogeneic corneal transplants by aborting the early inflammatory response. Mol Ther, 20(11), 2143–2152. https://doi.org/10.1038/mt.2012.165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, Y., et al. (2014). Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. J Neuroinflammation, 11, 135. https://doi.org/10.1186/1742-2094-11-135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, R., et al. (2013). Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation, 10, 106. https://doi.org/10.1186/1742-2094-10-106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bartosh, T. J., & Ylostalo, J. H. (2014). Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique. Curr Protoc Stem Cell Biol, 28, Unit 2B.6. https://doi.org/10.1002/9780470151808.sc02b06s28.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Akyurekli, C., et al. (2015). A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Rev Rep, 11(1), 150–160. https://doi.org/10.1007/s12015-014-9545-9.

    Article  CAS  PubMed  Google Scholar 

  72. Kupcova Skalnikova, H. (2013). Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie, 95(12), 2196–2211. https://doi.org/10.1016/j.biochi.2013.07.015.

    Article  CAS  PubMed  Google Scholar 

  73. Liang, X., et al. (2014). Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant, 23(9), 1045–1059. https://doi.org/10.3727/096368913x667709.

    Article  PubMed  Google Scholar 

  74. Maumus, M., Jorgensen, C., & Noel, D. (2013). Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie, 95(12), 2229–2234. https://doi.org/10.1016/j.biochi.2013.04.017.

    Article  CAS  PubMed  Google Scholar 

  75. Yeo, R. W., et al. (2013). Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev, 65(3), 336–341. https://doi.org/10.1016/j.addr.2012.07.001.

    Article  CAS  PubMed  Google Scholar 

  76. Yu, B., Zhang, X., & Li, X. (2014). Exosomes derived from mesenchymal stem cells. Int J Mol Sci, 15(3), 4142–4157. https://doi.org/10.3390/ijms15034142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, B., et al. (2014). Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev, 23(11), 1233–1244. https://doi.org/10.1089/scd.2013.0479.

    Article  CAS  PubMed  Google Scholar 

  78. Conforti, A., et al. (2014). Microvescicles derived from mesenchymal stromal cells are not as effective as their cellular counterpart in the ability to modulate immune responses in vitro. Stem Cells Dev, 23(21), 2591–2599. https://doi.org/10.1089/scd.2014.0091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kordelas, L., et al. (2014). MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia, 28(4), 970–973. https://doi.org/10.1038/leu.2014.41.

    Article  CAS  PubMed  Google Scholar 

  80. Chen, T. S., et al. (2011). Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med, 9, 47. https://doi.org/10.1186/1479-5876-9-47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dunavin, N., et al. (2017). Mesenchymal Stromal Cells: What Is the Mechanism in Acute Graft-Versus-Host Disease? Biomedicines, 5(3). https://doi.org/10.3390/biomedicines5030039.

  82. Lai, R. C., et al. (2016). MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. J Extracell Vesicles, 5, 29828. https://doi.org/10.3402/jev.v5.29828.

    Article  CAS  PubMed  Google Scholar 

  83. E6(R2) Good Clinical Practice: Integrated Addendum to ICH E6(R1) Guidance for Industry, U.S.D.o.H.a.H. Services, Editor. 2018.

  84. Przepiorka, D., et al. (1995). 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant, 15(6), 825–828.

    CAS  PubMed  Google Scholar 

  85. Hartwell, M. J., et al. (2017). An early-biomarker algorithm predicts lethal graft-versus-host disease and survival. JCI Insight, 2(3), e89798. https://doi.org/10.1172/jci.insight.89798.

    Article  PubMed  PubMed Central  Google Scholar 

  86. MacMillan, M. L., DeFor, T. E., & Weisdorf, D. J. (2012). What predicts high risk acute graft-versus-host disease (GVHD) at onset?: identification of those at highest risk by a novel acute GVHD risk score. Br J Haematol, 157(6), 732–741. https://doi.org/10.1111/j.1365-2141.2012.09114.x.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rashidi, A., et al. (2019). Outcomes and Predictors of Response in Steroid-Refractory Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant, 25(11), 2297–2302. https://doi.org/10.1016/j.bbmt.2019.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jagasia, M., et al. (2012). Risk factors for acute GVHD and survival after hematopoietic cell transplantation. Blood, 119(1), 296–307. https://doi.org/10.1182/blood-2011-06-364265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rashidi, A., et al. (2016). Steroids Versus Steroids Plus Additional Agent in Frontline Treatment of Acute Graft-versus-Host Disease: A Systematic Review and Meta-Analysis of Randomized Trials. Biol Blood Marrow Transplant, 22(6), 1133–1137. https://doi.org/10.1016/j.bbmt.2016.02.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zeiser, R., et al. (2020). Ruxolitinib for Glucocorticoid-Refractory Acute Graft-versus-Host Disease. N Engl J Med. https://doi.org/10.1056/NEJMoa1917635.

  91. Major-Monfried, H., et al. (2018). MAGIC biomarkers predict long-term outcomes for steroid-resistant acute GVHD. Blood, 131(25), 2846–2855. https://doi.org/10.1182/blood-2018-01-822957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Beyth, S., et al. (2005). Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 105(5), 2214–2219. https://doi.org/10.1182/blood-2004-07-2921.

    Article  CAS  PubMed  Google Scholar 

  93. Herrero, C., & Perez-Simon, J. A. (2010). Immunomodulatory effect of mesenchymal stem cells. Braz J Med Biol Res, 43(5), 425–430. https://doi.org/10.1590/s0100-879x2010007500033.

    Article  CAS  PubMed  Google Scholar 

  94. Singer, N. G., & Caplan, A. I. (2011). Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol, 6, 457–478. https://doi.org/10.1146/annurev-pathol-011110-130230.

    Article  CAS  PubMed  Google Scholar 

  95. Aksu, A. E., et al. (2008). Co-infusion of donor bone marrow with host mesenchymal stem cells treats GVHD and promotes vascularized skin allograft survival in rats. Clin Immunol, 127(3), 348–358. https://doi.org/10.1016/j.clim.2008.02.003.

    Article  CAS  PubMed  Google Scholar 

  96. Itakura, S., et al. (2007). Mesenchymal stem cells facilitate the induction of mixed hematopoietic chimerism and islet allograft tolerance without GVHD in the rat. Am J Transplant, 7(2), 336–346. https://doi.org/10.1111/j.1600-6143.2006.01643.x.

    Article  CAS  PubMed  Google Scholar 

  97. Jeon, M. S., et al. (2010). Xenoreactivity of human clonal mesenchymal stem cells in a major histocompatibility complex-matched allogeneic graft-versus-host disease mouse model. Cell Immunol, 261(1), 57–63. https://doi.org/10.1016/j.cellimm.2009.11.001.

    Article  CAS  PubMed  Google Scholar 

  98. Bartholomew, A., et al. (2002). Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol, 30(1), 42–48. https://doi.org/10.1016/s0301-472x(01)00769-x.

    Article  PubMed  Google Scholar 

  99. Polchert, D., et al. (2008). IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol, 38(6), 1745–1755. https://doi.org/10.1002/eji.200738129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge Mary Pilcher-Cook, a legislator in the Kansas state House and Senate, for her unwavering support for umbilical cord derived mesenchymal stromal cell research. The authors thank Carol Early for her extensive assistance and insightful suggestions, careful proofreading, editing, formatting, and organization of the manuscript. Mesenchymal stromal cell research Funding: Research reported in this publication was supported by the National Cancer Institute Cancer Center Support Grant P30 CA168524. This work was supported by a CTSA grant from NCATS awarded to the University of Kansas for Frontiers: University of Kansas Clinical and Translational Science Institute (# UL1TR002366). The Midwest Stem Cell Therapy Center at University of Kansas and the Midwest Institute for Comparative Stem Cell Biotechnology are supported by the State of Kansas. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH or NCATS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph McGuirk.

Ethics declarations

Conflict of Interest

  1. 1

    Rupal P. Soder- patent for GvHD applications of WJMSCs

  2. 2

    Buddhadeb Dawn- patent for GvHD applications of WJMSCs

  3. 3

    Mark L. Weiss- patent for GvHD applications of WJMSCs

  4. 4

    Neil Dunavin- No conflicts to disclose

  5. 5

    Scott Weir- No conflicts to disclose

  6. 6

    James Mitchell- patent for GvHD applications of WJMSCs; employed and now consult for the Midwest Stem Cell Therapy Center during the development of MSCTC-0010

  7. 7

    Meizhang Li- No conflicts to disclose

  8. 8

    Leyla Shune- No conflicts to disclose

  9. 9

    Anurag K. Singh- No conflicts to disclose

  10. 10

    Siddhartha Ganguly- No conflicts to disclose

  11. 11

    Marc Morrison- No conflicts to disclose

  12. 12

    Haitham Abdelhakim- No conflicts to disclose

  13. 13

    Andrew K. Godwin- Co-Founder of Sinochips Diagnostics

  14. 14

    Sunil Abhyankar- Director of Midwest Stem Cell Therapy Center; patent for GvHD applications of WJMSCs

  15. 15

    Joseph McGuirk- patent for GvHD applications of WJMSCs

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soder, R.P., Dawn, B., Weiss, M.L. et al. A Phase I Study to Evaluate Two Doses of Wharton’s Jelly-Derived Mesenchymal Stromal Cells for the Treatment of De Novo High-Risk or Steroid-Refractory Acute Graft Versus Host Disease. Stem Cell Rev and Rep 16, 979–991 (2020). https://doi.org/10.1007/s12015-020-10015-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10015-8

Keywords

Navigation