Changes in Stemness Properties, Differentiation Potential, Oxidative Stress, Senescence and Mitochondrial Function in Wharton’s Jelly Stem Cells of Umbilical Cords of Mothers with Gestational Diabetes Mellitus

  • Chiou-Mee Kong
  • Arjunan Subramanian
  • Arijit Biswas
  • Walter Stunkel
  • Yap-Seng Chong
  • Ariff BongsoEmail author
  • Chui-Yee FongEmail author


Gestational diabetes mellitus (GDM) has been associated with an increased risk of maternal and neonatal morbidity. The Wharton’s jelly (WJ) of the umbilical cord (UC) is a useful indicator of the deleterious effects of hyperglycemia on fetal tissues as it represents the fetus embryologically, physiologically and genetically. We studied WJ mesenchymal stem cells (hWJSCs) from UC from mothers without GDM (Normal; n = 3); insulin-controlled GDM mothers (GDMi; n = 3) and diet-controlled GDM mothers (GDMd; n = 3)]. Cell proliferation, stemness markers, telomerase, osteogenic and chondrogenic differentiation, antioxidant enzymes and gene expression for mitochondrial function (ND2, TFAM, PGC1α, and NDUFB9) were significantly lower in GDMi-hWJSCs and GDMd-hWJSCs compared to normal hWJSCs (P < 0.05). On the other hand, cell cycle inhibitors (p16, p21, p27) and p53 were remarkably up-regulated in GDMi-hWJSCs and GDMd-hWJSCs compared to normal hWJSCs. The results from this study confirmed that maternal hyperglycemia even though managed with insulin or diet, induced changes in the properties of the WJ and its cells. These changes may also be observed in fetal tissues and if true, prevention of the onset of gestational diabetes should be a priority over management. Generation of tissues that simulate those of the fetus such as pancreatic and cardiovascular cells from GDM-hWJSCs by direct differentiation or via induced pluripotent stem cell reprogramming provide possible platforms to evaluate the effects of glucose on specific fetal organ.


Gestational diabetes mellitus Wharton’s jelly-derived mesenchymal stem cells Insulin Diet, Stemness Trilineage differentiation Oxidative stress Senescence Mitochondrial function 



The authors thank Ms. Cecille Arquillo Laureano, Ms. Cynthia Zapata Tagarino and Ms. Maylene Tan Zipagan for their assistance.


This work was supported by National University Health System (NUHS) Aspiration Fund (Partner category) [R-174-000-156-720], NUHS Aspiration Fund (New Idea) [R-174-000-155-720] and National Medical Research Council (NMRC) Bedside and Bench Grant [R-174-000-160-511].

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest.


  1. 1.
    Michael Weindling, A. (2009). Offspring of diabetic pregnancy: Short-term outcomes. Seminars in Fetal & Neonatal Medicine, 14, 111–118.CrossRefGoogle Scholar
  2. 2.
    Metzger, B. E., Buchanan, T. A., Coustan, D. R., de Leiva, A., Dunger, D. B., Hadden, D. R., Hod, M., Kitzmiller, J. L., Kjos, S. L., Oats, J. N., Pettitt, D. J., Sacks, D. A., & Zoupas, C. (2007). Summary and recommendations of the fifth international workshop-conference on gestational Diabetes mellitus. Diabetes Care, 30(Suppl 2), S251–S260.CrossRefGoogle Scholar
  3. 3.
    American Diabetes, A. (2012). Diagnosis and classification of diabetes mellitus. Diabetes Care, 35(Suppl 1), S64–S71.CrossRefGoogle Scholar
  4. 4.
    Pedersen J. Diabetes mellitus and pregnancy: Present status of the hyperglycaemia--hyperinsulinism theory and the weight of the newborn baby. Postgraduate Medical Journal 1971:Suppl:66–7.Google Scholar
  5. 5.
    Barker, D. J., Winter, P. D., Osmond, C., Margetts, B., & Simmonds, S. J. (1989). Weight in infancy and death from ischaemic heart disease. Lancet, 2, 577–580.CrossRefGoogle Scholar
  6. 6.
    El-Osta, A., Brasacchio, D., Yao, D., et al. (2008). Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. The Journal of Experimental Medicine, 205, 2409–2417.CrossRefGoogle Scholar
  7. 7.
    Marco, L. J., McCloskey, K., Vuillermin, P. J., Burgner, D., Said, J., & Ponsonby, A. L. (2012). Cardiovascular disease risk in the offspring of diabetic women: The impact of the intrauterine environment. Experimental Diabetes Research, 2012, 565160.CrossRefGoogle Scholar
  8. 8.
    Subramanian, A., Fong, C. Y., Biswas, A., & Bongso, A. (2015). Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton's jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS One, 10, e0127992.CrossRefGoogle Scholar
  9. 9.
    Wang, X. Y., Lan, Y., He, W. Y., Zhang, L., Yao, H. Y., Hou, C. M., Tong, Y., Liu, Y. L., Yang, G., Liu, X. D., Yang, X., Liu, B., & Mao, N. (2008). Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood, 111, 2436–2443.CrossRefGoogle Scholar
  10. 10.
    Singh, S. D. (1986). Gestational diabetes and its effect on the umbilical cord. Early Human Development, 14, 89–98.CrossRefGoogle Scholar
  11. 11.
    Sukarieh, R., Joseph, R., Leow, S. C., Li, Y., Löffler, M., Aris, I. M., Tan, J. H., Teh, A. L., Chen, L., Holbrook, J. D., Ng, K. L., Lee, Y. S., Chong, Y. S., Summers, S. A., Gluckman, P. D., & Stünkel, W. (2014). Molecular pathways reflecting poor intrauterine growth are found in Wharton's jelly-derived mesenchymal stem cells. Human Reproduction, 29, 2287–2301.CrossRefGoogle Scholar
  12. 12.
    Cheung, N. W., Oats, J. J., & McIntyre, H. D. (2005). Australian carbohydrate intolerance study in pregnant women: Implications for the management of gestational diabetes. The Australian & New Zealand Journal of Obstetrics & Gynaecology, 45, 484–485.CrossRefGoogle Scholar
  13. 13.
    Brown, J., Grzeskowiak, L., Williamson, K., Downie, M. R., & Crowther, C. A. (2017). Insulin for the treatment of women with gestational diabetes. Cochrane Database of Systematic Reviews, 11, CD012037.PubMedGoogle Scholar
  14. 14.
    Fong, C. Y., Richards, M., Manasi, N., Biswas, A., & Bongso, A. (2007). Comparative growth behaviour and characterization of stem cells from human Wharton's jelly. Reproductive Biomedicine Online, 15, 708–718.CrossRefGoogle Scholar
  15. 15.
    Kim, J., Piao, Y., Pak, Y. K., Chung, D., Han, Y. M., Hong, J. S., Jun, E. J., Shim, J. Y., Choi, J., & Kim, C. J. (2015). Umbilical cord mesenchymal stromal cells affected by gestational diabetes mellitus display premature aging and mitochondrial dysfunction. Stem Cells and Development, 24, 575–586.CrossRefGoogle Scholar
  16. 16.
    Wajid, N., Naseem, R., Anwar, S. S., Awan, S. J., Ali, M., Javed, S., & Ali, F. (2015). The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells. Cell and Tissue Banking, 16, 389–397.CrossRefGoogle Scholar
  17. 17.
    Amrithraj, A. I., Kodali, A., Nguyen, L., Teo, A. K. K., Chang, C. W., Karnani, N., Ng, K. L., Gluckman, P. D., Chong, Y. S., & Stünkel, W. (2017). Gestational Diabetes alters functions in Offspring's umbilical cord cells with implications for cardiovascular health. Endocrinology, 158, 2102–2112.CrossRefGoogle Scholar
  18. 18.
    Ezimokhai, M., Rizk, D. E., & Thomas, L. (2001). Abnormal vascular coiling of the umbilical cord in gestational diabetes mellitus. Archives of Physiology and Biochemistry, 109, 209–214.CrossRefGoogle Scholar
  19. 19.
    Alam, M. R., Momen, M. A., Sultana, A. A., & Hassan, S. N. (2015). Gross and Histomorphologic study of the umbilical cord in pre-gestational Diabetes mellitus and gestational Diabetes mellitus. Bangladesh Journal of Anatomy, 12, 25–29.CrossRefGoogle Scholar
  20. 20.
    Regev, R. H., Dolfin, T., Eliakim, A., Arnon, S., Bauer, S., Nemet, D., & Litmanovitz, I. (2004). Bone speed of sound in infants of mothers with gestational diabetes mellitus. Journal of Pediatric Endocrinology and Metabolism, 17, 1083–1088.CrossRefGoogle Scholar
  21. 21.
    Mimouni, F., Steichen, J. J., Tsang, R. C., Hertzberg, V., & Miodovnik, M. (1988). Decreased bone mineral content in infants of diabetic mothers. American Journal of Perinatology, 5, 339–343.CrossRefGoogle Scholar
  22. 22.
    Zhao, Z., & Reece, E. A. (2013). New concepts in diabetic embryopathy. Clinics in Laboratory Medicine, 33, 207–233.CrossRefGoogle Scholar
  23. 23.
    Aguiari, P., Leo, S., Zavan, B., Vindigni, V., Rimessi, A., Bianchi, K., Franzin, C., Cortivo, R., Rossato, M., Vettor, R., Abatangelo, G., Pozzan, T., Pinton, P., & Rizzuto, R. (2008). High glucose induces adipogenic differentiation of muscle-derived stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 1226–1231.CrossRefGoogle Scholar
  24. 24.
    Cramer, C., Freisinger, E., Jones, R. K., Slakey, D. P., Dupin, C. L., Newsome, E. R., Alt, E. U., & Izadpanah, R. (2010). Persistent high glucose concentrations alter the regenerative potential of mesenchymal stem cells. Stem Cells and Development, 19, 1875–1884.CrossRefGoogle Scholar
  25. 25.
    Tsai, T. L., Manner, P. A., & Li, W. J. (2013). Regulation of mesenchymal stem cell chondrogenesis by glucose through protein kinase C/transforming growth factor signaling. Osteoarthritis and Cartilage, 21, 368–376.CrossRefGoogle Scholar
  26. 26.
    Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., & Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88, 593–602.CrossRefGoogle Scholar
  27. 27.
    Parsch, D., Fellenberg, J., Brummendorf, T. H., Eschlbeck, A. M., & Richter, W. (2004). Telomere length and telomerase activity during expansion and differentiation of human mesenchymal stem cells and chondrocytes. J Mol Med (Berl), 82, 49–55.CrossRefGoogle Scholar
  28. 28.
    Stolzing, A., Coleman, N., & Scutt, A. (2006). Glucose-induced replicative senescence in mesenchymal stem cells. Rejuvenation Research, 9, 31–35.CrossRefGoogle Scholar
  29. 29.
    Cernea, S., & Dobreanu, M. (2013). Diabetes and beta cell function: From mechanisms to evaluation and clinical implications. Biochem Med (Zagreb), 23, 266–280.CrossRefGoogle Scholar
  30. 30.
    Robertson, R. P., Harmon, J., Tran, P. O., & Poitout, V. (2004). Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes, 53(Suppl 1), S119–S124.CrossRefGoogle Scholar
  31. 31.
    Kornicka, K., Marycz, K., Marędziak, M., Tomaszewski, K. A., & Nicpoń, J. (2017). The effects of the DNA methyltranfserases inhibitor 5-azacitidine on ageing, oxidative stress and DNA methylation of adipose derived stem cells. Journal of Cellular and Molecular Medicine, 21, 387–401.CrossRefGoogle Scholar
  32. 32.
    Kawamura, M., Heinecke, J. W., & Chait, A. (1994). Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway. The Journal of Clinical Investigation, 94, 771–778.CrossRefGoogle Scholar
  33. 33.
    Bugger, H., & Abel, E. D. (2010). Mitochondria in the diabetic heart. Cardiovascular Research, 88, 229–240.CrossRefGoogle Scholar
  34. 34.
    Kornicka, K., Houston, J., & Marycz, K. (2018). Dysfunction of mesenchymal stem cells isolated from metabolic syndrome and type 2 diabetic patients as result of oxidative stress and autophagy may limit their potential therapeutic use. Stem Cell Reviews and Reports, 14, 337–345.CrossRefGoogle Scholar
  35. 35.
    Marycz, K., Kornicka, K., Basinska, K., & Czyrek, A. (2016). Equine metabolic syndrome affects viability, senescence, and stress factors of equine adipose-derived mesenchymal stromal stem cells: New insight into EqASCs isolated from EMS horses in the context of their aging. Oxidative Medicine and Cellular Longevity, 2016, 1–17.Google Scholar
  36. 36.
    Simmons, R. A. (2006). Developmental origins of diabetes: The role of oxidative stress. Free Radical Biology and Medicine, 40, 917–922.CrossRefGoogle Scholar
  37. 37.
    Troyer, D. L., & Weiss, M. L. (2008). Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells, 26, 591–599.CrossRefGoogle Scholar
  38. 38.
    Fong, C. Y., Subramanian, A., Gauthaman, K., Venugopal, J., Biswas, A., Ramakrishna, S., & Bongso, A. (2012). Human umbilical cord Wharton's jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Reviews, 8, 195–209.CrossRefGoogle Scholar
  39. 39.
    Gotherstrom, C. (2007). Immunomodulation by multipotent mesenchymal stromal cells. Transplantation, 84, S35–S37.CrossRefGoogle Scholar
  40. 40.
    Meirelles Lda, S., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20, 419–427.CrossRefGoogle Scholar
  41. 41.
    Nemeth, K., Wilson, T., Rada, B., Parmelee, A., Mayer, B., Buzas, E., Falus, A., Key, S., Masszi, T., Karpati, S., & Mezey, E. (2012). Characterization and function of histamine receptors in human bone marrow stromal cells. Stem Cells, 30, 222–231.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University Health System (NUHS)National University of SingaporeSingaporeSingapore
  2. 2.Experimental Biotherapeutics CentreAgency for Science, Technology and Research (A*STAR)SingaporeSingapore

Personalised recommendations