The Ambivalent Role of lncRNA Xist in Carcinogenesis
Abstract
Long non-coding RNA (lncRNA) Xist has emerged as a key modulator in dosage compensation by randomly inactivating one of the X chromosomes in mammals during embryonic development. Dysregulation of X chromosome inactivation (XCI) due to deletion of Xist has been proven to induce hematologic cancer in mice. However, this phenomenon is not consistent in humans as growing evidence suggests Xist can suppress or promote cancer growth in different organs of the human body. In this review, we discuss recent advances of XCI in human embryonic stem cells and provide an explanation for the seemingly contradictory roles of Xist in development of human cancer.
Keywords
Cancer stem cell Long non-coding RNA X Chromosome inactivation XIST non-coding RNA XACT non-coding RNA MicroRNAs Competing endogenous RNA ExosomesNotes
Acknowledgments
This study was supported by grants from the Ministry of Science and Technology (MOST 107-2321-B-038-002); “TMU Research Center of Cancer Translational Medicine” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan; and the Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (MOHW107-TDU-B-212-114020; MOHW107-TDU-B-212-114014; MOHW107-TDU-B-212-114026B). We thank Dr. Frank Lu for his invaluable advice and English proofreading.
Compliance with Ethical Standards
Conflict of Interest
The authors report no conflict of interest.
References
- 1.Graves, J. A. (2006). Sex chromosome specialization and degeneration in mammals. Cell, 124(5), 901–914.PubMedCrossRefPubMedCentralGoogle Scholar
- 2.Heard, E. (2006). Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes & Development, 20(14), 1848–1867.CrossRefGoogle Scholar
- 3.Crews, D. (2003). Sex determination: Where environment and genetics meet. Evolution & Development, 5, 50–55.CrossRefGoogle Scholar
- 4.Payer, B., & Lee, J. T. (2008). X chromosome dosage compensation: How mammals keep the balance. Annual Review of Genetics, 42, 733–772.PubMedCrossRefPubMedCentralGoogle Scholar
- 5.Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature, 190, 372–373.PubMedCrossRefPubMedCentralGoogle Scholar
- 6.Wutz, A., Rasmussen, T. P., & Jaenisch, R. (2002). Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nature Genetics, 30, 167–174.PubMedCrossRefPubMedCentralGoogle Scholar
- 7.Lee, J. T., & Bartolomei, M. S. (2013). X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell, 152, 1308–1323.PubMedCrossRefGoogle Scholar
- 8.Sakaguchi, T., Hasegawa, Y., Brockdorff, N., Tsutsui, K., Tsutsui, K. M., Sado, T., & Nakagawa, S. (2016). Control of chromosomal localization of Xist by hnRNP U family molecules. Developmental Cell, 39, 11–12.PubMedCrossRefPubMedCentralGoogle Scholar
- 9.Chen, C. K., Blanco, M., Jackson, C., Aznauryan, E., Ollikainen, N., Surka, C., Chow, A., Cerase, A., McDonel, P., & Guttman, M. (2016). Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science, 354, 468–472.PubMedCrossRefGoogle Scholar
- 10.Chu, C., Zhang, Q. C., da Rocha, S. T., Flynn, R. A., Bharadwaj, M., Calabrese, J. M., Magnuson, T., Heard, E., & Chang, H. Y. (2015). Systematic discovery of Xist RNA binding proteins. Cell, 161, 404–416.PubMedPubMedCentralCrossRefGoogle Scholar
- 11.McHugh, C. A., Chen, C. K., Chow, A., et al. (2015). The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature, 521, 232–236.PubMedPubMedCentralCrossRefGoogle Scholar
- 12.da Rocha, S. T., & Heard, E. (2017). Novel players in X inactivation: Insights into Xist-mediated gene silencing and chromosome conformation. Nature Structural & Molecular Biology, 24, 197–204.CrossRefGoogle Scholar
- 13.Patil, D. P., Chen, C. K., Pickering, B. F., Chow, A., Jackson, C., Guttman, M., & Jaffrey, S. R. (2016). m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature, 537, 369–373.PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Mira-Bontenbal, H., & Gribnau, J. (2016). New Xist-interacting proteins in X-chromosome inactivation. Current Biology, 26, R338–R342.PubMedCrossRefPubMedCentralGoogle Scholar
- 15.Keniry, A., & Blewitt, M. E. (2018). Studying X chromosome inactivation in the single-cell genomic era. Biochemical Society Transactions, 46, 577–586.PubMedCrossRefPubMedCentralGoogle Scholar
- 16.Patrat, C., Okamoto, I., Diabangouaya, P., Vialon, V., le Baccon, P., Chow, J., & Heard, E. (2009). Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. Proceedings of the National Academy of Sciences of the United States of America, 106, 5198–5203.PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Takagi, N., & Sasaki, M. (1975). Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature, 256, 640–642.PubMedCrossRefPubMedCentralGoogle Scholar
- 18.Sahakyan, A., Yang, Y., & Plath, K. (2018). The role of Xist in X-chromosome dosage compensation. Trends in Cell Biology, 28, 999–1013.PubMedCrossRefPubMedCentralGoogle Scholar
- 19.Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D., & Heard, E. (2004). Epigenetic dynamics of imprinted X inactivation during early mouse development. Science, 303, 644–649.PubMedCrossRefPubMedCentralGoogle Scholar
- 20.Nora, E. P., Lajoie, B. R., Schulz, E. G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N. L., Meisig, J., Sedat, J., Gribnau, J., Barillot, E., Blüthgen, N., Dekker, J., & Heard, E. (2012). Spatial partitioning of the regulatory landscape of the X-inactivation Centre. Nature, 485, 381–385.PubMedPubMedCentralCrossRefGoogle Scholar
- 21.Robert Finestra, T., & Gribnau, J. (2017). X chromosome inactivation: Silencing, topology and reactivation. Current Opinion in Cell Biology, 46, 54–61.PubMedCrossRefPubMedCentralGoogle Scholar
- 22.Navarro, P., Chambers, I., Karwacki-Neisius, V., Chureau, C., Morey, C., Rougeulle, C., & Avner, P. (2008). Molecular coupling of Xist regulation and pluripotency. Science, 321, 1693–1695.PubMedCrossRefPubMedCentralGoogle Scholar
- 23.Donohoe, M. E., Silva, S. S., Pinter, S. F., Xu, N., & Lee, J. T. (2009). The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature, 460, 128–132.PubMedPubMedCentralCrossRefGoogle Scholar
- 24.Navarro, P., Oldfield, A., Legoupi, J., Festuccia, N., Dubois, A., Attia, M., Schoorlemmer, J., Rougeulle, C., Chambers, I., & Avner, P. (2010). Molecular coupling of Tsix regulation and pluripotency. Nature, 468, 457–460.PubMedCrossRefPubMedCentralGoogle Scholar
- 25.Maduro, C., de Hoon, B., & Gribnau, J. (2016). Fitting the puzzle pieces: The bigger picture of XCI. Trends in Biochemical Sciences, 41, 138–147.PubMedCrossRefPubMedCentralGoogle Scholar
- 26.Sahakyan A, Yang Y, Plath K. The Role of Xist in X-Chromosome Dosage Compensation. Trends Cell Biol 2018.Google Scholar
- 27.van den Berg, I. M., Laven, J. S., Stevens, M., et al. (2009). X chromosome inactivation is initiated in human preimplantation embryos. American Journal of Human Genetics, 84, 771–779.PubMedPubMedCentralCrossRefGoogle Scholar
- 28.Okamoto, I., Patrat, C., Thepot, D., et al. (2011). Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature, 472, 370–374.PubMedCrossRefPubMedCentralGoogle Scholar
- 29.Saiba, R., Arava, M., & Gayen, S. (2018). Dosage compensation in human pre-implantation embryos: X-chromosome inactivation or dampening? EMBO Reports, 19, e46294.PubMedCrossRefPubMedCentralGoogle Scholar
- 30.Vallot, C., Patrat, C., Collier, A. J., Huret, C., Casanova, M., Liyakat Ali, T. M., Tosolini, M., Frydman, N., Heard, E., Rugg-Gunn, P. J., & Rougeulle, C. (2017). XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development. Cell Stem Cell, 20, 102–111.PubMedPubMedCentralCrossRefGoogle Scholar
- 31.Moreira de Mello, J. C., Fernandes, G. R., Vibranovski, M. D., & Pereira, L. V. (2017). Early X chromosome inactivation during human preimplantation development revealed by single-cell RNA-sequencing. Scientific Reports, 7, 10794.PubMedPubMedCentralCrossRefGoogle Scholar
- 32.Sahakyan, A., Kim, R., Chronis, C., Sabri, S., Bonora, G., Theunissen, T. W., Kuoy, E., Langerman, J., Clark, A. T., Jaenisch, R., & Plath, K. (2017). Human naive pluripotent stem cells model X chromosome dampening and X inactivation. Cell Stem Cell, 20, 87–101.PubMedCrossRefPubMedCentralGoogle Scholar
- 33.Migeon, B. R., Lee, C. H., Chowdhury, A. K., & Carpenter, H. (2002). Species differences in TSIX/Tsix reveal the roles of these genes in X-chromosome inactivation. American Journal of Human Genetics, 71, 286–293.PubMedPubMedCentralCrossRefGoogle Scholar
- 34.Vallot, C., Huret, C., Lesecque, Y., Resch, A., Oudrhiri, N., Bennaceur-Griscelli, A., Duret, L., & Rougeulle, C. (2013). XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nature Genetics, 45, 239–241.PubMedCrossRefGoogle Scholar
- 35.Deng, X., Berletch, J. B., Nguyen, D. K., & Disteche, C. M. (2014). X chromosome regulation: Diverse patterns in development, tissues and disease. Nature Reviews. Genetics, 15, 367–378.PubMedPubMedCentralCrossRefGoogle Scholar
- 36.Vallot, C., Ouimette, J. F., Makhlouf, M., Féraud, O., Pontis, J., Côme, J., Martinat, C., Bennaceur-Griscelli, A., Lalande, M., & Rougeulle, C. (2015). Erosion of X chromosome inactivation in human pluripotent cells initiates with XACT coating and depends on a specific heterochromatin landscape. Cell Stem Cell, 16, 533–546.PubMedCrossRefGoogle Scholar
- 37.Mekhoubad, S., Bock, C., de Boer, A. S., Kiskinis, E., Meissner, A., & Eggan, K. (2012). Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell, 10, 595–609.PubMedPubMedCentralCrossRefGoogle Scholar
- 38.Patel, S., Bonora, G., Sahakyan, A., Kim, R., Chronis, C., Langerman, J., Fitz-Gibbon, S., Rubbi, L., Skelton, R. J. P., Ardehali, R., Pellegrini, M., Lowry, W. E., Clark, A. T., & Plath, K. (2017). Human embryonic stem cells do not change their X inactivation status during differentiation. Cell Reports, 18, 54–67.PubMedCrossRefGoogle Scholar
- 39.Bruck, T., Yanuka, O., & Benvenisty, N. (2013). Human pluripotent stem cells with distinct X inactivation status show molecular and cellular differences controlled by the X-linked ELK-1 gene. Cell Reports, 4, 262–270.PubMedCrossRefGoogle Scholar
- 40.Sahakyan, A., Plath, K., & Rougeulle, C. (2017). Regulation of X-chromosome dosage compensation in human: Mechanisms and model systems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372.Google Scholar
- 41.Pageau, G. J., Hall, L. L., Ganesan, S., Livingston, D. M., & Lawrence, J. B. (2007). The disappearing Barr body in breast and ovarian cancers. Nature Reviews. Cancer, 7, 628–633.PubMedCrossRefPubMedCentralGoogle Scholar
- 42.Rosen, P. P., Savino, A., Menendez-Botet, C., Urban, J. A., Mike, V., Schwartz, M. K., & Melamed, M. R. (1977). Barr body distribution and estrogen receptor protein in mammary carcinoma. Annals of Clinical and Laboratory Science, 7, 491–499.PubMedPubMedCentralGoogle Scholar
- 43.Jazaeri, A. A., Yee, C. J., Sotiriou, C., Brantley, K. R., Boyd, J., & Liu, E. T. (2002). Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. Journal of the National Cancer Institute, 94, 990–1000.PubMedCrossRefPubMedCentralGoogle Scholar
- 44.Jazaeri, A. A., Chandramouli, G. V., Aprelikova, O., et al. (2004). BRCA1-mediated repression of select X chromosome genes. Journal of Translational Medicine, 2, 32.PubMedPubMedCentralCrossRefGoogle Scholar
- 45.Ganesan, S., Silver, D. P., Greenberg, R. A., Avni, D., Drapkin, R., Miron, A., Mok, S. C., Randrianarison, V., Brodie, S., Salstrom, J., Rasmussen, T. P., Klimke, A., Marrese, C., Marahrens, Y., Deng, C. X., Feunteun, J., & Livingston, D. M. (2002). BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell, 111, 393–405.PubMedCrossRefPubMedCentralGoogle Scholar
- 46.Xiao, C., Sharp, J. A., Kawahara, M., Davalos, A. R., Difilippantonio, M. J., Hu, Y., Li, W., Cao, L., Buetow, K., Ried, T., Chadwick, B. P., Deng, C. X., & Panning, B. (2007). The XIST noncoding RNA functions independently of BRCA1 in X inactivation. Cell, 128, 977–989.PubMedCrossRefPubMedCentralGoogle Scholar
- 47.Chaligne, R., Popova, T., Mendoza-Parra, M. A., et al. (2015). The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer. Genome Research, 25, 488–503.PubMedPubMedCentralCrossRefGoogle Scholar
- 48.Jager, N., Schlesner, M., Jones, D. T., et al. (2013). Hypermutation of the inactive X chromosome is a frequent event in cancer. Cell, 155, 567–581.PubMedPubMedCentralCrossRefGoogle Scholar
- 49.Yildirim, E., Kirby, J. E., Brown, D. E., Mercier, F. E., Sadreyev, R. I., Scadden, D. T., & Lee, J. T. (2013). Xist RNA is a potent suppressor of hematologic cancer in mice. Cell, 152, 727–742.PubMedCrossRefGoogle Scholar
- 50.Zhang, R., & Xia, T. (2017). Long non-coding RNA XIST regulates PDCD4 expression by interacting with miR-21-5p and inhibits osteosarcoma cell growth and metastasis. International Journal of Oncology, 51, 1460–1470.PubMedPubMedCentralCrossRefGoogle Scholar
- 51.Du, Y., Weng, X. D., Wang, L., et al. (2017). LncRNA XIST acts as a tumor suppressor in prostate cancer through sponging miR-23a to modulate RKIP expression. Oncotarget, 8, 94358–94370.PubMedPubMedCentralGoogle Scholar
- 52.Chang, S., Chen, B., Wang, X., Wu, K., & Sun, Y. (2017). Long non-coding RNA XIST regulates PTEN expression by sponging miR-181a and promotes hepatocellular carcinoma progression. BMC Cancer, 17, 248.PubMedPubMedCentralCrossRefGoogle Scholar
- 53.Kobayashi, R., Miyagawa, R., Yamashita, H., Morikawa, T., Okuma, K., Fukayama, M., Ohtomo, K., & Nakagawa, K. (2016). Increased expression of long non-coding RNA XIST predicts favorable prognosis of cervical squamous cell carcinoma subsequent to definitive chemoradiation therapy. Oncology Letters, 12, 3066–3074.PubMedPubMedCentralCrossRefGoogle Scholar
- 54.Huang, Y. S., Chang, C. C., Lee, S. S., Jou, Y. S., & Shih, H. M. (2016). Xist reduction in breast cancer upregulates AKT phosphorylation via HDAC3-mediated repression of PHLPP1 expression. Oncotarget, 7, 43256–43266.PubMedPubMedCentralGoogle Scholar
- 55.Zheng, R., Lin, S., Guan, L., Yuan, H., Liu, K., Liu, C., Ye, W., Liao, Y., Jia, J., & Zhang, R. (2018). Long non-coding RNA XIST inhibited breast cancer cell growth, migration, and invasion via miR-155/CDX1 axis. Biochemical and Biophysical Research Communications, 498, 1002–1008.PubMedCrossRefPubMedCentralGoogle Scholar
- 56.Chen, D. L., Ju, H. Q., Lu, Y. X., Chen, L. Z., Zeng, Z. L., Zhang, D. S., Luo, H. Y., Wang, F., Qiu, M. Z., Wang, D. S., Xu, D. Z., Zhou, Z. W., Pelicano, H., Huang, P., Xie, D., Wang, F. H., Li, Y. H., & Xu, R. H. (2016). Long non-coding RNA XIST regulates gastric cancer progression by acting as a molecular sponge of miR-101 to modulate EZH2 expression. Journal of Experimental & Clinical Cancer Research, 35, 142.CrossRefGoogle Scholar
- 57.Ma, L., Zhou, Y., Luo, X., Gao, H., Deng, X., & Jiang, Y. (2017). Long non-coding RNA XIST promotes cell growth and invasion through regulating miR-497/MACC1 axis in gastric cancer. Oncotarget, 8, 4125–4135.PubMedPubMedCentralGoogle Scholar
- 58.Xu, Y., Wang, J., & Wang, J. (2018). Long noncoding RNA XIST promotes proliferation and invasion by targeting miR-141 in papillary thyroid carcinoma. Onco Targets Ther, 11, 5035–5043.PubMedPubMedCentralCrossRefGoogle Scholar
- 59.Sun, N., Zhang, G., & Liu, Y. (2018). Long non-coding RNA XIST sponges miR-34a to promotes colon cancer progression via Wnt/beta-catenin signaling pathway. Gene, 665, 141–148.PubMedCrossRefPubMedCentralGoogle Scholar
- 60.Zhu, J., Zhang, R., Yang, D., Li, J., Yan, X., Jin, K., Li, W., Liu, X., Zhao, J., Shang, W., & Yu, T. (2018). Knockdown of long non-coding RNA XIST inhibited doxorubicin resistance in colorectal Cancer by upregulation of miR-124 and downregulation of SGK1. Cellular Physiology and Biochemistry, 51, 113–128.PubMedCrossRefPubMedCentralGoogle Scholar
- 61.Li, C., Wan, L., Liu, Z., Xu, G., Wang, S., Su, Z., Zhang, Y., Zhang, C., Liu, X., Lei, Z., & Zhang, H. T. (2018). Long non-coding RNA XIST promotes TGF-beta-induced epithelial-mesenchymal transition by regulating miR-367/141-ZEB2 axis in non-small-cell lung cancer. Cancer Letters, 418, 185–195.PubMedCrossRefPubMedCentralGoogle Scholar
- 62.Xu, R., Zhu, X., Chen, F., Huang, C., Ai, K., Wu, H., Zhang, L., & Zhao, X. (2018). LncRNA XIST/miR-200c regulates the stemness properties and tumourigenicity of human bladder cancer stem cell-like cells. Cancer Cell International, 18, 41.PubMedPubMedCentralCrossRefGoogle Scholar
- 63.Sun, Z., Zhang, B., & Cui, T. (2018). Long non-coding RNA XIST exerts oncogenic functions in pancreatic cancer via miR-34a-5p. Oncology Reports, 39, 1591–1600.PubMedPubMedCentralGoogle Scholar
- 64.Kong, Q., Zhang, S., Liang, C., Zhang, Y., Kong, Q., Chen, S., Qin, J., & Jin, Y. (2018). LncRNA XIST functions as a molecular sponge of miR-194-5p to regulate MAPK1 expression in hepatocellular carcinoma cell. Journal of Cellular Biochemistry, 119, 4458–4468.PubMedCrossRefPubMedCentralGoogle Scholar
- 65.Cheng, Q., Xu, X., Jiang, H., Xu, L., & Li, Q. (2018). Knockdown of long non-coding RNA XIST suppresses nasopharyngeal carcinoma progression by activating miR-491-5p. Journal of Cellular Biochemistry, 119, 3936–3944.PubMedCrossRefPubMedCentralGoogle Scholar
- 66.Cheng, Z., Li, Z., Ma, K., Li, X., Tian, N., Duan, J., Xiao, X., & Wang, Y. (2017). Long non-coding RNA XIST promotes glioma Tumorigenicity and angiogenesis by acting as a molecular sponge of miR-429. Journal of Cancer, 8, 4106–4116.PubMedPubMedCentralCrossRefGoogle Scholar
- 67.Tukiainen, T., Villani, A. C., Yen, A., Rivas, M. A., Marshall, J. L., Satija, R., Aguirre, M., Gauthier, L., Fleharty, M., Kirby, A., Cummings, B. B., Castel, S. E., Karczewski, K. J., Aguet, F., Byrnes, A., Aguet, F., Ardlie, K. G., Cummings, B. B., Gelfand, E. T., Getz, G., Hadley, K., Handsaker, R. E., Huang, K. H., Kashin, S., Karczewski, K. J., Lek, M., Li, X., MacArthur, D. G., Nedzel, J. L., Nguyen, D. T., Noble, M. S., Segrè, A. V., Trowbridge, C. A., Tukiainen, T., Abell, N. S., Balliu, B., Barshir, R., Basha, O., Battle, A., Bogu, G. K., Brown, A., Brown, C. D., Castel, S. E., Chen, L. S., Chiang, C., Conrad, D. F., Cox, N. J., Damani, F. N., Davis, J. R., Delaneau, O., Dermitzakis, E. T., Engelhardt, B. E., Eskin, E., Ferreira, P. G., Frésard, L., Gamazon, E. R., Garrido-Martín, D., Gewirtz, A. D. H., Gliner, G., Gloudemans, M. J., Guigo, R., Hall, I. M., Han, B., He, Y., Hormozdiari, F., Howald, C., Kyung Im, H., Jo, B., Yong Kang, E., Kim, Y., Kim-Hellmuth, S., Lappalainen, T., Li, G., Li, X., Liu, B., Mangul, S., McCarthy, M. I., McDowell, I. C., Mohammadi, P., Monlong, J., Montgomery, S. B., Muñoz-Aguirre, M., Ndungu, A. W., Nicolae, D. L., Nobel, A. B., Oliva, M., Ongen, H., Palowitch, J. J., Panousis, N., Papasaikas, P., Park, Y. S., Parsana, P., Payne, A. J., Peterson, C. B., Quan, J., Reverter, F., Sabatti, C., Saha, A., Sammeth, M., Scott, A. J., Shabalin, A. A., Sodaei, R., Stephens, M., Stranger, B. E., Strober, B. J., Sul, J. H., Tsang, E. K., Urbut, S., van de Bunt, M., Wang, G., Wen, X., Wright, F. A., Xi, H. S., Yeger-Lotem, E., Zappala, Z., Zaugg, J. B., Zhou, Y. H., Akey, J. M., Bates, D., Chan, J., Chen, L. S., Claussnitzer, M., Demanelis, K., Diegel, M., Doherty, J. A., Feinberg, A. P., Fernando, M. S., Halow, J., Hansen, K. D., Haugen, E., Hickey, P. F., Hou, L., Jasmine, F., Jian, R., Jiang, L., Johnson, A., Kaul, R., Kellis, M., Kibriya, M. G., Lee, K., Li, J. B., Li, Q., Li, X., Lin, J., Lin, S., Linder, S., Linke, C., Liu, Y., Maurano, M. T., Molinie, B., Montgomery, S. B., Nelson, J., Neri, F. J., Oliva, M., Park, Y., Pierce, B. L., Rinaldi, N. J., Rizzardi, L. F., Sandstrom, R., Skol, A., Smith, K. S., Snyder, M. P., Stamatoyannopoulos, J., Stranger, B. E., Tang, H., Tsang, E. K., Wang, L., Wang, M., van Wittenberghe, N., Wu, F., Zhang, R., Nierras, C. R., Branton, P. A., Carithers, L. J., Guan, P., Moore, H. M., Rao, A., Vaught, J. B., Gould, S. E., Lockart, N. C., Martin, C., Struewing, J. P., Volpi, S., Addington, A. M., Koester, S. E., Little, A. R., Brigham, L. E., Hasz, R., Hunter, M., Johns, C., Johnson, M., Kopen, G., Leinweber, W. F., Lonsdale, J. T., McDonald, A., Mestichelli, B., Myer, K., Roe, B., Salvatore, M., Shad, S., Thomas, J. A., Walters, G., Washington, M., Wheeler, J., Bridge, J., Foster, B. A., Gillard, B. M., Karasik, E., Kumar, R., Miklos, M., Moser, M. T., Jewell, S. D., Montroy, R. G., Rohrer, D. C., Valley, D. R., Davis, D. A., Mash, D. C., Undale, A. H., Smith, A. M., Tabor, D. E., Roche, N. V., McLean, J. A., Vatanian, N., Robinson, K. L., Sobin, L., Barcus, M. E., Valentino, K. M., Qi, L., Hunter, S., Hariharan, P., Singh, S., Um, K. S., Matose, T., Tomaszewski, M. M., Barker, L. K., Mosavel, M., Siminoff, L. A., Traino, H. M., Flicek, P., Juettemann, T., Ruffier, M., Sheppard, D., Taylor, K., Trevanion, S. J., Zerbino, D. R., Craft, B., Goldman, M., Haeussler, M., Kent, W. J., Lee, C. M., Paten, B., Rosenbloom, K. R., Vivian, J., Zhu, J., Lappalainen, T., Regev, A., Ardlie, K. G., Hacohen, N., & MacArthur, D. G. (2017). Landscape of X chromosome inactivation across human tissues. Nature, 550, 244–248.PubMedPubMedCentralCrossRefGoogle Scholar
- 68.Anguera, M. C., Sadreyev, R., Zhang, Z., Szanto, A., Payer, B., Sheridan, S. D., Kwok, S., Haggarty, S. J., Sur, M., Alvarez, J., Gimelbrant, A., Mitalipova, M., Kirby, J. E., & Lee, J. T. (2012). Molecular signatures of human induced pluripotent stem cells highlight sex differences and cancer genes. Cell Stem Cell, 11, 75–90.PubMedPubMedCentralCrossRefGoogle Scholar
- 69.Sousa, E. J., Stuart, H. T., Bates, L. E., Ghorbani, M., Nichols, J., Dietmann, S., & Silva, J. C. R. (2018). Exit from naive pluripotency induces a transient X chromosome inactivation-like state in males. Cell Stem Cell, 22, 919–928 e6.PubMedPubMedCentralCrossRefGoogle Scholar
- 70.Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The 'seed and soil' hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.PubMedCrossRefPubMedCentralGoogle Scholar
- 71.Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the "soil": The premetastatic niche. Cancer Research, 66, 11089–11093.PubMedPubMedCentralCrossRefGoogle Scholar
- 72.Mu, W., Rana, S., & Zoller, M. (2013). Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia, 15, 875–887.PubMedPubMedCentralCrossRefGoogle Scholar
- 73.Le, M. T., Hamar, P., Guo, C., et al. (2014). miR-200-containing extracellular vesicles promote breast cancer cell metastasis. The Journal of Clinical Investigation, 124, 5109–5128.PubMedPubMedCentralCrossRefGoogle Scholar
- 74.Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A. E., Ararso, Y., Zhang, T., Zhang, H., Hernandez, J., Weiss, J. M., Dumont-Cole, V. D., Kramer, K., Wexler, L. H., Narendran, A., Schwartz, G. K., Healey, J. H., Sandstrom, P., Jørgen Labori, K., Kure, E. H., Grandgenett, P. M., Hollingsworth, M. A., de Sousa, M., Kaur, S., Jain, M., Mallya, K., Batra, S. K., Jarnagin, W. R., Brady, M. S., Fodstad, O., Muller, V., Pantel, K., Minn, A. J., Bissell, M. J., Garcia, B. A., Kang, Y., Rajasekhar, V. K., Ghajar, C. M., Matei, I., Peinado, H., Bromberg, J., & Lyden, D. (2015). Tumour exosome integrins determine organotropic metastasis. Nature, 527, 329–335.PubMedPubMedCentralCrossRefGoogle Scholar
- 75.Minks, J., Robinson, W. P., & Brown, C. J. (2008). A skewed view of X chromosome inactivation. The Journal of Clinical Investigation, 118, 20–23.PubMedCrossRefPubMedCentralGoogle Scholar
- 76.Germain, D. P. (2010). Fabry disease. Orphanet Journal of Rare Diseases, 5, 30.PubMedPubMedCentralCrossRefGoogle Scholar
- 77.Plenge, R. M., Hendrich, B. D., Schwartz, C., Arena, J. F., Naumova, A., Sapienza, C., Winter, R. M., & Willard, H. F. (1997). A promoter mutation in the XIST gene in two unrelated families with skewed X-chromosome inactivation. Nature Genetics, 17, 353–356.PubMedCrossRefPubMedCentralGoogle Scholar
- 78.Nesterova, T. B., Johnston, C. M., Appanah, R., Newall, A. E., Godwin, J., Alexiou, M., & Brockdorff, N. (2003). Skewing X chromosome choice by modulating sense transcription across the Xist locus. Genes & Development, 17, 2177–2190.CrossRefGoogle Scholar
- 79.Garzon, R., Liu, S., Fabbri, M., Liu, Z., Heaphy, C. E. A., Callegari, E., Schwind, S., Pang, J., Yu, J., Muthusamy, N., Havelange, V., Volinia, S., Blum, W., Rush, L. J., Perrotti, D., Andreeff, M., Bloomfield, C. D., Byrd, J. C., Chan, K., Wu, L. C., Croce, C. M., & Marcucci, G. (2009). MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood, 113, 6411–6418.PubMedPubMedCentralCrossRefGoogle Scholar
- 80.Alexander, R. P., Fang, G., Rozowsky, J., Snyder, M., & Gerstein, M. B. (2010). Annotating non-coding regions of the genome. Nature Reviews. Genetics, 11, 559–571.PubMedCrossRefPubMedCentralGoogle Scholar
- 81.Anastasiadou, E., Jacob, L. S., & Slack, F. J. (2018). Non-coding RNA networks in cancer. Nature Reviews. Cancer, 18, 5–18.PubMedCrossRefPubMedCentralGoogle Scholar
- 82.Tay, Y., Rinn, J., & Pandolfi, P. P. (2014). The multilayered complexity of ceRNA crosstalk and competition. Nature, 505, 344–352.PubMedPubMedCentralCrossRefGoogle Scholar
- 83.Hu, S., Chang, J., Li, Y., et al. (2018). Long non-coding RNA XIST as a potential prognostic biomarker in human cancers: A meta-analysis. Oncotarget, 9, 13911–13919.PubMedPubMedCentralGoogle Scholar