Skip to main content

Advertisement

Log in

Role of Liposomes-Based Stem Cell for Multimodal Cancer Therapy

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The utilization of stem cells as novel carriers to target tissues or organs of interest is a challenging task in delivery system. The composite cellular delivery with diverse signalling molecules as therapeutics increases stem cell capability and possesses the promising potential to augment, modify or commence localized or systemic restoration for vital applications in regenerative medicine. The inherent potential of stem cells to immigrate and reside at wounded site facilitates transportation of genes, polypeptides or nanosized molecules. Liposomes are micro- to nano-lipidic vesicles formed in aqueous solutions to encapsulate complex hydrophilic and lipophilic chemical substances. Moreover, these novel nanocarriers provide safer and efficient delivery of bioactives together with their potential applications in vaccine production, cosmeceuticals, imaging and diagnostic purpose. Tissue engineering promotes rejuvenation process and involves the synchronized utilization of cells with 3D bio-material scaffolds to fabricate living structures. This strategy requires regulated stimulus of cultured cells through combined mechanical signals and bioactive agents. This review highlights and summarizes the mechanism involved in stem cell migration, strategies to enhance homing, safety and efficacy studies of stem cells in various disease models and discusses the potential role of liposomes in prolonged and localized delivery of bioactives for regenerative medicines and tissue engineering techniques.

Role of PEGylated liposomes in cancer stem cell therapy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

SC:

Stem cells

TI:

Therapeutic index

RES:

Reticulo-endothelial system

RM:

Regenerative medicine

ASCs:

Adult stem cells

PSCs:

Pluripotent stem cells

ESCs:

Embryonic stem cells

MSCs:

Mesenchymal stem cells

GFs:

Growth factors

TE:

Tissue engineering

RM:

Regenerative medicine

ECM:

Extracellular matrix

PAI-10 :

Plasminogen activator inhibitor

uPAR :

urokinase Plasminogen activator receptor

TLR-4:

Toll-like receptor 4

IA:

Intra-articular

VLA-4 :

Very late activation antigen-4

VCAM-1 :

Vascular cell adhesion molecule 1

CXCL12 :

C-X-C motif chemokine 12

CXCR4 (CD184) :

C-X-C chemokine receptor type 4

HSC :

Hematopoietic progenitor cells

SDF-1α:

Stromal cell-derived factor 1

ACKR-3:

Atypical Chemokine Receptor 3

NPs:

Nanoparticles

MNPs :

Magnetic nanoparticles

OI :

Osteogenesis imperfecta

BMP :

Bone morphogenetic protein

BMMSCs :

Bone marrow originated mesenchymal stem cells

ADMSCs:

Adipose derived mesenchymal stem cells

hFIX :

Autologous gene-engineered factor IX

HUMBSCs :

Human umbilical cord blood-derived mesenchymal stem cells

MRI :

Magnetic resonance imaging

E-PCL :

Electrospun polycaprolactone

NFMs :

Nanofiber meshes

RUNX2 :

Runt-related transcription factor 2

TGF-β :

Transforming growth factor β

COL1A1 :

Collagen type 1, alpha 1

PEG:

Poly (ethylene) glycol

PEG-LP :

PEGylated lipoplexes

PLLA :

Poly-l-lactic acid

NGF :

Nerve growth factor

MCLs :

Magnetic cationic liposomes

PCM :

Polycarbonate membrane

LPH :

Lipid polymer hybrid

SEM :

Scanning electron microscopy

ICAM-1:

Intercellular adhesion molecule-1

BF-ELIP:

Bifunctional echogenic immunoliposomes

LGR-5:

Leucine-rich repeat-containing G protein coupled receptor 5

MCF-7:

Michigan Cancer Foundation-7

SCID :

Severe combined immunodeficiency

HIF-1α:

Hypoxia inducible factor-1α

GCs :

Glioma cells

GSCs :

Glioma stem cells

WGA :

Wheat germ agglutinin

BBB :

Blood brain barrier

SP :

Side population

BCSCs :

Brain cancer stem cells

VM :

Vasculogenic mimicry

MGMT :

O6-methylguanine-DNA methyltransferase

Si RNA :

Small-interfering RNA

pDNA :

Polyrotaxane-plasmid DNA

RNAi :

RNA interference

mRNA :

Messenger RNA

TMZ :

Temozolomide

CED :

Convection-enhanced delivery

RSPO-1:

R-spondin family proteins

BCCs :

Breast cancer cells

CSCs :

Cancer stem cells

MAB:

Monoclonal antibody

MBC:

Metastatic breast cancer

GVHD:

Graft versus host disease

LVEF:

Left ventricular ejection fraction

CAD:

Coronary artery disease

bFGF :

Basic fibroblast growth factor

References

  1. Sharma, A., & Sharma, U. S. (1997). Liposomes in drug delivery: Progress and limitations. International Journal of Pharmaceutics, 154, 123–140. https://doi.org/10.1016/s0378-5173(97)00135-x.

    Article  CAS  Google Scholar 

  2. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1), 102 [PMID: 23432972. https://doi.org/10.1186/1556-276X-8-102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Laouini, A., Jaafar-Maalej, C., Limayem-Blouza, I., Sfar, S., Charcosset, C., & Fessi, H. (2012). Preparation, characterization and applications of liposomes: State of the art. Journal of Colloid Science and Biotechnology, 1(2), 147–168. https://doi.org/10.1166/jcsb.2012.1020.

    Article  CAS  Google Scholar 

  4. Singh, J., Garg, T., Rath, G., & Goyal, A. K. (2016). Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis – A critical review. Drug Delivery, 23(5), 1676–1698 [PMID: 26289212]. https://doi.org/10.3109/10717544.2015.1074765.

    Article  CAS  PubMed  Google Scholar 

  5. Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 10, 975–999 [PMID: 25678787]. https://doi.org/10.2147/IJN.S68861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Panahi, Y., Farshbaf, M., Mohammadhosseini, M., Mirahadi, M., Khalilov, R., Saghfi, S., & Akbarzadeh, A. (2017). Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications. Artificial Cells, Nanomedicine and Biotechnology, 45(4), 788–799 [PMID: 28278586]. https://doi.org/10.1080/21691401.2017.1282496.

    Article  Google Scholar 

  7. Honda, M., Asai, T., Oku, N., Araki, Y., Tanaka, M., & Ebihara, N. (2013). Liposomes and nanotechnology in drug development: Focus on ocular targets. International Journal of Nanomedicine, 8, 495–504 [PMID: 23439842]. https://doi.org/10.2147/IJN.S30725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shende, P., Rodrigues, B., & Gaud, R. S. (2018). Transplantation and alternatives to treat autoimmune diseases. Advances in Experimental Medicine and Biology, 1089, 59–72 [PMID: 29516308]. https://doi.org/10.1007/5584_2018_177.

    Article  CAS  PubMed  Google Scholar 

  9. Sercombe, L., Veerati, T., Moheimani, F., Wu, S. Y., Sood, A. K., & Hua, S. (2015). Advances and challenges of liposome assisted drug delivery. Frontiers in Pharmacology, 6, 286. [PMID: 26648870]. https://doi.org/10.3389/fphar.2015.00286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Labusca, L., Herea, D. D., & Mashayekhi, K. (2018). Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World Journal of Stem Cells, 10(5), 43–56 [PMID: 29849930]. https://doi.org/10.4252/wjsc.v10.i5.43.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mimeault, M., Hauke, R., & Batra, S. K. (2007). Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clinical Pharmacology and Therapeutics, 82(3), 252–264 [PMID: 17671448]. https://doi.org/10.1038/sj.clpt.6100301.

    Article  CAS  PubMed  Google Scholar 

  12. Wobma, H., & Vunjak-Novakovic, G. (2016). Tissue engineering and regenerative medicine 2015: A year in review. Tissue Engineering. Part B, Reviews, 22(2), 101–113 [PMID: 26714410]. https://doi.org/10.1089/ten.TEB.2015.0535.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Badowski, M. S., Zhang, T., Tsang, T. C., & Harris, D. T. (2009). Chimeric antigen receptors for stem cell based immunotherapy. Journal of Experimental Therapeutics & Oncology, 8(1), 53–63 [PMID: 19827271].

    CAS  Google Scholar 

  14. Stoltz, J. F., de Isla, N., Li, Y. P., Bensoussan, D., Zhang, L., Huselstein, C., Chen, Y., Decot, V., Magdalou, J., Li, N., Reppel, J., & He, Y. (2015). Stem cells and regenerative medicine: Myth or reality of the 21th century. Stem Cells International, 2015, 734731 [PMID: 26300923]. https://doi.org/10.1155/2015/734731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caplan, A. I. (2017). Mesenchymal stem cells: time to change the name! Stem Cells Translational Medicine, 6(6), 1445–1451 [PMID: 28542204]. https://doi.org/10.1002/sctm.17-0051.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Farber, D. B., & Katsman, D. (2016). Embryonic stem cell-derived microvesicles: Could they be used for retinal regeneration? Advances in Experimental Medicine and Biology, 854, 563–569 [PMID: 26427460]. https://doi.org/10.1007/978-3-319-17121-0_75.

    Article  CAS  PubMed  Google Scholar 

  17. Guo, Y., Hangoc, G., Bian, H., Pelus, L. M., & Broxmeyer, H. E. (2005). SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells. Stem Cells, 23(9), 1324–1332 [PMID: 16210409]. https://doi.org/10.1634/stemcells.2005-0085.

    Article  CAS  PubMed  Google Scholar 

  18. De Becker, A., & Riet, I. V. (2016). Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World Journal of Stem Cells, 8(3), 73–87 [PMID: 27022438]. https://doi.org/10.4252/wjsc.v8.i3.73.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khaldoyanidi, S. (2008). Directing stem cell homing. Cell Stem Cell, 2, 198–200. https://doi.org/10.1016/j.stem.2008.02.012.

    Article  CAS  PubMed  Google Scholar 

  20. Lämmermann, T., & Sixt, M. (2009). Mechanical modes of ‘amoeboid’ cell migration. Current Opinion in Cell Biology, 21(5), 636–644 [PMID: 19523798]. https://doi.org/10.1016/j.ceb.2009.05.003.

    Article  CAS  PubMed  Google Scholar 

  21. Yin, Y., Li, X., He, X. T., Wu, R. X., Sun, H. H., & Chen, F. M. (2017). Leveraging stem cell homing for therapeutic regeneration. Journal of Dental Research, 96(6), 601–609 [PMID: 28414563]. https://doi.org/10.1177/0022034517706070.

    Article  CAS  PubMed  Google Scholar 

  22. Heissig, B., Dhahri, D., Eiamboonsert, S., Salama, Y., Shimazu, H., Munakata, S., & Hattori, K. (2015). Role of mesenchymal stem cell-derived fibrinolytic factor in tissue regeneration and cancer progression. Cellular and Molecular Life Sciences, 72(24), 4759–4770 [PMID: 26350342]. https://doi.org/10.1007/s00018-015-2035-7.

    Article  CAS  PubMed  Google Scholar 

  23. Shende, P., Bhandarkar, S., & Prabhakar, B. (2019 [PMID: 31254166]). Heat shock proteins and their protective roles in stem cell biology. Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-019-09903-5.

    Article  CAS  Google Scholar 

  24. Sahin, A. O., & Buitenhuis, M. (2012). Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells. Cell Adhesion & Migration, 6(1), 39–48 [PMID: 22647939]. https://doi.org/10.4161/cam.18975.

    Article  Google Scholar 

  25. Hocking, A. M. (2015). The role of chemokines in mesenchymal stem cell homing to wounds. Adv Wound Care (New Rochelle), 4(11), 623–630 [PMID: 26543676]. https://doi.org/10.1089/wound.2014.0579.

    Article  Google Scholar 

  26. Stuermer, E. K., Lipenksy, A., Thamm, O., Neugebauer, E., Schaefer, N., Fuchs, P., Bouillon, B., & Koenen, P. (2015). The role of SDF-1 in homing of human adipose-derived stem cells. Wound Repair and Regeneration, 23(1), 82–89 [PMID: 25581571]. https://doi.org/10.1111/wrr.12248.

    Article  PubMed  Google Scholar 

  27. Miller, R. J., Banisadr, G., & Bhattacharyya, B. J. (2008). CXCR4 signaling in the regulation of stem cell migration and development. Journal of Neuroimmunology, 198(1–2), 31–38 [PMID: 18508132]. https://doi.org/10.1016/j.jneuroim.2008.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leibacher, J., & Henschler, R. (2016). Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Research & Therapy, 7, 7 [PMID: 26753925]. https://doi.org/10.1186/s13287-015-0271-2.

    Article  CAS  Google Scholar 

  29. Das, J., Choi, Y. J., Yasuda, H., Han, J. W., Park, C., Song, H., Bae, H., & Kim, J. H. (2016). Efficient delivery of C/EBP beta gene into human mesenchymal stem cells via polyethylenimine-coated gold nanoparticles enhances adipogenic differentiation. Scientific Reports, 6, 33784 [PMID: 27677463]. https://doi.org/10.1038/srep33784.

    Article  CAS  PubMed  Google Scholar 

  30. Watermann, A., & Brieger, J. (2017). Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials (Basel), 7(7) [PMID: 28737672]). https://doi.org/10.3390/nano7070189.

  31. Penati, R., Fumagalli, F., Calbi, V., Bernardo, M. E., & Aiuti, A. (2017). Gene therapy for lysosomal storage disorders: Recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. Journal of Inherited Metabolic Disease, 40(4), 543–554 [PMID: 28560469]. https://doi.org/10.1007/s10545-017-0052-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Myers, T. J., Granero-Molto, F., Longobardi, L., Li, T., Yan, Y., & Spagnoli, A. (2010). Mesenchymal stem cells at the intersection of cell and gene therapy. Expert Opinion on Biological Therapy, 10(12), 1663–1679 [PMID: 21058931]. https://doi.org/10.1517/14712598.2010.531257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sack, B. K., Herzog, R. W., Terhorst, C., & Markusic, D. M. (2014). Development of gene transfer for induction of antigen-specific tolerance. Molecular Theraphy: Methods and Clinical Development, 1, 14013 [PMID: 25558460]. https://doi.org/10.1038/mtm.2014.13.

    Article  CAS  Google Scholar 

  34. Kumar, S., Wan, C., Ramaswamy, G., Clemens, T. L., & Ponnazhagan, S. (2010). Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Molecular Therapy, 18(5), 1026–1034 [PMID: 20068549]. https://doi.org/10.1038/mt.2009.315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yeh, T. S., Fang, Y. H., Lu, C. H., Chiu, S. C., Yeh, C. L., Yen, T. C., Parfyonova, Y., & Hu, Y. C. (2014). Baculovirus-transduced, VEGF-expressing adipose-derived stem cell sheet for the treatment of myocardium infarction. Biomaterials, 35(1), 174–184 [PMID: 24120047]. https://doi.org/10.1016/j.biomaterials.2013.09.080.

    Article  CAS  PubMed  Google Scholar 

  36. Nakajima, M., Nito, C., Sowa, K., Suda, S., Nishiyama, Y., Nakamura-Takahashi, A., Nitahara-Kasahara, Y., Imagawa, K., Hirato, T., Ueda, M., Kimura, K., & Okada, T. (2017). Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Molecular Theraphy: Methods and Clinical Development, 6, 102–111 [PMID: 28725658]. https://doi.org/10.1016/j.omtm.2017.06.005.

    Article  CAS  Google Scholar 

  37. Liu, H., Xue, W., Ge, G., Luo, X., Li, Y., Xiang, H., Ding, X., Tian, P., & Tian, X. (2010). Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1α in MSCs. Biochemical and Biophysical Research Communications, 401(4), 509–515 [PMID: 20869949]. https://doi.org/10.1016/j.bbrc.2010.09.076.

    Article  CAS  PubMed  Google Scholar 

  38. Cesarz, Z., & Tamama, K. (2016). Spheroid culture of mesenchymal stem cells. Stem Cells International, 5, 1–11 [PMID: 26649054]. https://doi.org/10.1155/2016/9176357.

    Article  Google Scholar 

  39. Huang, X., Zhang, F., Wang, Y., Sun, X., Choi, K. Y., Liu, D., Choi, J.-S., Shin, T.-H., Cheon, J., Niu, G., & Chen, X. (2014). Design considerations of iron-based nanoclusters for noninvasive tracking of mesenchymal stem cell homing. ACS Nano, 8(5), 4403–4414 [PMID: 24754735]. https://doi.org/10.1021/nn4062726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thulasiramaraju, T. V., Sudhakar Babu, A. M. S., Arunachalam, A., Prathap, M., Srikanth, S., & Sivaiah, P. (2012). Liposomes: A novel drug delivery system. International Journal of Biopharmaceutics, 3(1), 5–16.

    Google Scholar 

  41. Collier, J. H., & Messersmith, P. B. (2001). Phospholipid strategies in biomineralization and biomaterials research. Annual Review of Materials Research, 31, 237–263. https://doi.org/10.1146/annurev.matsci.31.1.237.

    Article  CAS  Google Scholar 

  42. Zylberberg, C., & Matosevic, S. (2017). Bioengineered liposome-scaffold composites as therapeutic delivery systems. Therapeutic Delivery, 8(6), 425–445. https://doi.org/10.4155/tde-2017-0014.

    Article  CAS  PubMed  Google Scholar 

  43. Santo, V. E., Gomes, M. E., Mano, J. F., & Reis, R. L. (2012). From nano- to macro-scale: Nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine (London, England), 7(7), 1045–1066 [PMID: 22846091]. https://doi.org/10.2217/nnm.12.78.

    Article  CAS  Google Scholar 

  44. Kulkarni, M., Greiser, U., O'Brien, T., & Pandit, A. (2010). Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends in Biotechnology, 28(1), 28–36 [PMID: 19896228]. https://doi.org/10.1016/j.tibtech.2009.10.003.

    Article  CAS  PubMed  Google Scholar 

  45. Thakur, R. A., Florek, C. A., Kohn, J., & Michniak, B. B. (2008). Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. International Journal of Pharmaceutics, 364(1), 87–93 [PMID: 18771719]. https://doi.org/10.1016/j.ijpharm.2008.07.033.

    Article  CAS  PubMed  Google Scholar 

  46. Sirc, J., Kubinova, S., Hobzova, R., Stranska, D., Kozlik, P., Bosakova, Z., Marekova, D., Holan, V., Sykova, E., & Michalek, J. (2012). Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. International Journal of Nanomedicine, 7, 5315–5325 [PMID: 23071393]. https://doi.org/10.2147/IJN.S35781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Monteiro, N., Martins, A., Reis, R. L., & Neves, N. M. (2014). Liposomes in tissue engineering and regenerative medicine. Journal of the Royal Society Interface, 11(101), 20140459 [PMID: 25401172]. https://doi.org/10.1098/rsif.2014.0459.

    Article  CAS  PubMed Central  Google Scholar 

  48. Monteiro, N., Ribeiro, D., Martins, A., Faria, S., Fonseca, N. A., Moreira, J. N., Reis, R. L., & Neves, N. M. (2014). Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering. ACS Nano, 8, 8082–8094 [PMID: 25046548]. https://doi.org/10.1021/nn5021049.

    Article  CAS  PubMed  Google Scholar 

  49. Arab Tehrany, E., Kahn, C. J., Baravian, C., Maherani, B., Belhaj, N., Wang, X., & Linder, M. (2012). Elaboration and characterization of nanoliposome made of soya; rapeseed and salmon lecithins: application to cell culture. Colloids and Surfaces. B, Biointerfaces, 95, 75–81 [PMID: 22484065]. https://doi.org/10.1016/j.colsurfb.2012.02.024.

    Article  CAS  PubMed  Google Scholar 

  50. Murao, A., Nishikawa, M., Managit, C., Wong, J., Kawakami, S., Yamashita, F., & Hashida, M. (2002). Targeting efficiency of galactosylated liposomes to hepatocytes in vivo: Effect of lipid composition. Pharmaceutical Research, 19(12), 1808–1814. https://doi.org/10.1023/A:1021433206081.

    Article  CAS  PubMed  Google Scholar 

  51. Monteiro, N., Martins, A., Pires, R., Faria, S., Fonseca, N. A., Moreira, J. N., Reis, R. L., & Neves, N. M. (2014). Immobilization of bioactive factor-loaded liposomes at the surface of electrospun nanofibers targeting tissue engineering. Biomaterials Science, 2, 1195–1209. https://doi.org/10.1039/C4BM00069B.

    Article  CAS  Google Scholar 

  52. Winn, S. R., Chen, J. C., Gong, X., Bartholomew, S. V., Shreenivas, S., & Ozaki, W. (2005). Non-viral-mediated gene therapy approaches for bone repair. Orthodontics & Craniofacial Research, 8, 183–190. [PMID: 16022720]. https://doi.org/10.1111/j.1601-6343.2005.00332.x.

    Article  CAS  Google Scholar 

  53. Santos, J. L., Pandita, D., Rodrigues, J., Pêgo, A. P., Granja, P. L., & Tomás, H. (2011). Non-viral gene delivery to mesenchymal stem cells: Methods, strategies and application in bone tissue engineering and regeneration. Current Gene Therapy, 11(1), 46–57 [PMID: 21182464].

    Article  Google Scholar 

  54. Yau, W. W., Rujitanaroj, P. O., Lam, L., & Chew, S. Y. (2012). Directing stem cell fate by controlled RNA interference. Biomaterials, 33(9), 2608–2628 [PMID: 22209557]. https://doi.org/10.1016/j.biomaterials.2011.12.021.

    Article  CAS  PubMed  Google Scholar 

  55. Kawakami, S., Higuchi, Y., & Hashida, M. (2008). Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. Journal of Pharmaceutical Sciences, 97(2), 726–745 [PMID: 17823947]. https://doi.org/10.1002/jps.21024.

    Article  CAS  PubMed  Google Scholar 

  56. Dalby, B., Cates, S., Harris, A., Ohki, E. C., Tilkins, M. L., Price, P. J., & Ciccarone, V. C. (2004). Advanced transfection with Lipofectamine 2000 reagent: Primary neurons, siRNA, and high-throughput applications. Methods, 33(2), 95–103 [PMID: 15121163]. https://doi.org/10.1016/j.ymeth.2003.11.023.

    Article  CAS  PubMed  Google Scholar 

  57. Storrie, H., & Mooney, D. J. (2006). Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Advanced Drug Delivery Reviews, 58(4), 500–514 [PMID: 16759734]. https://doi.org/10.1016/j.addr.2006.03.004.

    Article  CAS  PubMed  Google Scholar 

  58. Liu, P. Y., Tong, W., Liu, K., Han, S. H., Wang, X. T., Badiavas, E., Rieger-Christ, K., & Summerhayes, I. (2004). Liposome-mediated transfer of vascular endothelial growth factor cDNA augments survival of random-pattern skin flaps in the rat. Wound Repair and Regeneration, 12(1), 80–85 [PMID: 14974968]. https://doi.org/10.1111/j.1067-1927.2004.012114.x.

    Article  PubMed  Google Scholar 

  59. Balazs, D. A., & Godbey, W. T. (2011). Liposomes for use in gene delivery. Journal of Drug Delivery, 2011, 326497 [PMID: 21490748]. https://doi.org/10.1155/2011/326497.

    Article  CAS  PubMed  Google Scholar 

  60. Kim, J.-K., Choi, S.-H., Kim, C.-O., Park, J.-S., Ahn, W.-S., & Kim, C. K. (2003). Enhancement of polyethylene glycol (PEG) – Modified cationic liposome-mediated gene deliveries: Effects on serum stability and transfection efficiency. The Journal of Pharmacy and Pharmacology, 55(4), 453–460 [PMID: 12803766]. https://doi.org/10.1211/002235702928.

    Article  CAS  PubMed  Google Scholar 

  61. Shi, F., Wasungu, L., Nomden, A., Stuart, M. C., Polushkin, E., Engberts, J. B., & Hoekstra, D. (2002). Interference of poly(ethylene glycol)-lipid analogues with cationic-lipid mediated delivery of oligonucleotides; role of lipid exchangeability and non-lamellar transitions. Biochemical Journal, 366(Pt 1), 333–341 [PMID: 12030844]. https://doi.org/10.1042/BJ20020590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mukherjee, A., Prasad, T. K., Rao, N. M., & Banerjee, R. (2005). Haloperidol-associated stealth liposomes: A potent carrier for delivering genes to human breast cancer cells. The Journal of Biological Chemistry, 280(16), 15619–15627 [PMID: 15695518]. https://doi.org/10.1074/jbc.M409723200.

    Article  CAS  PubMed  Google Scholar 

  63. Ito, A., Shinkai, M., Honda, H., & Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 100(1), 1–11 [PMID: 16233845]. https://doi.org/10.1263/jbb.100.1.

    Article  CAS  PubMed  Google Scholar 

  64. Jasmin, Torres, A. L. M., Nunes, H. M. P., Passipieri, J. A., Jelicks, L. A., Gasparetto, E. L., Spray, D. C., Campos de Carvalho, A. C., & Mendez-Otero, R. (2011). Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging. Journal of Nanbiotechnology, 9, 4. [PMID: 21542946]. https://doi.org/10.1186/1477-3155-9-4.

    Article  CAS  Google Scholar 

  65. Ishii, M., Shibata, R., Numaguchi, Y., Kito, T., Suzuki, H., Shimizu, K., Ito, A., Honda, H., & Murohara, T. (2011). Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(10), 2210–2215 [PMID: 21757660]. https://doi.org/10.1161/ATVBAHA.111.231100.

    Article  CAS  PubMed  Google Scholar 

  66. Hong, J. S., Vreeland, W. N., Lacerda, S. H., Locascio, L. E., Gaitan, M., & Raghavan, S. R. (2008). Liposome-templated supramolecular assembly of responsive alginate nanogels. Langmuir, 24(8), 4092–4096 [PMID: 18338908]. https://doi.org/10.1021/la7031219.

    Article  CAS  PubMed  Google Scholar 

  67. Viallat, A., Dalous, J., & Abkarian, M. (2004). Giant lipid vesicles filled with a gel: Shape instability induced by osmotic shrinkage. Biophysical Journal, 86(4), 2179–2187 [PMID: 15041658]. https://doi.org/10.1016/S0006-3495(04)74277-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, Y., Lee Chung, B., Ma, M., Mulder, W. J., Fayad, Z. A., Farokhzad, O. C., & Langer, R. (2012). Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices. Nano Letters, 12(7), 3587–3591 [PMID: 22716029]. https://doi.org/10.1021/nl301253v.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Herbst, S. M., Klegerman, M. E., Kim, H., Qin, J., Shelat, R., Wassler, M., Moody, M. R., Yang, C. M., Ge, X., Zou, Y., Kopechek, J. A., Clubb, F. J., Kraemer, D. C., Huang, S., Holland, C. K., McPherson, D. D., & Geng, Y. J. (2009). Delivery of stem cells to porcine arterial wall with echogenic liposomes conjugated to antibodies against CD34 and Intercellular Adhesion Molecule-1. Molecular Pharmaceutics, 7(1), 3–11 [PMID: 19719324]. https://doi.org/10.1021/mp900116r.

    Article  CAS  Google Scholar 

  70. Cao, J., Li, C., Wei, X., Tu, M., Zhang, Y., Xu, F., & Xu, Y. (2018). Selective targeting and eradication of LGR5+ cancer stem cells using RSPO-conjugated doxorubicin liposomes. Molecular Cancer Therapeutics, 17(7), 1475–1485 [PMID: 29695632]. https://doi.org/10.1158/1535-7163.MCT-17-0694.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, L., Yao, H.-J., Yu, Y., Zhang, Y., Li, R.-J., Ju, R. J., Wang, X. X., Sun, M. G., Shi, J. F., & Lu, W. L. (2012). Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials, 33(2), 565–582 [PMID: 21983136]. https://doi.org/10.1016/j.biomaterials.2011.09.055.

    Article  CAS  PubMed  Google Scholar 

  72. Guo, J., Zhou, J., Ying, X., Men, Y., Li, R. J., Zhang, Y., Du, J., Tian, W., Yao, H. J., Wang, X. X., Ju, R. J., & Lu, W. L. (2010). Effects of stealth liposomal daunorubicin plus tamoxifen on the breast cancer and cancer stem cells. Journal of Pharmacy & Pharmaceutical Sciences, 13(2), 136–151 [PMID: 20816001].

    Article  CAS  Google Scholar 

  73. Li, X. T., Ju, R. J., Li, X. Y., Zeng, F., Shi, J. F., Liu, L., Zhang, C. S., Sun, M. G., Lou, J. N., & Lu, W. L. (2014). Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells. Oncotarget, 5(15), 6497–6511 [PMID: 25153726].

    PubMed  PubMed Central  Google Scholar 

  74. Liu, Y., Lu, W.-L., Guo, J., Du, J., Li, T., Wu, J. W., Wang, G. L., Wang, J. C., Zhang, X., & Zhang, Q. (2008). A potential target associated with both cancer and cancer stem cells: A combination therapy for eradication of breast cancer using vinorelbine stealthy liposomes plus parthenolide stealthy liposomes. Journal of Controlled Release, 129(1), 18–25 [PMID: 18466993]. https://doi.org/10.1016/j.jconrel.2008.03.022.

    Article  CAS  PubMed  Google Scholar 

  75. Liu, Y., Mei, L., Yu, Q., Xu, C., Qiu, Y., Yang, Y., Shi, K., Zhang, Q., Gao, H., Zhang, Z., & He, Q. (2015). Multifunctional tandem peptide modified paclitaxel-loaded liposomes for the treatment of vasculogenic mimicry and cancer stem cells in malignant glioma. ACS Applied Materials & Interfaces, 7(30), 16792–16801. [PMID: 26173814]. https://doi.org/10.1021/acsami.5b04596.

    Article  CAS  Google Scholar 

  76. Kato, T., Natsume, A., Toda, H., Iwamizu, H., Sugita, T., Hachisu, R., Watanabe, R., Yuki, K., Motomura, K., Bankiewicz, K., & Wakabayashi, T. (2010). Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Therapy, 17(11), 1363–1371 [PMID: 20520650]. https://doi.org/10.1038/gt.2010.88.

    Article  CAS  PubMed  Google Scholar 

  77. Introna, M., Lucchini, G., Dander, E., Galimberti, S., Rovelli, A., Balduzzi, A., Longoni, D., Pavan, F., Masciocchi, F., Algarotti, A., Micò, C., Grassi, A., Deola, S., Cavattoni, I., Gaipa, G., Belotti, D., Perseghin, P., Parma, M., Pogliani, E., Golay, J., Pedrini, O., Capelli, C., Cortelazzo, S., D'Amico, G., Biondi, A., Rambaldi, A., & Biagi, E. (2014). Treatment of graft versus host disease with mesenchymal stromal cells: A phase I study on 40 adult and pediatric patients. Biology of Blood and Marrow Transplantation, 20(3), 375–381 [PMID: 24321746]. https://doi.org/10.1016/j.bbmt.2013.11.033.

    Article  PubMed  Google Scholar 

  78. Shende, P., Gupta, H., & Gaud, R. S. (2018). Cytotherapy using stromal cells: Current and advance multi-treatment approaches. Biomedicine & Pharmacotherapy, 97, 38–44 [PMID: 29080456]. https://doi.org/10.1016/j.biopha.2017.10.127.

    Article  Google Scholar 

  79. Lalu, M. M., Mazzarello, S., Zlepnig, J., Dong, Y. Y. R., Montroy, J., McIntyre, L., Devereaux, P. J., Stewart, D. J., Mazer, C. D., Barron, C. C., McIsaac, D. I., & Fergusson, D. A. (2018). Safety and efficacy of adult stem cell therapy for acute myocardial infarction and ischemic heart failure (SafeCell Heart): A systematic review and meta-analysis. Stem Cells Translational Medicine. https://doi.org/10.1002/sctm.18-0120.

    Article  Google Scholar 

  80. Simari, R. (2013). Effectiveness of stem cell treatment for adults with ischemic cardiomyopathy (The FOCUS Study). Available at: https://clinicaltrials.gov/ct2/show/NCT00824005. Accessed 01 Oct 2019.

  81. Nagpal, A., Choy, F. C., Howell, S., Hillier, S., Chan, F., Hamilton-Bruce, M. A., & Koblar, S. A. (2017). Safety and effectiveness of stem cell therapies in early-phase clinical trials in stroke: A systematic review and meta-analysis. Stem Cell Research & Therapy, 8(1), 191 [PMID: 5577822]. https://doi.org/10.1186/s13287-017-0643-x.

    Article  Google Scholar 

  82. Freitag, J., Bates, D., Boyd, R., Shah, K., Barnard, A., Huguenin, L., & Tenen, A. (2016). Mesenchymal stem cell therapy in the treatment of osteoarthritis: Reparative pathways, safety and efficacy – A review. BMC Musculoskeletal Disorders, 17(1). https://doi.org/10.1186/s12891-016-1085-9.

  83. Grønhøj, C., Jensen, D. H., Glovinski, P. V., Jensen, S. B., Bardow, A., Oliveri, R. S., Specht, L., Thomsen, C., Darkener, S., Kiss, K., Fischer-Nielson, A., & von Buchwald, C. (2017). First-in-man mesenchymal stem cells for radiation-induced xerostomia (MESRIX): Study protocol for a randomized controlled trial. Trials, 18(1), 108 [PMID: 5341429]. https://doi.org/10.1186/s13063-017-1856-0.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Merryman, R. W., Kim, H. T., Zinzani, P. L., Carlo-Stella, C., Ansell, S. M., Perales, M. A., Avigdor, A., Halwani, A. S., Houot, R., Marchand, T., Dhedin, N., Lescaut, W., Thiebaut-Bertrand, A., François, S., Stamatoullas-Bastard, A., Rohrlich, P. S., Labussière Wallet, H., Castagna, L., Santoro, A., Bachanova, V., Bresler, S. C., Srivastava, A., Kim, H., Pesek, E., Chammas, M., Reynolds, C., Ho, V. T., Antin, J. H., Ritz, J., Soiffer, R. J., & Armand, P. (2017). Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma. Blood, 129(10), 1380–1388 [PMID: 28073785]. https://doi.org/10.1182/blood-2016-09-738385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cobleigh, M. A., Vogel, C. L., Tripathy, D., Robert, N. J., Scholl, S., Fehrenbacher, L., Wolter, J. M., Paton, V., Shak, S., Lieberman, G., & Slamon, D. J. (1999). Multinational study of the efficacy and safety of humanized anti-her2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. Journal of Clinical Oncology, 17(9), 2639–2639. [PMID: 10561337]. https://doi.org/10.1200/jco.1999.17.9.2639.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin Shende.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandpe, P., Prabhakar, B. & Shende, P. Role of Liposomes-Based Stem Cell for Multimodal Cancer Therapy. Stem Cell Rev and Rep 16, 103–117 (2020). https://doi.org/10.1007/s12015-019-09933-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09933-z

Keywords

Navigation