Role of Liposomes-Based Stem Cell for Multimodal Cancer Therapy

  • Pankaj Mandpe
  • Bala Prabhakar
  • Pravin ShendeEmail author


The utilization of stem cells as novel carriers to target tissues or organs of interest is a challenging task in delivery system. The composite cellular delivery with diverse signalling molecules as therapeutics increases stem cell capability and possesses the promising potential to augment, modify or commence localized or systemic restoration for vital applications in regenerative medicine. The inherent potential of stem cells to immigrate and reside at wounded site facilitates transportation of genes, polypeptides or nanosized molecules. Liposomes are micro- to nano-lipidic vesicles formed in aqueous solutions to encapsulate complex hydrophilic and lipophilic chemical substances. Moreover, these novel nanocarriers provide safer and efficient delivery of bioactives together with their potential applications in vaccine production, cosmeceuticals, imaging and diagnostic purpose. Tissue engineering promotes rejuvenation process and involves the synchronized utilization of cells with 3D bio-material scaffolds to fabricate living structures. This strategy requires regulated stimulus of cultured cells through combined mechanical signals and bioactive agents. This review highlights and summarizes the mechanism involved in stem cell migration, strategies to enhance homing, safety and efficacy studies of stem cells in various disease models and discusses the potential role of liposomes in prolonged and localized delivery of bioactives for regenerative medicines and tissue engineering techniques.

Graphical Abstract

Role of PEGylated liposomes in cancer stem cell therapy


Liposomes Scaffolds Cancer Osteoarthritis Regenerative medicine Tissue engineering Stem cells 



Stem cells


Therapeutic index


Reticulo-endothelial system


Regenerative medicine


Adult stem cells


Pluripotent stem cells


Embryonic stem cells


Mesenchymal stem cells


Growth factors


Tissue engineering


Regenerative medicine


Extracellular matrix


Plasminogen activator inhibitor


urokinase Plasminogen activator receptor


Toll-like receptor 4




Very late activation antigen-4


Vascular cell adhesion molecule 1


C-X-C motif chemokine 12

CXCR4 (CD184)

C-X-C chemokine receptor type 4


Hematopoietic progenitor cells


Stromal cell-derived factor 1


Atypical Chemokine Receptor 3




Magnetic nanoparticles


Osteogenesis imperfecta


Bone morphogenetic protein


Bone marrow originated mesenchymal stem cells


Adipose derived mesenchymal stem cells


Autologous gene-engineered factor IX


Human umbilical cord blood-derived mesenchymal stem cells


Magnetic resonance imaging


Electrospun polycaprolactone


Nanofiber meshes


Runt-related transcription factor 2


Transforming growth factor β


Collagen type 1, alpha 1


Poly (ethylene) glycol


PEGylated lipoplexes


Poly-l-lactic acid


Nerve growth factor


Magnetic cationic liposomes


Polycarbonate membrane


Lipid polymer hybrid


Scanning electron microscopy


Intercellular adhesion molecule-1


Bifunctional echogenic immunoliposomes


Leucine-rich repeat-containing G protein coupled receptor 5


Michigan Cancer Foundation-7


Severe combined immunodeficiency


Hypoxia inducible factor-1α


Glioma cells


Glioma stem cells


Wheat germ agglutinin


Blood brain barrier


Side population


Brain cancer stem cells


Vasculogenic mimicry


O6-methylguanine-DNA methyltransferase


Small-interfering RNA


Polyrotaxane-plasmid DNA


RNA interference


Messenger RNA




Convection-enhanced delivery


R-spondin family proteins


Breast cancer cells


Cancer stem cells


Monoclonal antibody


Metastatic breast cancer


Graft versus host disease


Left ventricular ejection fraction


Coronary artery disease


Basic fibroblast growth factor


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sharma, A., & Sharma, U. S. (1997). Liposomes in drug delivery: Progress and limitations. International Journal of Pharmaceutics, 154, 123–140. Scholar
  2. 2.
    Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1), 102 [PMID: 23432972. Scholar
  3. 3.
    Laouini, A., Jaafar-Maalej, C., Limayem-Blouza, I., Sfar, S., Charcosset, C., & Fessi, H. (2012). Preparation, characterization and applications of liposomes: State of the art. Journal of Colloid Science and Biotechnology, 1(2), 147–168. Scholar
  4. 4.
    Singh, J., Garg, T., Rath, G., & Goyal, A. K. (2016). Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis – A critical review. Drug Delivery, 23(5), 1676–1698 [PMID: 26289212]. Scholar
  5. 5.
    Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 10, 975–999 [PMID: 25678787]. Scholar
  6. 6.
    Panahi, Y., Farshbaf, M., Mohammadhosseini, M., Mirahadi, M., Khalilov, R., Saghfi, S., & Akbarzadeh, A. (2017). Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications. Artificial Cells, Nanomedicine and Biotechnology, 45(4), 788–799 [PMID: 28278586]. Scholar
  7. 7.
    Honda, M., Asai, T., Oku, N., Araki, Y., Tanaka, M., & Ebihara, N. (2013). Liposomes and nanotechnology in drug development: Focus on ocular targets. International Journal of Nanomedicine, 8, 495–504 [PMID: 23439842]. Scholar
  8. 8.
    Shende, P., Rodrigues, B., & Gaud, R. S. (2018). Transplantation and alternatives to treat autoimmune diseases. Advances in Experimental Medicine and Biology, 1089, 59–72 [PMID: 29516308]. Scholar
  9. 9.
    Sercombe, L., Veerati, T., Moheimani, F., Wu, S. Y., Sood, A. K., & Hua, S. (2015). Advances and challenges of liposome assisted drug delivery. Frontiers in Pharmacology, 6, 286. [PMID: 26648870]. Scholar
  10. 10.
    Labusca, L., Herea, D. D., & Mashayekhi, K. (2018). Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World Journal of Stem Cells, 10(5), 43–56 [PMID: 29849930]. Scholar
  11. 11.
    Mimeault, M., Hauke, R., & Batra, S. K. (2007). Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clinical Pharmacology and Therapeutics, 82(3), 252–264 [PMID: 17671448]. Scholar
  12. 12.
    Wobma, H., & Vunjak-Novakovic, G. (2016). Tissue engineering and regenerative medicine 2015: A year in review. Tissue Engineering. Part B, Reviews, 22(2), 101–113 [PMID: 26714410]. Scholar
  13. 13.
    Badowski, M. S., Zhang, T., Tsang, T. C., & Harris, D. T. (2009). Chimeric antigen receptors for stem cell based immunotherapy. Journal of Experimental Therapeutics & Oncology, 8(1), 53–63 [PMID: 19827271].Google Scholar
  14. 14.
    Stoltz, J. F., de Isla, N., Li, Y. P., Bensoussan, D., Zhang, L., Huselstein, C., Chen, Y., Decot, V., Magdalou, J., Li, N., Reppel, J., & He, Y. (2015). Stem cells and regenerative medicine: Myth or reality of the 21th century. Stem Cells International, 2015, 734731 [PMID: 26300923]. Scholar
  15. 15.
    Caplan, A. I. (2017). Mesenchymal stem cells: time to change the name! Stem Cells Translational Medicine, 6(6), 1445–1451 [PMID: 28542204]. Scholar
  16. 16.
    Farber, D. B., & Katsman, D. (2016). Embryonic stem cell-derived microvesicles: Could they be used for retinal regeneration? Advances in Experimental Medicine and Biology, 854, 563–569 [PMID: 26427460]. Scholar
  17. 17.
    Guo, Y., Hangoc, G., Bian, H., Pelus, L. M., & Broxmeyer, H. E. (2005). SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells. Stem Cells, 23(9), 1324–1332 [PMID: 16210409]. Scholar
  18. 18.
    De Becker, A., & Riet, I. V. (2016). Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World Journal of Stem Cells, 8(3), 73–87 [PMID: 27022438]. Scholar
  19. 19.
    Khaldoyanidi, S. (2008). Directing stem cell homing. Cell Stem Cell, 2, 198–200. Scholar
  20. 20.
    Lämmermann, T., & Sixt, M. (2009). Mechanical modes of ‘amoeboid’ cell migration. Current Opinion in Cell Biology, 21(5), 636–644 [PMID: 19523798]. Scholar
  21. 21.
    Yin, Y., Li, X., He, X. T., Wu, R. X., Sun, H. H., & Chen, F. M. (2017). Leveraging stem cell homing for therapeutic regeneration. Journal of Dental Research, 96(6), 601–609 [PMID: 28414563]. Scholar
  22. 22.
    Heissig, B., Dhahri, D., Eiamboonsert, S., Salama, Y., Shimazu, H., Munakata, S., & Hattori, K. (2015). Role of mesenchymal stem cell-derived fibrinolytic factor in tissue regeneration and cancer progression. Cellular and Molecular Life Sciences, 72(24), 4759–4770 [PMID: 26350342]. Scholar
  23. 23.
    Shende, P., Bhandarkar, S., & Prabhakar, B. (2019 [PMID: 31254166]). Heat shock proteins and their protective roles in stem cell biology. Stem Cell Reviews and Reports. Scholar
  24. 24.
    Sahin, A. O., & Buitenhuis, M. (2012). Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells. Cell Adhesion & Migration, 6(1), 39–48 [PMID: 22647939]. Scholar
  25. 25.
    Hocking, A. M. (2015). The role of chemokines in mesenchymal stem cell homing to wounds. Adv Wound Care (New Rochelle), 4(11), 623–630 [PMID: 26543676]. Scholar
  26. 26.
    Stuermer, E. K., Lipenksy, A., Thamm, O., Neugebauer, E., Schaefer, N., Fuchs, P., Bouillon, B., & Koenen, P. (2015). The role of SDF-1 in homing of human adipose-derived stem cells. Wound Repair and Regeneration, 23(1), 82–89 [PMID: 25581571]. Scholar
  27. 27.
    Miller, R. J., Banisadr, G., & Bhattacharyya, B. J. (2008). CXCR4 signaling in the regulation of stem cell migration and development. Journal of Neuroimmunology, 198(1–2), 31–38 [PMID: 18508132]. Scholar
  28. 28.
    Leibacher, J., & Henschler, R. (2016). Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Research & Therapy, 7, 7 [PMID: 26753925]. Scholar
  29. 29.
    Das, J., Choi, Y. J., Yasuda, H., Han, J. W., Park, C., Song, H., Bae, H., & Kim, J. H. (2016). Efficient delivery of C/EBP beta gene into human mesenchymal stem cells via polyethylenimine-coated gold nanoparticles enhances adipogenic differentiation. Scientific Reports, 6, 33784 [PMID: 27677463]. Scholar
  30. 30.
    Watermann, A., & Brieger, J. (2017). Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials (Basel), 7(7) [PMID: 28737672]).
  31. 31.
    Penati, R., Fumagalli, F., Calbi, V., Bernardo, M. E., & Aiuti, A. (2017). Gene therapy for lysosomal storage disorders: Recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. Journal of Inherited Metabolic Disease, 40(4), 543–554 [PMID: 28560469]. Scholar
  32. 32.
    Myers, T. J., Granero-Molto, F., Longobardi, L., Li, T., Yan, Y., & Spagnoli, A. (2010). Mesenchymal stem cells at the intersection of cell and gene therapy. Expert Opinion on Biological Therapy, 10(12), 1663–1679 [PMID: 21058931]. Scholar
  33. 33.
    Sack, B. K., Herzog, R. W., Terhorst, C., & Markusic, D. M. (2014). Development of gene transfer for induction of antigen-specific tolerance. Molecular Theraphy: Methods and Clinical Development, 1, 14013 [PMID: 25558460]. Scholar
  34. 34.
    Kumar, S., Wan, C., Ramaswamy, G., Clemens, T. L., & Ponnazhagan, S. (2010). Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Molecular Therapy, 18(5), 1026–1034 [PMID: 20068549]. Scholar
  35. 35.
    Yeh, T. S., Fang, Y. H., Lu, C. H., Chiu, S. C., Yeh, C. L., Yen, T. C., Parfyonova, Y., & Hu, Y. C. (2014). Baculovirus-transduced, VEGF-expressing adipose-derived stem cell sheet for the treatment of myocardium infarction. Biomaterials, 35(1), 174–184 [PMID: 24120047]. Scholar
  36. 36.
    Nakajima, M., Nito, C., Sowa, K., Suda, S., Nishiyama, Y., Nakamura-Takahashi, A., Nitahara-Kasahara, Y., Imagawa, K., Hirato, T., Ueda, M., Kimura, K., & Okada, T. (2017). Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Molecular Theraphy: Methods and Clinical Development, 6, 102–111 [PMID: 28725658]. Scholar
  37. 37.
    Liu, H., Xue, W., Ge, G., Luo, X., Li, Y., Xiang, H., Ding, X., Tian, P., & Tian, X. (2010). Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1α in MSCs. Biochemical and Biophysical Research Communications, 401(4), 509–515 [PMID: 20869949]. Scholar
  38. 38.
    Cesarz, Z., & Tamama, K. (2016). Spheroid culture of mesenchymal stem cells. Stem Cells International, 5, 1–11 [PMID: 26649054]. Scholar
  39. 39.
    Huang, X., Zhang, F., Wang, Y., Sun, X., Choi, K. Y., Liu, D., Choi, J.-S., Shin, T.-H., Cheon, J., Niu, G., & Chen, X. (2014). Design considerations of iron-based nanoclusters for noninvasive tracking of mesenchymal stem cell homing. ACS Nano, 8(5), 4403–4414 [PMID: 24754735]. Scholar
  40. 40.
    Thulasiramaraju, T. V., Sudhakar Babu, A. M. S., Arunachalam, A., Prathap, M., Srikanth, S., & Sivaiah, P. (2012). Liposomes: A novel drug delivery system. International Journal of Biopharmaceutics, 3(1), 5–16.Google Scholar
  41. 41.
    Collier, J. H., & Messersmith, P. B. (2001). Phospholipid strategies in biomineralization and biomaterials research. Annual Review of Materials Research, 31, 237–263. Scholar
  42. 42.
    Zylberberg, C., & Matosevic, S. (2017). Bioengineered liposome-scaffold composites as therapeutic delivery systems. Therapeutic Delivery, 8(6), 425–445. Scholar
  43. 43.
    Santo, V. E., Gomes, M. E., Mano, J. F., & Reis, R. L. (2012). From nano- to macro-scale: Nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine (London, England), 7(7), 1045–1066 [PMID: 22846091]. Scholar
  44. 44.
    Kulkarni, M., Greiser, U., O'Brien, T., & Pandit, A. (2010). Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends in Biotechnology, 28(1), 28–36 [PMID: 19896228]. Scholar
  45. 45.
    Thakur, R. A., Florek, C. A., Kohn, J., & Michniak, B. B. (2008). Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. International Journal of Pharmaceutics, 364(1), 87–93 [PMID: 18771719]. Scholar
  46. 46.
    Sirc, J., Kubinova, S., Hobzova, R., Stranska, D., Kozlik, P., Bosakova, Z., Marekova, D., Holan, V., Sykova, E., & Michalek, J. (2012). Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. International Journal of Nanomedicine, 7, 5315–5325 [PMID: 23071393]. Scholar
  47. 47.
    Monteiro, N., Martins, A., Reis, R. L., & Neves, N. M. (2014). Liposomes in tissue engineering and regenerative medicine. Journal of the Royal Society Interface, 11(101), 20140459 [PMID: 25401172]. Scholar
  48. 48.
    Monteiro, N., Ribeiro, D., Martins, A., Faria, S., Fonseca, N. A., Moreira, J. N., Reis, R. L., & Neves, N. M. (2014). Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering. ACS Nano, 8, 8082–8094 [PMID: 25046548]. Scholar
  49. 49.
    Arab Tehrany, E., Kahn, C. J., Baravian, C., Maherani, B., Belhaj, N., Wang, X., & Linder, M. (2012). Elaboration and characterization of nanoliposome made of soya; rapeseed and salmon lecithins: application to cell culture. Colloids and Surfaces. B, Biointerfaces, 95, 75–81 [PMID: 22484065]. Scholar
  50. 50.
    Murao, A., Nishikawa, M., Managit, C., Wong, J., Kawakami, S., Yamashita, F., & Hashida, M. (2002). Targeting efficiency of galactosylated liposomes to hepatocytes in vivo: Effect of lipid composition. Pharmaceutical Research, 19(12), 1808–1814. Scholar
  51. 51.
    Monteiro, N., Martins, A., Pires, R., Faria, S., Fonseca, N. A., Moreira, J. N., Reis, R. L., & Neves, N. M. (2014). Immobilization of bioactive factor-loaded liposomes at the surface of electrospun nanofibers targeting tissue engineering. Biomaterials Science, 2, 1195–1209. Scholar
  52. 52.
    Winn, S. R., Chen, J. C., Gong, X., Bartholomew, S. V., Shreenivas, S., & Ozaki, W. (2005). Non-viral-mediated gene therapy approaches for bone repair. Orthodontics & Craniofacial Research, 8, 183–190. [PMID: 16022720]. Scholar
  53. 53.
    Santos, J. L., Pandita, D., Rodrigues, J., Pêgo, A. P., Granja, P. L., & Tomás, H. (2011). Non-viral gene delivery to mesenchymal stem cells: Methods, strategies and application in bone tissue engineering and regeneration. Current Gene Therapy, 11(1), 46–57 [PMID: 21182464].CrossRefGoogle Scholar
  54. 54.
    Yau, W. W., Rujitanaroj, P. O., Lam, L., & Chew, S. Y. (2012). Directing stem cell fate by controlled RNA interference. Biomaterials, 33(9), 2608–2628 [PMID: 22209557]. Scholar
  55. 55.
    Kawakami, S., Higuchi, Y., & Hashida, M. (2008). Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. Journal of Pharmaceutical Sciences, 97(2), 726–745 [PMID: 17823947]. Scholar
  56. 56.
    Dalby, B., Cates, S., Harris, A., Ohki, E. C., Tilkins, M. L., Price, P. J., & Ciccarone, V. C. (2004). Advanced transfection with Lipofectamine 2000 reagent: Primary neurons, siRNA, and high-throughput applications. Methods, 33(2), 95–103 [PMID: 15121163]. Scholar
  57. 57.
    Storrie, H., & Mooney, D. J. (2006). Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Advanced Drug Delivery Reviews, 58(4), 500–514 [PMID: 16759734]. Scholar
  58. 58.
    Liu, P. Y., Tong, W., Liu, K., Han, S. H., Wang, X. T., Badiavas, E., Rieger-Christ, K., & Summerhayes, I. (2004). Liposome-mediated transfer of vascular endothelial growth factor cDNA augments survival of random-pattern skin flaps in the rat. Wound Repair and Regeneration, 12(1), 80–85 [PMID: 14974968]. Scholar
  59. 59.
    Balazs, D. A., & Godbey, W. T. (2011). Liposomes for use in gene delivery. Journal of Drug Delivery, 2011, 326497 [PMID: 21490748]. Scholar
  60. 60.
    Kim, J.-K., Choi, S.-H., Kim, C.-O., Park, J.-S., Ahn, W.-S., & Kim, C. K. (2003). Enhancement of polyethylene glycol (PEG) – Modified cationic liposome-mediated gene deliveries: Effects on serum stability and transfection efficiency. The Journal of Pharmacy and Pharmacology, 55(4), 453–460 [PMID: 12803766]. Scholar
  61. 61.
    Shi, F., Wasungu, L., Nomden, A., Stuart, M. C., Polushkin, E., Engberts, J. B., & Hoekstra, D. (2002). Interference of poly(ethylene glycol)-lipid analogues with cationic-lipid mediated delivery of oligonucleotides; role of lipid exchangeability and non-lamellar transitions. Biochemical Journal, 366(Pt 1), 333–341 [PMID: 12030844]. Scholar
  62. 62.
    Mukherjee, A., Prasad, T. K., Rao, N. M., & Banerjee, R. (2005). Haloperidol-associated stealth liposomes: A potent carrier for delivering genes to human breast cancer cells. The Journal of Biological Chemistry, 280(16), 15619–15627 [PMID: 15695518]. Scholar
  63. 63.
    Ito, A., Shinkai, M., Honda, H., & Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 100(1), 1–11 [PMID: 16233845]. Scholar
  64. 64.
    Jasmin, Torres, A. L. M., Nunes, H. M. P., Passipieri, J. A., Jelicks, L. A., Gasparetto, E. L., Spray, D. C., Campos de Carvalho, A. C., & Mendez-Otero, R. (2011). Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging. Journal of Nanbiotechnology, 9, 4. [PMID: 21542946]. Scholar
  65. 65.
    Ishii, M., Shibata, R., Numaguchi, Y., Kito, T., Suzuki, H., Shimizu, K., Ito, A., Honda, H., & Murohara, T. (2011). Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(10), 2210–2215 [PMID: 21757660]. Scholar
  66. 66.
    Hong, J. S., Vreeland, W. N., Lacerda, S. H., Locascio, L. E., Gaitan, M., & Raghavan, S. R. (2008). Liposome-templated supramolecular assembly of responsive alginate nanogels. Langmuir, 24(8), 4092–4096 [PMID: 18338908]. Scholar
  67. 67.
    Viallat, A., Dalous, J., & Abkarian, M. (2004). Giant lipid vesicles filled with a gel: Shape instability induced by osmotic shrinkage. Biophysical Journal, 86(4), 2179–2187 [PMID: 15041658]. Scholar
  68. 68.
    Kim, Y., Lee Chung, B., Ma, M., Mulder, W. J., Fayad, Z. A., Farokhzad, O. C., & Langer, R. (2012). Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices. Nano Letters, 12(7), 3587–3591 [PMID: 22716029]. Scholar
  69. 69.
    Herbst, S. M., Klegerman, M. E., Kim, H., Qin, J., Shelat, R., Wassler, M., Moody, M. R., Yang, C. M., Ge, X., Zou, Y., Kopechek, J. A., Clubb, F. J., Kraemer, D. C., Huang, S., Holland, C. K., McPherson, D. D., & Geng, Y. J. (2009). Delivery of stem cells to porcine arterial wall with echogenic liposomes conjugated to antibodies against CD34 and Intercellular Adhesion Molecule-1. Molecular Pharmaceutics, 7(1), 3–11 [PMID: 19719324]. Scholar
  70. 70.
    Cao, J., Li, C., Wei, X., Tu, M., Zhang, Y., Xu, F., & Xu, Y. (2018). Selective targeting and eradication of LGR5+ cancer stem cells using RSPO-conjugated doxorubicin liposomes. Molecular Cancer Therapeutics, 17(7), 1475–1485 [PMID: 29695632]. Scholar
  71. 71.
    Zhang, L., Yao, H.-J., Yu, Y., Zhang, Y., Li, R.-J., Ju, R. J., Wang, X. X., Sun, M. G., Shi, J. F., & Lu, W. L. (2012). Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials, 33(2), 565–582 [PMID: 21983136]. Scholar
  72. 72.
    Guo, J., Zhou, J., Ying, X., Men, Y., Li, R. J., Zhang, Y., Du, J., Tian, W., Yao, H. J., Wang, X. X., Ju, R. J., & Lu, W. L. (2010). Effects of stealth liposomal daunorubicin plus tamoxifen on the breast cancer and cancer stem cells. Journal of Pharmacy & Pharmaceutical Sciences, 13(2), 136–151 [PMID: 20816001].CrossRefGoogle Scholar
  73. 73.
    Li, X. T., Ju, R. J., Li, X. Y., Zeng, F., Shi, J. F., Liu, L., Zhang, C. S., Sun, M. G., Lou, J. N., & Lu, W. L. (2014). Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells. Oncotarget, 5(15), 6497–6511 [PMID: 25153726].PubMedPubMedCentralGoogle Scholar
  74. 74.
    Liu, Y., Lu, W.-L., Guo, J., Du, J., Li, T., Wu, J. W., Wang, G. L., Wang, J. C., Zhang, X., & Zhang, Q. (2008). A potential target associated with both cancer and cancer stem cells: A combination therapy for eradication of breast cancer using vinorelbine stealthy liposomes plus parthenolide stealthy liposomes. Journal of Controlled Release, 129(1), 18–25 [PMID: 18466993]. Scholar
  75. 75.
    Liu, Y., Mei, L., Yu, Q., Xu, C., Qiu, Y., Yang, Y., Shi, K., Zhang, Q., Gao, H., Zhang, Z., & He, Q. (2015). Multifunctional tandem peptide modified paclitaxel-loaded liposomes for the treatment of vasculogenic mimicry and cancer stem cells in malignant glioma. ACS Applied Materials & Interfaces, 7(30), 16792–16801. [PMID: 26173814]. Scholar
  76. 76.
    Kato, T., Natsume, A., Toda, H., Iwamizu, H., Sugita, T., Hachisu, R., Watanabe, R., Yuki, K., Motomura, K., Bankiewicz, K., & Wakabayashi, T. (2010). Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Therapy, 17(11), 1363–1371 [PMID: 20520650]. Scholar
  77. 77.
    Introna, M., Lucchini, G., Dander, E., Galimberti, S., Rovelli, A., Balduzzi, A., Longoni, D., Pavan, F., Masciocchi, F., Algarotti, A., Micò, C., Grassi, A., Deola, S., Cavattoni, I., Gaipa, G., Belotti, D., Perseghin, P., Parma, M., Pogliani, E., Golay, J., Pedrini, O., Capelli, C., Cortelazzo, S., D'Amico, G., Biondi, A., Rambaldi, A., & Biagi, E. (2014). Treatment of graft versus host disease with mesenchymal stromal cells: A phase I study on 40 adult and pediatric patients. Biology of Blood and Marrow Transplantation, 20(3), 375–381 [PMID: 24321746]. Scholar
  78. 78.
    Shende, P., Gupta, H., & Gaud, R. S. (2018). Cytotherapy using stromal cells: Current and advance multi-treatment approaches. Biomedicine & Pharmacotherapy, 97, 38–44 [PMID: 29080456]. Scholar
  79. 79.
    Lalu, M. M., Mazzarello, S., Zlepnig, J., Dong, Y. Y. R., Montroy, J., McIntyre, L., Devereaux, P. J., Stewart, D. J., Mazer, C. D., Barron, C. C., McIsaac, D. I., & Fergusson, D. A. (2018). Safety and efficacy of adult stem cell therapy for acute myocardial infarction and ischemic heart failure (SafeCell Heart): A systematic review and meta-analysis. Stem Cells Translational Medicine. Scholar
  80. 80.
    Simari, R. (2013). Effectiveness of stem cell treatment for adults with ischemic cardiomyopathy (The FOCUS Study). Available at: Accessed 01 Oct 2019.
  81. 81.
    Nagpal, A., Choy, F. C., Howell, S., Hillier, S., Chan, F., Hamilton-Bruce, M. A., & Koblar, S. A. (2017). Safety and effectiveness of stem cell therapies in early-phase clinical trials in stroke: A systematic review and meta-analysis. Stem Cell Research & Therapy, 8(1), 191 [PMID: 5577822]. Scholar
  82. 82.
    Freitag, J., Bates, D., Boyd, R., Shah, K., Barnard, A., Huguenin, L., & Tenen, A. (2016). Mesenchymal stem cell therapy in the treatment of osteoarthritis: Reparative pathways, safety and efficacy – A review. BMC Musculoskeletal Disorders, 17(1).
  83. 83.
    Grønhøj, C., Jensen, D. H., Glovinski, P. V., Jensen, S. B., Bardow, A., Oliveri, R. S., Specht, L., Thomsen, C., Darkener, S., Kiss, K., Fischer-Nielson, A., & von Buchwald, C. (2017). First-in-man mesenchymal stem cells for radiation-induced xerostomia (MESRIX): Study protocol for a randomized controlled trial. Trials, 18(1), 108 [PMID: 5341429]. Scholar
  84. 84.
    Merryman, R. W., Kim, H. T., Zinzani, P. L., Carlo-Stella, C., Ansell, S. M., Perales, M. A., Avigdor, A., Halwani, A. S., Houot, R., Marchand, T., Dhedin, N., Lescaut, W., Thiebaut-Bertrand, A., François, S., Stamatoullas-Bastard, A., Rohrlich, P. S., Labussière Wallet, H., Castagna, L., Santoro, A., Bachanova, V., Bresler, S. C., Srivastava, A., Kim, H., Pesek, E., Chammas, M., Reynolds, C., Ho, V. T., Antin, J. H., Ritz, J., Soiffer, R. J., & Armand, P. (2017). Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma. Blood, 129(10), 1380–1388 [PMID: 28073785]. Scholar
  85. 85.
    Cobleigh, M. A., Vogel, C. L., Tripathy, D., Robert, N. J., Scholl, S., Fehrenbacher, L., Wolter, J. M., Paton, V., Shak, S., Lieberman, G., & Slamon, D. J. (1999). Multinational study of the efficacy and safety of humanized anti-her2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. Journal of Clinical Oncology, 17(9), 2639–2639. [PMID: 10561337]. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMSMumbaiIndia

Personalised recommendations