Advertisement

Role of Liposomes-Based Stem Cell for Multimodal Cancer Therapy

  • Pankaj Mandpe
  • Bala Prabhakar
  • Pravin ShendeEmail author
Article

Abstract

The utilization of stem cells as novel carriers to target tissues or organs of interest is a challenging task in delivery system. The composite cellular delivery with diverse signalling molecules as therapeutics increases stem cell capability and possesses the promising potential to augment, modify or commence localized or systemic restoration for vital applications in regenerative medicine. The inherent potential of stem cells to immigrate and reside at wounded site facilitates transportation of genes, polypeptides or nanosized molecules. Liposomes are micro- to nano-lipidic vesicles formed in aqueous solutions to encapsulate complex hydrophilic and lipophilic chemical substances. Moreover, these novel nanocarriers provide safer and efficient delivery of bioactives together with their potential applications in vaccine production, cosmeceuticals, imaging and diagnostic purpose. Tissue engineering promotes rejuvenation process and involves the synchronized utilization of cells with 3D bio-material scaffolds to fabricate living structures. This strategy requires regulated stimulus of cultured cells through combined mechanical signals and bioactive agents. This review highlights and summarizes the mechanism involved in stem cell migration, strategies to enhance homing, safety and efficacy studies of stem cells in various disease models and discusses the potential role of liposomes in prolonged and localized delivery of bioactives for regenerative medicines and tissue engineering techniques.

Graphical Abstract

Role of PEGylated liposomes in cancer stem cell therapy

Keywords

Liposomes Scaffolds Cancer Osteoarthritis Regenerative medicine Tissue engineering Stem cells 

Abbreviations

SC

Stem cells

TI

Therapeutic index

RES

Reticulo-endothelial system

RM

Regenerative medicine

ASCs

Adult stem cells

PSCs

Pluripotent stem cells

ESCs

Embryonic stem cells

MSCs

Mesenchymal stem cells

GFs

Growth factors

TE

Tissue engineering

RM

Regenerative medicine

ECM

Extracellular matrix

PAI-10

Plasminogen activator inhibitor

uPAR

urokinase Plasminogen activator receptor

TLR-4

Toll-like receptor 4

IA

Intra-articular

VLA-4

Very late activation antigen-4

VCAM-1

Vascular cell adhesion molecule 1

CXCL12

C-X-C motif chemokine 12

CXCR4 (CD184)

C-X-C chemokine receptor type 4

HSC

Hematopoietic progenitor cells

SDF-1α

Stromal cell-derived factor 1

ACKR-3

Atypical Chemokine Receptor 3

NPs

Nanoparticles

MNPs

Magnetic nanoparticles

OI

Osteogenesis imperfecta

BMP

Bone morphogenetic protein

BMMSCs

Bone marrow originated mesenchymal stem cells

ADMSCs

Adipose derived mesenchymal stem cells

hFIX

Autologous gene-engineered factor IX

HUMBSCs

Human umbilical cord blood-derived mesenchymal stem cells

MRI

Magnetic resonance imaging

E-PCL

Electrospun polycaprolactone

NFMs

Nanofiber meshes

RUNX2

Runt-related transcription factor 2

TGF-β

Transforming growth factor β

COL1A1

Collagen type 1, alpha 1

PEG

Poly (ethylene) glycol

PEG-LP

PEGylated lipoplexes

PLLA

Poly-l-lactic acid

NGF

Nerve growth factor

MCLs

Magnetic cationic liposomes

PCM

Polycarbonate membrane

LPH

Lipid polymer hybrid

SEM

Scanning electron microscopy

ICAM-1

Intercellular adhesion molecule-1

BF-ELIP

Bifunctional echogenic immunoliposomes

LGR-5

Leucine-rich repeat-containing G protein coupled receptor 5

MCF-7

Michigan Cancer Foundation-7

SCID

Severe combined immunodeficiency

HIF-1α

Hypoxia inducible factor-1α

GCs

Glioma cells

GSCs

Glioma stem cells

WGA

Wheat germ agglutinin

BBB

Blood brain barrier

SP

Side population

BCSCs

Brain cancer stem cells

VM

Vasculogenic mimicry

MGMT

O6-methylguanine-DNA methyltransferase

Si RNA

Small-interfering RNA

pDNA

Polyrotaxane-plasmid DNA

RNAi

RNA interference

mRNA

Messenger RNA

TMZ

Temozolomide

CED

Convection-enhanced delivery

RSPO-1

R-spondin family proteins

BCCs

Breast cancer cells

CSCs

Cancer stem cells

MAB

Monoclonal antibody

MBC

Metastatic breast cancer

GVHD

Graft versus host disease

LVEF

Left ventricular ejection fraction

CAD

Coronary artery disease

bFGF

Basic fibroblast growth factor

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sharma, A., & Sharma, U. S. (1997). Liposomes in drug delivery: Progress and limitations. International Journal of Pharmaceutics, 154, 123–140.  https://doi.org/10.1016/s0378-5173(97)00135-x.CrossRefGoogle Scholar
  2. 2.
    Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1), 102 [PMID: 23432972.  https://doi.org/10.1186/1556-276X-8-102.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Laouini, A., Jaafar-Maalej, C., Limayem-Blouza, I., Sfar, S., Charcosset, C., & Fessi, H. (2012). Preparation, characterization and applications of liposomes: State of the art. Journal of Colloid Science and Biotechnology, 1(2), 147–168.  https://doi.org/10.1166/jcsb.2012.1020.CrossRefGoogle Scholar
  4. 4.
    Singh, J., Garg, T., Rath, G., & Goyal, A. K. (2016). Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis – A critical review. Drug Delivery, 23(5), 1676–1698 [PMID: 26289212].  https://doi.org/10.3109/10717544.2015.1074765.CrossRefPubMedGoogle Scholar
  5. 5.
    Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 10, 975–999 [PMID: 25678787].  https://doi.org/10.2147/IJN.S68861.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Panahi, Y., Farshbaf, M., Mohammadhosseini, M., Mirahadi, M., Khalilov, R., Saghfi, S., & Akbarzadeh, A. (2017). Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications. Artificial Cells, Nanomedicine and Biotechnology, 45(4), 788–799 [PMID: 28278586].  https://doi.org/10.1080/21691401.2017.1282496.CrossRefGoogle Scholar
  7. 7.
    Honda, M., Asai, T., Oku, N., Araki, Y., Tanaka, M., & Ebihara, N. (2013). Liposomes and nanotechnology in drug development: Focus on ocular targets. International Journal of Nanomedicine, 8, 495–504 [PMID: 23439842].  https://doi.org/10.2147/IJN.S30725.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shende, P., Rodrigues, B., & Gaud, R. S. (2018). Transplantation and alternatives to treat autoimmune diseases. Advances in Experimental Medicine and Biology, 1089, 59–72 [PMID: 29516308].  https://doi.org/10.1007/5584_2018_177.CrossRefPubMedGoogle Scholar
  9. 9.
    Sercombe, L., Veerati, T., Moheimani, F., Wu, S. Y., Sood, A. K., & Hua, S. (2015). Advances and challenges of liposome assisted drug delivery. Frontiers in Pharmacology, 6, 286. [PMID: 26648870].  https://doi.org/10.3389/fphar.2015.00286.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Labusca, L., Herea, D. D., & Mashayekhi, K. (2018). Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World Journal of Stem Cells, 10(5), 43–56 [PMID: 29849930].  https://doi.org/10.4252/wjsc.v10.i5.43.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mimeault, M., Hauke, R., & Batra, S. K. (2007). Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clinical Pharmacology and Therapeutics, 82(3), 252–264 [PMID: 17671448].  https://doi.org/10.1038/sj.clpt.6100301.CrossRefPubMedGoogle Scholar
  12. 12.
    Wobma, H., & Vunjak-Novakovic, G. (2016). Tissue engineering and regenerative medicine 2015: A year in review. Tissue Engineering. Part B, Reviews, 22(2), 101–113 [PMID: 26714410].  https://doi.org/10.1089/ten.TEB.2015.0535.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Badowski, M. S., Zhang, T., Tsang, T. C., & Harris, D. T. (2009). Chimeric antigen receptors for stem cell based immunotherapy. Journal of Experimental Therapeutics & Oncology, 8(1), 53–63 [PMID: 19827271].Google Scholar
  14. 14.
    Stoltz, J. F., de Isla, N., Li, Y. P., Bensoussan, D., Zhang, L., Huselstein, C., Chen, Y., Decot, V., Magdalou, J., Li, N., Reppel, J., & He, Y. (2015). Stem cells and regenerative medicine: Myth or reality of the 21th century. Stem Cells International, 2015, 734731 [PMID: 26300923].  https://doi.org/10.1155/2015/734731.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Caplan, A. I. (2017). Mesenchymal stem cells: time to change the name! Stem Cells Translational Medicine, 6(6), 1445–1451 [PMID: 28542204].  https://doi.org/10.1002/sctm.17-0051.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Farber, D. B., & Katsman, D. (2016). Embryonic stem cell-derived microvesicles: Could they be used for retinal regeneration? Advances in Experimental Medicine and Biology, 854, 563–569 [PMID: 26427460].  https://doi.org/10.1007/978-3-319-17121-0_75.CrossRefPubMedGoogle Scholar
  17. 17.
    Guo, Y., Hangoc, G., Bian, H., Pelus, L. M., & Broxmeyer, H. E. (2005). SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells. Stem Cells, 23(9), 1324–1332 [PMID: 16210409].  https://doi.org/10.1634/stemcells.2005-0085.CrossRefPubMedGoogle Scholar
  18. 18.
    De Becker, A., & Riet, I. V. (2016). Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World Journal of Stem Cells, 8(3), 73–87 [PMID: 27022438].  https://doi.org/10.4252/wjsc.v8.i3.73.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Khaldoyanidi, S. (2008). Directing stem cell homing. Cell Stem Cell, 2, 198–200.  https://doi.org/10.1016/j.stem.2008.02.012.CrossRefPubMedGoogle Scholar
  20. 20.
    Lämmermann, T., & Sixt, M. (2009). Mechanical modes of ‘amoeboid’ cell migration. Current Opinion in Cell Biology, 21(5), 636–644 [PMID: 19523798].  https://doi.org/10.1016/j.ceb.2009.05.003.CrossRefPubMedGoogle Scholar
  21. 21.
    Yin, Y., Li, X., He, X. T., Wu, R. X., Sun, H. H., & Chen, F. M. (2017). Leveraging stem cell homing for therapeutic regeneration. Journal of Dental Research, 96(6), 601–609 [PMID: 28414563].  https://doi.org/10.1177/0022034517706070.CrossRefPubMedGoogle Scholar
  22. 22.
    Heissig, B., Dhahri, D., Eiamboonsert, S., Salama, Y., Shimazu, H., Munakata, S., & Hattori, K. (2015). Role of mesenchymal stem cell-derived fibrinolytic factor in tissue regeneration and cancer progression. Cellular and Molecular Life Sciences, 72(24), 4759–4770 [PMID: 26350342].  https://doi.org/10.1007/s00018-015-2035-7.CrossRefPubMedGoogle Scholar
  23. 23.
    Shende, P., Bhandarkar, S., & Prabhakar, B. (2019 [PMID: 31254166]). Heat shock proteins and their protective roles in stem cell biology. Stem Cell Reviews and Reports.  https://doi.org/10.1007/s12015-019-09903-5.CrossRefGoogle Scholar
  24. 24.
    Sahin, A. O., & Buitenhuis, M. (2012). Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells. Cell Adhesion & Migration, 6(1), 39–48 [PMID: 22647939].  https://doi.org/10.4161/cam.18975.CrossRefGoogle Scholar
  25. 25.
    Hocking, A. M. (2015). The role of chemokines in mesenchymal stem cell homing to wounds. Adv Wound Care (New Rochelle), 4(11), 623–630 [PMID: 26543676].  https://doi.org/10.1089/wound.2014.0579.CrossRefGoogle Scholar
  26. 26.
    Stuermer, E. K., Lipenksy, A., Thamm, O., Neugebauer, E., Schaefer, N., Fuchs, P., Bouillon, B., & Koenen, P. (2015). The role of SDF-1 in homing of human adipose-derived stem cells. Wound Repair and Regeneration, 23(1), 82–89 [PMID: 25581571].  https://doi.org/10.1111/wrr.12248.CrossRefPubMedGoogle Scholar
  27. 27.
    Miller, R. J., Banisadr, G., & Bhattacharyya, B. J. (2008). CXCR4 signaling in the regulation of stem cell migration and development. Journal of Neuroimmunology, 198(1–2), 31–38 [PMID: 18508132].  https://doi.org/10.1016/j.jneuroim.2008.04.008.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Leibacher, J., & Henschler, R. (2016). Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Research & Therapy, 7, 7 [PMID: 26753925].  https://doi.org/10.1186/s13287-015-0271-2.CrossRefGoogle Scholar
  29. 29.
    Das, J., Choi, Y. J., Yasuda, H., Han, J. W., Park, C., Song, H., Bae, H., & Kim, J. H. (2016). Efficient delivery of C/EBP beta gene into human mesenchymal stem cells via polyethylenimine-coated gold nanoparticles enhances adipogenic differentiation. Scientific Reports, 6, 33784 [PMID: 27677463].  https://doi.org/10.1038/srep33784.CrossRefPubMedGoogle Scholar
  30. 30.
    Watermann, A., & Brieger, J. (2017). Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials (Basel), 7(7) [PMID: 28737672]).  https://doi.org/10.3390/nano7070189.
  31. 31.
    Penati, R., Fumagalli, F., Calbi, V., Bernardo, M. E., & Aiuti, A. (2017). Gene therapy for lysosomal storage disorders: Recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. Journal of Inherited Metabolic Disease, 40(4), 543–554 [PMID: 28560469].  https://doi.org/10.1007/s10545-017-0052-4.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Myers, T. J., Granero-Molto, F., Longobardi, L., Li, T., Yan, Y., & Spagnoli, A. (2010). Mesenchymal stem cells at the intersection of cell and gene therapy. Expert Opinion on Biological Therapy, 10(12), 1663–1679 [PMID: 21058931].  https://doi.org/10.1517/14712598.2010.531257.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sack, B. K., Herzog, R. W., Terhorst, C., & Markusic, D. M. (2014). Development of gene transfer for induction of antigen-specific tolerance. Molecular Theraphy: Methods and Clinical Development, 1, 14013 [PMID: 25558460].  https://doi.org/10.1038/mtm.2014.13.CrossRefGoogle Scholar
  34. 34.
    Kumar, S., Wan, C., Ramaswamy, G., Clemens, T. L., & Ponnazhagan, S. (2010). Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Molecular Therapy, 18(5), 1026–1034 [PMID: 20068549].  https://doi.org/10.1038/mt.2009.315.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yeh, T. S., Fang, Y. H., Lu, C. H., Chiu, S. C., Yeh, C. L., Yen, T. C., Parfyonova, Y., & Hu, Y. C. (2014). Baculovirus-transduced, VEGF-expressing adipose-derived stem cell sheet for the treatment of myocardium infarction. Biomaterials, 35(1), 174–184 [PMID: 24120047].  https://doi.org/10.1016/j.biomaterials.2013.09.080.CrossRefPubMedGoogle Scholar
  36. 36.
    Nakajima, M., Nito, C., Sowa, K., Suda, S., Nishiyama, Y., Nakamura-Takahashi, A., Nitahara-Kasahara, Y., Imagawa, K., Hirato, T., Ueda, M., Kimura, K., & Okada, T. (2017). Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Molecular Theraphy: Methods and Clinical Development, 6, 102–111 [PMID: 28725658].  https://doi.org/10.1016/j.omtm.2017.06.005.CrossRefGoogle Scholar
  37. 37.
    Liu, H., Xue, W., Ge, G., Luo, X., Li, Y., Xiang, H., Ding, X., Tian, P., & Tian, X. (2010). Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1α in MSCs. Biochemical and Biophysical Research Communications, 401(4), 509–515 [PMID: 20869949].  https://doi.org/10.1016/j.bbrc.2010.09.076.CrossRefPubMedGoogle Scholar
  38. 38.
    Cesarz, Z., & Tamama, K. (2016). Spheroid culture of mesenchymal stem cells. Stem Cells International, 5, 1–11 [PMID: 26649054].  https://doi.org/10.1155/2016/9176357.CrossRefGoogle Scholar
  39. 39.
    Huang, X., Zhang, F., Wang, Y., Sun, X., Choi, K. Y., Liu, D., Choi, J.-S., Shin, T.-H., Cheon, J., Niu, G., & Chen, X. (2014). Design considerations of iron-based nanoclusters for noninvasive tracking of mesenchymal stem cell homing. ACS Nano, 8(5), 4403–4414 [PMID: 24754735].  https://doi.org/10.1021/nn4062726.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Thulasiramaraju, T. V., Sudhakar Babu, A. M. S., Arunachalam, A., Prathap, M., Srikanth, S., & Sivaiah, P. (2012). Liposomes: A novel drug delivery system. International Journal of Biopharmaceutics, 3(1), 5–16.Google Scholar
  41. 41.
    Collier, J. H., & Messersmith, P. B. (2001). Phospholipid strategies in biomineralization and biomaterials research. Annual Review of Materials Research, 31, 237–263.  https://doi.org/10.1146/annurev.matsci.31.1.237.CrossRefGoogle Scholar
  42. 42.
    Zylberberg, C., & Matosevic, S. (2017). Bioengineered liposome-scaffold composites as therapeutic delivery systems. Therapeutic Delivery, 8(6), 425–445.  https://doi.org/10.4155/tde-2017-0014.CrossRefPubMedGoogle Scholar
  43. 43.
    Santo, V. E., Gomes, M. E., Mano, J. F., & Reis, R. L. (2012). From nano- to macro-scale: Nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine (London, England), 7(7), 1045–1066 [PMID: 22846091].  https://doi.org/10.2217/nnm.12.78.CrossRefGoogle Scholar
  44. 44.
    Kulkarni, M., Greiser, U., O'Brien, T., & Pandit, A. (2010). Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends in Biotechnology, 28(1), 28–36 [PMID: 19896228].  https://doi.org/10.1016/j.tibtech.2009.10.003.CrossRefPubMedGoogle Scholar
  45. 45.
    Thakur, R. A., Florek, C. A., Kohn, J., & Michniak, B. B. (2008). Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. International Journal of Pharmaceutics, 364(1), 87–93 [PMID: 18771719].  https://doi.org/10.1016/j.ijpharm.2008.07.033.CrossRefPubMedGoogle Scholar
  46. 46.
    Sirc, J., Kubinova, S., Hobzova, R., Stranska, D., Kozlik, P., Bosakova, Z., Marekova, D., Holan, V., Sykova, E., & Michalek, J. (2012). Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. International Journal of Nanomedicine, 7, 5315–5325 [PMID: 23071393].  https://doi.org/10.2147/IJN.S35781.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Monteiro, N., Martins, A., Reis, R. L., & Neves, N. M. (2014). Liposomes in tissue engineering and regenerative medicine. Journal of the Royal Society Interface, 11(101), 20140459 [PMID: 25401172].  https://doi.org/10.1098/rsif.2014.0459.CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Monteiro, N., Ribeiro, D., Martins, A., Faria, S., Fonseca, N. A., Moreira, J. N., Reis, R. L., & Neves, N. M. (2014). Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering. ACS Nano, 8, 8082–8094 [PMID: 25046548].  https://doi.org/10.1021/nn5021049.CrossRefPubMedGoogle Scholar
  49. 49.
    Arab Tehrany, E., Kahn, C. J., Baravian, C., Maherani, B., Belhaj, N., Wang, X., & Linder, M. (2012). Elaboration and characterization of nanoliposome made of soya; rapeseed and salmon lecithins: application to cell culture. Colloids and Surfaces. B, Biointerfaces, 95, 75–81 [PMID: 22484065].  https://doi.org/10.1016/j.colsurfb.2012.02.024.CrossRefPubMedGoogle Scholar
  50. 50.
    Murao, A., Nishikawa, M., Managit, C., Wong, J., Kawakami, S., Yamashita, F., & Hashida, M. (2002). Targeting efficiency of galactosylated liposomes to hepatocytes in vivo: Effect of lipid composition. Pharmaceutical Research, 19(12), 1808–1814.  https://doi.org/10.1023/A:1021433206081.CrossRefPubMedGoogle Scholar
  51. 51.
    Monteiro, N., Martins, A., Pires, R., Faria, S., Fonseca, N. A., Moreira, J. N., Reis, R. L., & Neves, N. M. (2014). Immobilization of bioactive factor-loaded liposomes at the surface of electrospun nanofibers targeting tissue engineering. Biomaterials Science, 2, 1195–1209.  https://doi.org/10.1039/C4BM00069B.CrossRefGoogle Scholar
  52. 52.
    Winn, S. R., Chen, J. C., Gong, X., Bartholomew, S. V., Shreenivas, S., & Ozaki, W. (2005). Non-viral-mediated gene therapy approaches for bone repair. Orthodontics & Craniofacial Research, 8, 183–190. [PMID: 16022720].  https://doi.org/10.1111/j.1601-6343.2005.00332.x.CrossRefGoogle Scholar
  53. 53.
    Santos, J. L., Pandita, D., Rodrigues, J., Pêgo, A. P., Granja, P. L., & Tomás, H. (2011). Non-viral gene delivery to mesenchymal stem cells: Methods, strategies and application in bone tissue engineering and regeneration. Current Gene Therapy, 11(1), 46–57 [PMID: 21182464].CrossRefGoogle Scholar
  54. 54.
    Yau, W. W., Rujitanaroj, P. O., Lam, L., & Chew, S. Y. (2012). Directing stem cell fate by controlled RNA interference. Biomaterials, 33(9), 2608–2628 [PMID: 22209557].  https://doi.org/10.1016/j.biomaterials.2011.12.021.CrossRefPubMedGoogle Scholar
  55. 55.
    Kawakami, S., Higuchi, Y., & Hashida, M. (2008). Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. Journal of Pharmaceutical Sciences, 97(2), 726–745 [PMID: 17823947].  https://doi.org/10.1002/jps.21024.CrossRefPubMedGoogle Scholar
  56. 56.
    Dalby, B., Cates, S., Harris, A., Ohki, E. C., Tilkins, M. L., Price, P. J., & Ciccarone, V. C. (2004). Advanced transfection with Lipofectamine 2000 reagent: Primary neurons, siRNA, and high-throughput applications. Methods, 33(2), 95–103 [PMID: 15121163].  https://doi.org/10.1016/j.ymeth.2003.11.023.CrossRefPubMedGoogle Scholar
  57. 57.
    Storrie, H., & Mooney, D. J. (2006). Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Advanced Drug Delivery Reviews, 58(4), 500–514 [PMID: 16759734].  https://doi.org/10.1016/j.addr.2006.03.004.CrossRefPubMedGoogle Scholar
  58. 58.
    Liu, P. Y., Tong, W., Liu, K., Han, S. H., Wang, X. T., Badiavas, E., Rieger-Christ, K., & Summerhayes, I. (2004). Liposome-mediated transfer of vascular endothelial growth factor cDNA augments survival of random-pattern skin flaps in the rat. Wound Repair and Regeneration, 12(1), 80–85 [PMID: 14974968].  https://doi.org/10.1111/j.1067-1927.2004.012114.x.CrossRefPubMedGoogle Scholar
  59. 59.
    Balazs, D. A., & Godbey, W. T. (2011). Liposomes for use in gene delivery. Journal of Drug Delivery, 2011, 326497 [PMID: 21490748].  https://doi.org/10.1155/2011/326497.CrossRefPubMedGoogle Scholar
  60. 60.
    Kim, J.-K., Choi, S.-H., Kim, C.-O., Park, J.-S., Ahn, W.-S., & Kim, C. K. (2003). Enhancement of polyethylene glycol (PEG) – Modified cationic liposome-mediated gene deliveries: Effects on serum stability and transfection efficiency. The Journal of Pharmacy and Pharmacology, 55(4), 453–460 [PMID: 12803766].  https://doi.org/10.1211/002235702928.CrossRefPubMedGoogle Scholar
  61. 61.
    Shi, F., Wasungu, L., Nomden, A., Stuart, M. C., Polushkin, E., Engberts, J. B., & Hoekstra, D. (2002). Interference of poly(ethylene glycol)-lipid analogues with cationic-lipid mediated delivery of oligonucleotides; role of lipid exchangeability and non-lamellar transitions. Biochemical Journal, 366(Pt 1), 333–341 [PMID: 12030844].  https://doi.org/10.1042/BJ20020590.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Mukherjee, A., Prasad, T. K., Rao, N. M., & Banerjee, R. (2005). Haloperidol-associated stealth liposomes: A potent carrier for delivering genes to human breast cancer cells. The Journal of Biological Chemistry, 280(16), 15619–15627 [PMID: 15695518].  https://doi.org/10.1074/jbc.M409723200.CrossRefPubMedGoogle Scholar
  63. 63.
    Ito, A., Shinkai, M., Honda, H., & Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 100(1), 1–11 [PMID: 16233845].  https://doi.org/10.1263/jbb.100.1.CrossRefPubMedGoogle Scholar
  64. 64.
    Jasmin, Torres, A. L. M., Nunes, H. M. P., Passipieri, J. A., Jelicks, L. A., Gasparetto, E. L., Spray, D. C., Campos de Carvalho, A. C., & Mendez-Otero, R. (2011). Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging. Journal of Nanbiotechnology, 9, 4. [PMID: 21542946].  https://doi.org/10.1186/1477-3155-9-4.CrossRefGoogle Scholar
  65. 65.
    Ishii, M., Shibata, R., Numaguchi, Y., Kito, T., Suzuki, H., Shimizu, K., Ito, A., Honda, H., & Murohara, T. (2011). Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(10), 2210–2215 [PMID: 21757660].  https://doi.org/10.1161/ATVBAHA.111.231100.CrossRefPubMedGoogle Scholar
  66. 66.
    Hong, J. S., Vreeland, W. N., Lacerda, S. H., Locascio, L. E., Gaitan, M., & Raghavan, S. R. (2008). Liposome-templated supramolecular assembly of responsive alginate nanogels. Langmuir, 24(8), 4092–4096 [PMID: 18338908].  https://doi.org/10.1021/la7031219.CrossRefPubMedGoogle Scholar
  67. 67.
    Viallat, A., Dalous, J., & Abkarian, M. (2004). Giant lipid vesicles filled with a gel: Shape instability induced by osmotic shrinkage. Biophysical Journal, 86(4), 2179–2187 [PMID: 15041658].  https://doi.org/10.1016/S0006-3495(04)74277-0.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Kim, Y., Lee Chung, B., Ma, M., Mulder, W. J., Fayad, Z. A., Farokhzad, O. C., & Langer, R. (2012). Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices. Nano Letters, 12(7), 3587–3591 [PMID: 22716029].  https://doi.org/10.1021/nl301253v.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Herbst, S. M., Klegerman, M. E., Kim, H., Qin, J., Shelat, R., Wassler, M., Moody, M. R., Yang, C. M., Ge, X., Zou, Y., Kopechek, J. A., Clubb, F. J., Kraemer, D. C., Huang, S., Holland, C. K., McPherson, D. D., & Geng, Y. J. (2009). Delivery of stem cells to porcine arterial wall with echogenic liposomes conjugated to antibodies against CD34 and Intercellular Adhesion Molecule-1. Molecular Pharmaceutics, 7(1), 3–11 [PMID: 19719324].  https://doi.org/10.1021/mp900116r.CrossRefGoogle Scholar
  70. 70.
    Cao, J., Li, C., Wei, X., Tu, M., Zhang, Y., Xu, F., & Xu, Y. (2018). Selective targeting and eradication of LGR5+ cancer stem cells using RSPO-conjugated doxorubicin liposomes. Molecular Cancer Therapeutics, 17(7), 1475–1485 [PMID: 29695632].  https://doi.org/10.1158/1535-7163.MCT-17-0694.CrossRefPubMedGoogle Scholar
  71. 71.
    Zhang, L., Yao, H.-J., Yu, Y., Zhang, Y., Li, R.-J., Ju, R. J., Wang, X. X., Sun, M. G., Shi, J. F., & Lu, W. L. (2012). Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials, 33(2), 565–582 [PMID: 21983136].  https://doi.org/10.1016/j.biomaterials.2011.09.055.CrossRefPubMedGoogle Scholar
  72. 72.
    Guo, J., Zhou, J., Ying, X., Men, Y., Li, R. J., Zhang, Y., Du, J., Tian, W., Yao, H. J., Wang, X. X., Ju, R. J., & Lu, W. L. (2010). Effects of stealth liposomal daunorubicin plus tamoxifen on the breast cancer and cancer stem cells. Journal of Pharmacy & Pharmaceutical Sciences, 13(2), 136–151 [PMID: 20816001].CrossRefGoogle Scholar
  73. 73.
    Li, X. T., Ju, R. J., Li, X. Y., Zeng, F., Shi, J. F., Liu, L., Zhang, C. S., Sun, M. G., Lou, J. N., & Lu, W. L. (2014). Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells. Oncotarget, 5(15), 6497–6511 [PMID: 25153726].PubMedPubMedCentralGoogle Scholar
  74. 74.
    Liu, Y., Lu, W.-L., Guo, J., Du, J., Li, T., Wu, J. W., Wang, G. L., Wang, J. C., Zhang, X., & Zhang, Q. (2008). A potential target associated with both cancer and cancer stem cells: A combination therapy for eradication of breast cancer using vinorelbine stealthy liposomes plus parthenolide stealthy liposomes. Journal of Controlled Release, 129(1), 18–25 [PMID: 18466993].  https://doi.org/10.1016/j.jconrel.2008.03.022.CrossRefPubMedGoogle Scholar
  75. 75.
    Liu, Y., Mei, L., Yu, Q., Xu, C., Qiu, Y., Yang, Y., Shi, K., Zhang, Q., Gao, H., Zhang, Z., & He, Q. (2015). Multifunctional tandem peptide modified paclitaxel-loaded liposomes for the treatment of vasculogenic mimicry and cancer stem cells in malignant glioma. ACS Applied Materials & Interfaces, 7(30), 16792–16801. [PMID: 26173814].  https://doi.org/10.1021/acsami.5b04596.CrossRefGoogle Scholar
  76. 76.
    Kato, T., Natsume, A., Toda, H., Iwamizu, H., Sugita, T., Hachisu, R., Watanabe, R., Yuki, K., Motomura, K., Bankiewicz, K., & Wakabayashi, T. (2010). Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Therapy, 17(11), 1363–1371 [PMID: 20520650].  https://doi.org/10.1038/gt.2010.88.CrossRefPubMedGoogle Scholar
  77. 77.
    Introna, M., Lucchini, G., Dander, E., Galimberti, S., Rovelli, A., Balduzzi, A., Longoni, D., Pavan, F., Masciocchi, F., Algarotti, A., Micò, C., Grassi, A., Deola, S., Cavattoni, I., Gaipa, G., Belotti, D., Perseghin, P., Parma, M., Pogliani, E., Golay, J., Pedrini, O., Capelli, C., Cortelazzo, S., D'Amico, G., Biondi, A., Rambaldi, A., & Biagi, E. (2014). Treatment of graft versus host disease with mesenchymal stromal cells: A phase I study on 40 adult and pediatric patients. Biology of Blood and Marrow Transplantation, 20(3), 375–381 [PMID: 24321746].  https://doi.org/10.1016/j.bbmt.2013.11.033.CrossRefPubMedGoogle Scholar
  78. 78.
    Shende, P., Gupta, H., & Gaud, R. S. (2018). Cytotherapy using stromal cells: Current and advance multi-treatment approaches. Biomedicine & Pharmacotherapy, 97, 38–44 [PMID: 29080456].  https://doi.org/10.1016/j.biopha.2017.10.127.CrossRefGoogle Scholar
  79. 79.
    Lalu, M. M., Mazzarello, S., Zlepnig, J., Dong, Y. Y. R., Montroy, J., McIntyre, L., Devereaux, P. J., Stewart, D. J., Mazer, C. D., Barron, C. C., McIsaac, D. I., & Fergusson, D. A. (2018). Safety and efficacy of adult stem cell therapy for acute myocardial infarction and ischemic heart failure (SafeCell Heart): A systematic review and meta-analysis. Stem Cells Translational Medicine.  https://doi.org/10.1002/sctm.18-0120.CrossRefGoogle Scholar
  80. 80.
    Simari, R. (2013). Effectiveness of stem cell treatment for adults with ischemic cardiomyopathy (The FOCUS Study). Available at: https://clinicaltrials.gov/ct2/show/NCT00824005. Accessed 01 Oct 2019.
  81. 81.
    Nagpal, A., Choy, F. C., Howell, S., Hillier, S., Chan, F., Hamilton-Bruce, M. A., & Koblar, S. A. (2017). Safety and effectiveness of stem cell therapies in early-phase clinical trials in stroke: A systematic review and meta-analysis. Stem Cell Research & Therapy, 8(1), 191 [PMID: 5577822].  https://doi.org/10.1186/s13287-017-0643-x.CrossRefGoogle Scholar
  82. 82.
    Freitag, J., Bates, D., Boyd, R., Shah, K., Barnard, A., Huguenin, L., & Tenen, A. (2016). Mesenchymal stem cell therapy in the treatment of osteoarthritis: Reparative pathways, safety and efficacy – A review. BMC Musculoskeletal Disorders, 17(1).  https://doi.org/10.1186/s12891-016-1085-9.
  83. 83.
    Grønhøj, C., Jensen, D. H., Glovinski, P. V., Jensen, S. B., Bardow, A., Oliveri, R. S., Specht, L., Thomsen, C., Darkener, S., Kiss, K., Fischer-Nielson, A., & von Buchwald, C. (2017). First-in-man mesenchymal stem cells for radiation-induced xerostomia (MESRIX): Study protocol for a randomized controlled trial. Trials, 18(1), 108 [PMID: 5341429].  https://doi.org/10.1186/s13063-017-1856-0.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Merryman, R. W., Kim, H. T., Zinzani, P. L., Carlo-Stella, C., Ansell, S. M., Perales, M. A., Avigdor, A., Halwani, A. S., Houot, R., Marchand, T., Dhedin, N., Lescaut, W., Thiebaut-Bertrand, A., François, S., Stamatoullas-Bastard, A., Rohrlich, P. S., Labussière Wallet, H., Castagna, L., Santoro, A., Bachanova, V., Bresler, S. C., Srivastava, A., Kim, H., Pesek, E., Chammas, M., Reynolds, C., Ho, V. T., Antin, J. H., Ritz, J., Soiffer, R. J., & Armand, P. (2017). Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma. Blood, 129(10), 1380–1388 [PMID: 28073785].  https://doi.org/10.1182/blood-2016-09-738385.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Cobleigh, M. A., Vogel, C. L., Tripathy, D., Robert, N. J., Scholl, S., Fehrenbacher, L., Wolter, J. M., Paton, V., Shak, S., Lieberman, G., & Slamon, D. J. (1999). Multinational study of the efficacy and safety of humanized anti-her2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. Journal of Clinical Oncology, 17(9), 2639–2639. [PMID: 10561337].  https://doi.org/10.1200/jco.1999.17.9.2639.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMSMumbaiIndia

Personalised recommendations