Advertisement

Short Peptides Protect Oral Stem Cells from Ageing

  • Bruna Sinjari
  • Francesca Diomede
  • Vladimir Khavinson
  • Ekaterina Mironova
  • Natalia LinkovaEmail author
  • Svetlana Trofimova
  • Oriana Trubiani
  • Sergio Caputi
Article
  • 15 Downloads

Abstract

Primary stem cells, after several cell divisions, enter into a senescence state, that is characterized by alterations to spindle-shape typical morphology. This concern is one of the main problems in the use of human mesenchymal stem cells (hMSCs) in clinical applications which demand cells in large numbers. Short peptides had geroprotective properties and stimulated stem cell differentiation. The aim of the study is to demonstrate the role of AEDG and KED peptides in maintaining oral hMSCs morphology and functions over long-term expansion. 2 types of hMSCs were investigated: human periodontal ligament stem cells (hPLSCs) and human gingival mesenchymal stem cells (hGMSCs). Cells at the 25th passage were divided into 3 groups: 1 – control (without adding peptide), 2 – treated with AEDG peptide, 3 – treated with KED peptide. Cell cultures were analyzed by an immunofluorescence method and RT-PCR on the p16 and p21 senescence markers expression. AEDG peptide decreased p16 and p21 mRNA expression by 1.56–2.44 times in comparison with the control group. KED peptide decreased p16 and p21 mRNA expression by 1.82–3.23 times in comparison with the control group. These results were confirmed by immunofluorescent visualization. AEDG and KED peptides could be used as supplementary substances in a culture medium to delay the expression of senescence markers in long term stem cell cultivation in order to promote the large-scale in vitro expansion necessarily required for stem cell therapy clinical application. The data obtained confirm the geroprotective effect of AEDG and KED peptide, which was shown early in animal and cells models.

Keywords

AEDG peptide KED peptide Stem cells Cell senescence p16 p21 Geroprotection 

Notes

Compliance with Ethical Standards

Conflict of interests

The authors declare no conflict of interests.

References

  1. 1.
    Bonab, M. M., Alimoghaddam, K., Talebian, F., Ghaffari, S. H., Ghavamzadeh, A., & Nikbin, B. (2006). Aging of mesenchymal stem cell in vitro. BMC Cell Biology, 10(7), 14.CrossRefGoogle Scholar
  2. 2.
    Wagner, W., Ho, A. D., & Zenke, M. (2010). Different facets of aging in human mesenchymal stem cells. Tissue Engineering Part B, Reviews, 16(4), 445–453.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    De Becker, A., & Van Riet, I. (2016). Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World Journal of Stem Cells, 8(3), 73–87.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Honczarenko, M., Le, Y., Swierkowski, M., Ghiran, I., Glodek, A. M., & Silberstein, L. E. (2006). Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells, 24(4), 1030–1041.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Kassem, M. (2006). Stem Cells potential therapy for age-related diseases. Annals of the New York Academy of Sciences, 1067, 436–442.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Yu, J. H., He, H. X., Tang, C. B., et al. (2010). Differentiation potential of STRO-1(+) dental pulp stem cells changes during cell passaging. BMC Cell Biology, 8, 11.CrossRefGoogle Scholar
  7. 7.
    Dhanasekaran, M., Indumathi, S., Lissa, R. P., Harikrishnan, R., Rajkumar, J. S., & Sudarsanam, D. (2013). A comprehensive study on optimization of proliferation and differentiation potency of bone marrow derived mesenchymal stem cells under prolonged culture condition. Cytotechnology, 65(2), 187–197.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Park, Y. J., Cha, S. H., & Park, Y. S. (2016). Regenerative applications using tooth derived stem cells in other than tooth regeneration: a literature review. Stem Cells International.  https://doi.org/10.1155/2016/9305986.
  9. 9.
    Zare, H., Jamshidi, S., Dehghan, M. M., Saheli, M., & Piryaei, A. (2018). Bone marrow or adipose tissue mesenchymal stem cells: comparison of the therapeutic potentials in mice model of acute liver failure. Journal of Cellular Biochemistry, 119(7), 5834–5842.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Kerkis, I., Kerkis, A., Dozortsev, D., et al. (2006). Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells, Tissues, Organs, 184(3–4), 105–116.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Gould, T. R., Melcher, A. H., & Brunette, D. M. (1977). Location of progenitor cells in periodontal ligament of mouse molar stimulated by wounding. The Anatomical Record, 188(2), 133–141.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    McCulloch, C. A., Nemeth, E., Lowenberg, B., & Melcher, A. H. (1987). Paravascular cells in endosteal spaces of alveolar bone contribute to periodontal ligament cell populations. The Anatomical Record, 219(3), 233–242.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Seo, B. M., Miura, M., Gronthos, S., et al. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364(9429), 149–155.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Diomede, F., Zini, N., Pizzicannella, J., et al. (2018). 5-Aza exposure improves reprogramming process through embryoid body formation in human gingival stem cells. Frontiers in Genetics.  https://doi.org/10.3389/fgene.2018.00419.
  15. 15.
    Ballerini, P., Diomede, F., Petragnani, N., et al. (2017). Conditioned medium from relapsing-remitting multiple sclerosis patients reduces the expression and release of inflammatory cytokines induced by LPS-gingivalis in THP-1 and MO3.13 cell lines. Cytokine, 96, 261–272.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Cavalcanti, M. F., Maria, D. A., de Isla, N., et al. (2015). Evaluation of the proliferative effects induced by low-level laser therapy in bone marrow stem cell culture. Photomedicine and Laser Surgery, 33(12), 610–616.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Rajan, T. S., Giacoppo, S., Trubiani, O., et al. (2016). Conditioned medium of periodontal ligament mesenchymal stem cells exert anti-inflammatory effects in lipopolysaccharide-activated mouse motoneurons. Experimental Cell Research, 349(1), 152–161.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Giacoppo, S., Thangavelu, S. R., Diomede, F., et al. (2017). Anti-inflammatory effects of hypoxia-preconditioned human periodontal ligament cell secretome in an experimental model of multiple sclerosis: a key role of IL-37. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 31(12), 5592–5608.CrossRefGoogle Scholar
  19. 19.
    Gugliandolo, A., Diomede, F., Cardelli, P., et al. (2018). Transcriptomic analysis of gingival mesenchymal stem cells cultured on 3D bioprinted scaffold: a promising strategy for neuroregeneration. Journal of Biomedical Materials Research Part A, 106(1), 126–137.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Rajan, T. S., Scionti, D., Diomede, F., et al. (2017). Gingival stromal cells as an in vitro model: cannabidiol modulates genes linked with amyotrophic lateral sclerosis. Journal of Cellular Biochemistry, 118(4), 819–828.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Diomede, F., Gugliandolo, A., Scionti, D., et al. (2018). Biotherapeutic effect of gingival stem cells conditioned medium in bone tissue restoration. International Journal of Molecular Sciences.  https://doi.org/10.3390/ijms19020329.
  22. 22.
    Diomede, F., Gugliandolo, A., Cardelli, P., et al. (2018). Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair. Stem Cell Research & Therapy, 9(1), 104.CrossRefGoogle Scholar
  23. 23.
    Trubiani, O., Pizzicannella, J., Caputi, S., et al. (2019). Periodontal ligament stem cells: current knowledge and future perspectives. Stem Cells.  https://doi.org/10.1089/scd.2019.0025.
  24. 24.
    Khavinson, V. K., Linkova, N. S., & Tarnovskaya, S. I. (2016). Short peptides regulate gene expression. Bulletin of Experimental Biology and Medicine, 162(2), 288–292.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Khavinson, V. K., Bondarev, I. E., & Butyugov, A. A. (2003). Epithalon peptide induces telomerase activity and telomere elongation in human somatic cells. Bulletin of Experimental Biology and Medicine, 135(6), 590–592.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Khavinson, V. K., Bondarev, I. E., Butyugov, A. A., & Smirnova, T. D. (2004). Peptide promotes overcoming of the division limit in human somatic cell. Bulletin of Experimental Biology and Medicine, 137(5), 613–616.CrossRefGoogle Scholar
  27. 27.
    Anisimov, V. N., & Khavinson, V. (2010). Peptide bioregulation of aging: results and prospects. Biogerontology, 11(2), 139–149.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Khavinson, V. K., Tarnovskaia, S. I., Lin'kova, N. S., Guton, E. O., & Elashkina, E. V. (2014). Epigenetic aspects of peptidergic regulation of vascular endothelial cell proliferation during aging. Advances in Gerontology, 27(1), 108–114.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Khavinson, V. K., Linkova, N. S., Elashkina, E. V., Durnova, A. O., & Kozlov, K. L. (2014). Molecular aspects of anti-atherosclerotic effects of short peptides. Bulletin of Experimental Biology and Medicine, 158(1), 159–163.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kitachev, K. V., Sazonov, A. B., Kozlov, K. L., Petrov, K. I., Sliusarev, A. S., & Khavinson, V. K. (2014). The efficacy of peptide bioregulators of vessels in lower limbs chronic arterial insufficiency treatment in old and elderly people. Advances in Gerontology, 27(1), 156–190.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Caputi, S., Trubiani, O., Sinjari, B., et al. (2019). Effect of short peptides on neuronal differentiation of stem cells. International Journal of Immunopathology and Pharmacology.  https://doi.org/10.1177/2058738419828613.
  32. 32.
    Pizzicannella, J., Diomede, F., Merciaro, I., et al. (2018). Endothelial committed oral stem cells as modelling in the relationship between periodontal and cardiovascular disease. Journal of Cellular Physiology, 233(10), 6734–6747.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Libro, R., Scionti, D., Diomede, F., et al. (2016). Cannabidiol modulates the immunophenotype and inhibits the activation of the inflammasome in human gingival mesenchymal stem cells. Frontiers in Physiology, 7, 559.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Pizzicannella, J., Gugliandolo, A., Orsini, T., et al. (2019). Engineered extracellular vesicles from human periodontal-ligament stem cells increase VEGF/VEGFR2 expression during bone regeneration. Frontiers in Physiology, 10, 512.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Diomede, F., Rajan, T. S., Gatta, V., et al. (2017). Stemness maintenance properties in human oral stem cells after long-term passage. Stem Cells International.  https://doi.org/10.1155/2017/5651287.
  36. 36.
    Diomede, F., Merciaro, I., Martinotti, S., et al. (2016). miR-2861 is involved in osteogenic commitment of human periodontal ligament stem cells grown onto 3D scaffold. Journal of Biological Regulators and Homeostatic Agents, 30(4), 1009–1018.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Pizzicannella, J., Cavalcanti, M., Trubiani, O., & Diomede, F. (2018). MicroRNA 210 mediates VEGF upregulation in human periodontal ligament stem cells cultured on 3D hydroxyapatite ceramic scaffold. International Journal of Molecular Sciences.  https://doi.org/10.3390/ijms19123916.
  38. 38.
    Diomede, F., Zini, N., Gatta, V., et al. (2016). Human periodontal ligament stem cells cultured onto cortico-cancellous scaffold drive bone regenerative process. European Cells & Materials, 32, 181–201.CrossRefGoogle Scholar
  39. 39.
    Ivanov, V. T., Karelin, A. A., Philippova, M. M., Nazimov, I. V., & Pletnev, V. Z. (1997). Hemoglobin as a source of endogenous bioactive peptides: the concept of tissue-specific peptide pool. Biopolymers, 43(2), 171–188.PubMedCrossRefGoogle Scholar
  40. 40.
    Khavinson, V. K. (2002). Peptides and ageing. Neuroendocrinology Letters, 23(3), 11–144.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Labrador-Velandia, S., Alonso-Alonso, M. L., Di Lauro, S., et al. (2019). Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures. Experimental Eye Research.  https://doi.org/10.1016/j.exer.2019.05.011.
  42. 42.
    Trubiani, O., Toniato, E., Di Iorio, D., et al. (2012). Morphological analysis and interleukin release in human gingival fibroblasts seeded on different denture base acrylic resins. International Journal of Immunopathology and Pharmacology, 25(3), 637–643.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Manescu, A., Giuliani, A., Mohammadi, S., et al. (2016). Osteogenic potential of dualblocks cultured with human periodontal ligament stem cells: in vitro and synchrotron microtomography study. Journal of Periodontal Research, 51(1), 112–124.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Trubiani, O., Ballerini, P., Murmura, G., et al. (2012). Toll-like receptor 4 expression, interleukin-6,-8 and Ccl-20 release, and Nf-Kb translocation in human periodontal ligament mesenchymal Stem cells stimulated with Lps-P-Gingivalis. European Journal ofa Inflammation, 10(1), 81–89.CrossRefGoogle Scholar
  45. 45.
    Turinetto, V., Vitale, E., & Giachino, C. (2016). Senescence in human mesenchymal stem cells: functional changes and implications in stem cell based therapy. International Journal of Molecular Sciences.  https://doi.org/10.3390/ijms17071164.
  46. 46.
    Mammana, S., Gugliandolo, A., Cavalli, E., et al. (2019). Human gingival mesenchymal stem cells (GMSCs) pre-treated with vesicular Moringin nanostructures as a new therapeutic approach in a mouse model of spinal cord injury. Journal of Tissue Engineering and Regenerative Medicine.  https://doi.org/10.1002/term.2857.
  47. 47.
    Khavinson, V. K., Kopylov, A. T., Vaskovsky, B. V., Ryzhak, G. A., & Linkova, N. S. (2017). Identification of peptide AEDG in the polypeptide complex of the pineal gland. Bulletin of Experimental Biology and Medicine, 164(1), 41–43.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Lin'kova, N. S., Drobintseva, A. O., Orlova, O. A., et al. (2016). Peptide regulation of skin fibroblast functions during their aging in vitro. Bulletin of Experimental Biology and Medicine, 161(1), 175–178.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Khavinson, V. K., Lezhava, T. A., Monaselidze, J. R., et al. (2003). Peptide Epitalon activates chromatin at the old age. Neuroendocrinology Letters, 24(5), 329–333.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Rosenfeld, S. V., Togo, E. F., Mikheev, V. S., et al. (2002). Effect of epithalon on the incidence of chromosome aberrations in senescence-accelerated mice. Bulletin of Experimental Biology and Medicine, 133(3), 274–276.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kozina, L. S., Arutjunyan, A. V., & Khavinson, V. K. (2007). Antioxidant properties of geroprotective peptides of the pineal gland. Archives of Gerontology and Geriatrics, 44, 213–216.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Stone, S., Jiang, P., Dayananth, P., et al. (1995). Complex structure and regulation of the P16 (Mts1) Locus. Cancer Research, 55(14), 2988–2994.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Rayess, H., Wang, M. B., & Srivatsan, E. S. (2012). Cellular senescence and tumor suppressor gene p16. International Journal of Cancer, 130(8), 1715–1725.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kim, W. Y., & Sharpless, N. E. (2006). The regulation of INK4/ARF in cancer and aging. Cell., 127(2), 265–275.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Chkhotua, A. B., Gabusi, E., Altimari, A., et al. (2003). Increased expression of p16(INK4a) and p27(Kip1) cyclin-dependent kinase inhibitor genes in aging human kidney and chronic allograft nephropathy. American Journal of Kidney Diseases, 41(6), 1303–1313.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Eldeiry, W. S., Tokino, T., Velculescu, V. E., et al. (1993). Waf1, a potential mediator of P53 tumor suppression. Cell, 75(4), 817–825.CrossRefGoogle Scholar
  57. 57.
    McConnell, B. B., Starborg, M., Brookes, S., & Peters, G. (1998). Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Current Biology, 8(6), 351–354.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Cheng, T., Rodrigues, N., Shen, H., et al. (2000). Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science., 287(5459), 1804–1808.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medical, Oral and Biotechnological SciencesUniversity “G. d’Annunzio” Chieti-PescaraChietiItaly
  2. 2.Department of BiogerontologySaint Petersburg Institute of Bioregulation and GerontologySt. PetersburgRussia
  3. 3.Department of Geriatrics, Propaedeutics and Nursing ManagementMechnikov North-Western State Medical UniversitySt. PetersburgRussia
  4. 4.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia
  5. 5.Department of Therapy, Geriatrics, and Anti-Aging MedicineAcademy of Postgraduate EducationMoscowRussia

Personalised recommendations