Advertisement

Combination of Chemical and Neurotrophin Stimulation Modulates Neurotransmitter Receptor Expression and Activity in Transdifferentiating Human Adipose Stromal Cells

  • Arthur A. Nery
  • Ricardo L. Pereira
  • Vinicius Bassaneze
  • Isis C. Nascimento
  • Lauren S. Sherman
  • Pranela Rameshwar
  • Claudiana Lameu
  • Henning UlrichEmail author
Article
  • 103 Downloads

Abstract

Adipose stromal cells are promising tools for clinical applications in regeneration therapies, due to their ease of isolation from tissue and its high yield; however, their ability to transdifferentiate into neural phenotypes is still a matter of controversy. Here, we show that combined chemical and neurotrophin stimulation resulted in neuron-like morphology and regulated expression and activity of several genes involved in neurogenesis and neurotransmission as well as ion currents mediated by NMDA and GABA receptors. Among them, expression patterns of genes coding for kinin-B1 and B2, α7 nicotinic, M1, M3 and M4 muscarinic acetylcholine, glutamatergic (AMPA2 and mGlu2), purinergic P2Y1 and P2Y4 and GABAergic (GABA-A, β3-subunit) receptors and neuronal nitric oxide synthase were up-regulated compared to levels of undifferentiated cells. Simultaneously, expression levels of P2X1, P2X4, P2X7 and P2Y6 purinergic and M5 muscarinic acetylcholine receptors were down-regulated. Agonist-induced activity levels of the studied receptor classes also augmented during neuronal transdifferentiation. Transdifferentiated cells expressed high levels of neuronal β3-tubulin, NF-H, NeuN and MAP-2 proteins as well as increased ASCL1, MYT1 and POU3F2 gene expression known to drive neuronal fate determination. The presented work contributes to a better understanding of transdifferentiation induced by neurotrophins for a prospective broad spectrum of medical applications.

Keywords

Mesenchymal stem cells Adipose stromal cells Human lipoaspirate Transdifferentiation Neuronal differentiation 

Notes

Acknowledgements

This work was funded by a grant from the Brazilian funding agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo Research Foundation, FAPESP project No.2012/50880-4). C.L. is grateful for grant support from the São Paulo State Foundation FAPESP (project No. 2015/19128-2). H.U. acknowledges Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for fellowship support. A.A.N.’s and V.B.’s doctoral thesis research was supported by a fellowship from FAPESP (Proj. No. 2006/61286-5 and 2008/52334-1, respectively). I.C.N. acknowledges fellowship support from FAPESP (Proj. No. 2015/18730-0) for her postdoctoral research. R.L.P.’s doctoral thesis research was supported by a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Prof. José E. Krieger, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil, is acknowledged for providing human patient adipose stromal cells. The physician Dr. Gustavo Gibin Duarte is acknowledged for liposuction procedures on patients.

Compliance with Ethical Standards

Disclosure of Potential Conflicts of Interest

Authors have no conflicts of interest to declare.

Research Involving Human Participants and/or Animals

Ethics’ Committee approval at the Heart Center of São Paulo was obtained (SDC Incor - 3005/07/080 - CAPPesq 0759/07).

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Huang, B. J., Hu, J. C., & Athanasiou, K. A. (2016). Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials, 98, 1–22.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cheuk, D. K. (2013). Optimal stem cell source for allogeneic stem cell transplantation for hematological malignancies. World Journal of Transplantation, 3(4), 99–112.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cui, X., Chen, L., Xue, T., Yu, J., Liu, J., Ji, Y., & Cheng, L. (2015). Human umbilical cord and dental pulp-derived mesenchymal stem cells: Biological characteristics and potential roles in vitro and in vivo. Molecular Medicine Reports, 11(5), 3269–3278.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fuentes, T., & Kearns-Jonker, M. (2013). Endogenous cardiac stem cells for the treatment of heart failure. Stem Cells and Cloning: Advances and Applications, 6(1), 1–12.Google Scholar
  5. 5.
    Majka, M., Kucia, M., & Ratajczak, M. Z. (2005). Stem cell biology - a never ending quest for understanding. Acta Biochimica Polonica, 52(2), 353–358.PubMedGoogle Scholar
  6. 6.
    Qu, J., & Zhang, H. (2017). Roles of mesenchymal stem cells in spinal cord injury. Stem Cells International, 2017, 1–12.Google Scholar
  7. 7.
    Laroni, A., De Rosbo, N. K., & Uccelli, A. (2015). Mesenchymal stem cells for the treatment of neurological diseases: Immunoregulation beyond neuroprotection. Immunology Letters, 168(2), 183–190.CrossRefPubMedGoogle Scholar
  8. 8.
    Khan, S., Mafi, P., Mafi, R., & Khan, W. (2018). A systematic review of mesenchymal stem cells in spinal cord injury, intervertebral disc repair and spinal fusion. Current Stem Cell Research & Therapy, 13(4), 316–323.CrossRefGoogle Scholar
  9. 9.
    Cislo-Pakuluk, A., & Marycz, K. (2017). A promising tool in retina regeneration: Current perspectives and challenges when using mesenchymal progenitor stem cells in veterinary and human ophthalmological applications. Stem Cell Reviews and Reports, 13(5), 598–602.CrossRefGoogle Scholar
  10. 10.
    Školoudík, L., Chrobok, V., Kočí, Z., Popelář, J., Syka, J., Laco, J., Filipová, A., Syková, E., & Filip, S. (2018). The transplantation of hBM-MSCs increases bone neo-formation and preserves hearing function in the treatment of temporal bone defects - on the experience of two month follow up. Stem Cell Reviews and Reports, 2018, 14(6), 860–870.CrossRefGoogle Scholar
  11. 11.
    Chen, M., Xu, Y., Zhang, T., Ma, Y., Liu, J., Yuan, B., et al. (2019). Mesenchymal stem cell sheets: A new cell-based strategy for bone repair and regeneration. Biotechnology Letters, 41(3), 305–318.CrossRefPubMedGoogle Scholar
  12. 12.
    Labusca, L., Herea, D. D., & Mashayekhi, K. (2018). Stem cells as delivery vehicles for regenerative medicine- challenges and perspectives. World Journal of Stem Cells, 10(5), 43–56.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Abbasi-Malati, Z., Roushandeh, A. M., Kuwahara, Y., & Roudkenar, M. H. (2018). Mesenchymal stem cells on horizon: A new arsenal of therapeutic agents. Stem Cell Reviews and Reports, 14(4), 484–499.CrossRefGoogle Scholar
  14. 14.
    Avola, R., Graziano, A. C. E., Pannuzzo, G., & Cardile, V. (2017). Human mesenchymal stem cells from adipose tissue differentiated into neuronal or glial phenotype express different aquaporins. Molecular Neurobiology, 54(10), 8308–8320.CrossRefPubMedGoogle Scholar
  15. 15.
    Keilhoff, G., Stang, F., Goihl, A., Wolf, G., & Fansa, H. (2006). Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cellular and Molecular Neurobiology, 26(7–8), 1235–1252.PubMedGoogle Scholar
  16. 16.
    Hwang, D. W., Kwon, H. W., Jang, J., Jung, H. J., Kim, K. R., & Lee, D. S. (2017). Neuron-specific fluorescence reporter-based live cell tracing for transdifferentiation of mesenchymal stem cells into neurons by chemical compound. Stem Cells International, 2017, 1–10.CrossRefGoogle Scholar
  17. 17.
    Friedenstein, A. J., Latzinik, N. W., Grosheva, A. G., & Gorskaya, U. F. (1982). Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Experimental Hematology, 10, 217–227.PubMedGoogle Scholar
  18. 18.
    Siciliano, C., Bordin, A., Ibrahim, M., Chimenti, I., Cassiano, F., Gatto, I., et al. (2016). The adipose tissue of origin influences the biological potential of human adipose stromal cells isolated from mediastinal and subcutaneous fat depots. Stem Cell Research, 17(2), 342–351.CrossRefPubMedGoogle Scholar
  19. 19.
    Macrin, D., Joseph, J. P., Pillai, A. A., & Devi, A. (2017). Eminent sources of adult mesenchymal stem cells and their therapeutic imminence. Stem Cell Reviews and Reports, 13(6), 741–756.CrossRefGoogle Scholar
  20. 20.
    Bourin, P., Bunnell, B. A., Casteilla, L., Dominici, M., Katz, A. J., March, K. L., et al. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15(6), 641–648.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Han, I., Kwon, B. S., Park, H. K., & Kim, K. S. (2017). Differentiation potential of mesenchymal stem cells is related to their intrinsic mechanical properties. International Neurourology Journal, 21, S24–S31.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Luo, L., Hu, D. H., Yin, J. Q., & Xu, R. X. (2018). Molecular mechanisms of Transdifferentiation of adipose-derived stem cells into neural cells: Current status and perspectives. Stem Cells International, 2018, 5630802.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Martins, A. H. B., Resende, R. R., Majumder, P., Faria, M., Casarini, D. E., Tárnok, A., et al. (2005). Neuronal differentiation of P19 embryonal carcinoma cells modulates kinin B2 receptor gene expression and function. Journal of Biological Chemistry, 280(20), 19576–19586.CrossRefPubMedGoogle Scholar
  24. 24.
    Trujillo, C. A., Negraes, P. D., Schwindt, T. T., Lameu, C., Carromeu, C., Muotri, A. R., et al. (2012). Kinin-B2 receptor activity determines the differentiation fate of neural stem cells. Journal of Biological Chemistry, 287(53), 44046–44061.CrossRefPubMedGoogle Scholar
  25. 25.
    Pillat, M. M., Lameu, C., Trujillo, C. A., Glaser, T., Cappellari, A. R., Negraes, P. D., et al. (2016). Bradykinin promotes neuron-generating division of neural progenitor cells through ERK activation. Journal of Cell Science, 129(18), 3437–3448.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nascimento, I. C., Glaser, T., Nery, A. A., Pillat, M. M., Pesquero, J. B., & Ulrich, H. (2015). Kinin-B1 and B2 receptor activity in proliferation and neural phenotype determination of mouse embryonic stem cells. Cytometry Part A, 87(11), 989–1000.CrossRefGoogle Scholar
  27. 27.
    Majumder, P., Trujillo, C. A., Lopes, C. G., Resende, R. R., Gomes, K. N., Yuahasi, K. K., et al. (2007). New insights into purinergic receptor signaling in neuronal differentiation, neuroprotection, and brain disorders. Purinergic Signalling, 3(4), 317–331.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Resende, R. R., Alves, A. S., Britto, L. R. G., & Ulrich, H. (2008). Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells. Experimental Cell Research, 314(7), 1429–1443.CrossRefPubMedGoogle Scholar
  29. 29.
    Lameu, C., Trujillo, C. A., Schwindt, T. T., Negraes, P. D., Pillat, M. M., Morais, K. L. P., et al. (2012). Interactions between the NO-citrulline cycle and brain-derived neurotrophic factor in differentiation of neural stem cells. Journal of Biological Chemistry, 287(35), 29690–29701.CrossRefPubMedGoogle Scholar
  30. 30.
    Vierbuchen, T., Austin Ostermeier, Z. P. P., Kokubu, Y., Sudhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463, 1035–1104.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tanabe, K., Ang, C. E., Chanda, S., Olmos, V. H., Haag, D., Levinson, D. F., et al. (2018). Transdifferentiation of human adult peripheral blood T cells into neurons. Proceedings of the National Academy of Sciences, 115(25), 6470–6475.CrossRefGoogle Scholar
  32. 32.
    Firas, J., Liu, X., Lim, S. M., & Polo, J. M. (2015). Transcription factor-mediated reprogramming: Epigenetics and therapeutic potential. Immunology and Cell Biology, 93(3), 284–289.CrossRefPubMedGoogle Scholar
  33. 33.
    Daekee, K., Mi-jung, H., Minjun, J., Hee-jin, A., Kwang-Won, S., & Kyung-sun, K. (2019). Generation of genetically stable human direct- conversion-derived neural stem cells using quantity Ccontrol of proto-oncogene expression. Molecular Therapy - Nucleic Acids, 14, 388–397.CrossRefPubMedGoogle Scholar
  34. 34.
    Danoviz, M. E., Bassaneze, V., Nakamuta, J. S., dos Santos-Junior, G. R., Saint-Clair, D., Bajgelman, M. C., et al. (2011). Adipose tissue-derived stem cells from humans and mice differ in proliferative capacity and genome stability in long-term cultures. Stem Cells and Development, 20, 661–670.CrossRefPubMedGoogle Scholar
  35. 35.
    Blande, I. S., Bassaneze, V., Lavini-Ramos, C., Fae, K. C., Kalil, J., Miyakawa, A. A., et al. (2009). Adipose tissue mesenchymal stem cell expansion in animal serum-free medium supplemented with autologous human platelet lysate. Transfusion, 49(12), 2680–2685.CrossRefPubMedGoogle Scholar
  36. 36.
    Nery, A. A., Nascimento, I. C., Glaser, T., Bassaneze, V., Krieger, J. E., & Ulrich, H. (2013). Human mesenchymal stem cells: From immunophenotyping by flow cytometry to clinical applications. Cytometry Part A, 83(1), 48–61.CrossRefGoogle Scholar
  37. 37.
    Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61(4), 364–370.CrossRefPubMedGoogle Scholar
  38. 38.
    Sanchez-Ramos, J. R., Song, S., Kamath, S. G., Zigova, T., Willing, A., Cardozo-Pelaez, F., et al. (2001). Expression of neural markers in human umbilical cord blood. Experimental Neurology, 171, 109–115.CrossRefPubMedGoogle Scholar
  39. 39.
    Ashjian, P. H., Elbarbary, A. S., Edmonds, B., DeUgarte, D., Zhu, M., Zuk, P. A., et al. (2003). In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plastic and Reconstructive Surgery, 111(6), 1922–1931.CrossRefPubMedGoogle Scholar
  40. 40.
    Montiel-Eulefi, E., Nery, A. A., Rodrigues, L. C., Sánchez, R., Romero, F., & Ulrich, H. (2012). Neural differentiation of rat aorta pericyte cells. Cytometry Part A, 81(1), 65–71.CrossRefGoogle Scholar
  41. 41.
    Ulrich, H., Ratajczak, M. Z., Schneider, G., Adinolfi, E., Orioli, E., Ferrazoli, E. G., et al. (2018). Kinin and purine signaling contributes to neuroblastoma metastasis. Frontiers in Pharmacology, 9, 1–17.CrossRefGoogle Scholar
  42. 42.
    Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3(6), 1101–1108.CrossRefGoogle Scholar
  43. 43.
    Nery, A. A., Resende, R. R., Martins, A. H., Trujillo, C. A., Eterovic, V. A., & Ulrich, H. (2010). Alpha 7 nicotinic acetylcholine receptor expression and activity during neuronal differentiation of PC12 pheochromocytoma cells. Journal of Molecular Neuroscience, 41(3), 329–339.CrossRefPubMedGoogle Scholar
  44. 44.
    Cheffer, A., & Ulrich, H. (2011). Inhibition mechanism of rat α3β4 nicotinic acetylcholine receptor by the Alzheimer therapeutic tacrine. Biochemistry, 50(11), 1763–1770.CrossRefPubMedGoogle Scholar
  45. 45.
    Glaser, T., Castillo, A. R., Oliveira, Á., & Ulrich, H. (2016). Intracellular calcium measurements for functional characterization of neuronal phenotypes. Methods in Molecular Biology, 1341, 245–255.CrossRefPubMedGoogle Scholar
  46. 46.
    Glaser, T., De Oliveira, S. L. B., Cheffer, A., Beco, R., Martins, P., Fornazari, M., et al. (2014). Modulation of mouse embryonic stem cell proliferation and neural differentiation by the P2X7 receptor. PLoS One, 9(5), e96281.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Resende, R. R., & Adhikari, A. (2009). Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Communication and Signaling, 7, 1–20.CrossRefGoogle Scholar
  48. 48.
    Resende, R. R., Britto, L. R. G., & Ulrich, H. (2008). Pharmacological properties of purinergic receptors and their effects on proliferation and induction of neuronal differentiation of P19 embryonal carcinoma cells. International Journal of Developmental Neuroscience, 26(7), 763–777.CrossRefPubMedGoogle Scholar
  49. 49.
    Resende, R. R., Majumder, P., Gomes, K. N., Britto, L. R. G., & Ulrich, H. (2007). P19 embryonal carcinoma cells as in vitro model for studying purinergic receptor expression and modulation of N-methyl-d-aspartate-glutamate and acetylcholine receptors during neuronal differentiation. Neuroscience, 146(3), 1169–1181.CrossRefPubMedGoogle Scholar
  50. 50.
    Lujan, E., Chanda, S., Ahlenius, H., Sudhof, T. C., & Wernig, M. (2012). Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 109(7), 2527–2532.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yang, N., Ng, Y. H., Pang, Z. P., Südhof, T. C., & Wernig, M. (2011). Induced neuronal cells: How to make and define a neuron. Cell Stem Cell, 9(6), 517–525.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., Yang, T. Q., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476(7359), 220–223.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lujan, E., & Wernig, M. (2012). The many roads to Rome: Induction of neural precursor cells from fibroblasts. Current Opinion in Genetics and Development, 22(5), 517–522.CrossRefPubMedGoogle Scholar
  54. 54.
    Zheng, Z., Zhang, L., Qu, Y., Xiao, G., Li, S., Bao, S., et al. (2018). Mesenchymal stem cells protect against hypoxia-ischemia brain damage by enhancing autophagy through brain derived neurotrophic factor/mammalin target of rapamycin signaling pathway. Stem Cells, 36(7), 1109–1121.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Liu, J., Kuwabara, A., Kamio, Y., Hu, S., Park, J., Hashimoto, T., & Lee, J. W. (2016). Human mesenchymal stem cell-derived microvesicles prevent the rupture of intracranial aneurysm in part by suppression of mast cell activation via a PGE2-dependent mechanism. Stem Cells, 34(12), 2943–2955.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Muniswami, D. M., Kanthakumar, P., Kanakasabapathy, I., & Tharion, G. (2018). Motor recovery after transplantation of bone marrow mesenchymal stem cells in rat models of spinal cord injury. Annals of Neurosciences, 25(3), 126–140.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Anghileri, E., Marconi, S., Pignatelli, A., Cifelli, P., Galié, M., Sbarbati, A., et al. (2008). Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells & Development, 916, 909–916.CrossRefGoogle Scholar
  58. 58.
    Muñoz-Elías, G., Woodbury, D., & Black, I. B. (2003). Marrow stromal cells, mitosis, and neuronal differentiation: Stem cell and precursor functions. Stem Cells, 21(4), 437–448.CrossRefPubMedGoogle Scholar
  59. 59.
    Lo Furno, D., Pellitteri, R., Graziano, A. C. E., Giuffrida, R., Vancheri, C., Gili, E., & Cardile, V. (2013). Differentiation of human adipose stem cells into neural phenotype by neuroblastoma- or olfactory ensheathing cells-conditioned medium. Journal of Cellular Physiology, 228(11), 2109–2118.CrossRefPubMedGoogle Scholar
  60. 60.
    Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology, 164(2), 247–256.CrossRefPubMedGoogle Scholar
  61. 61.
    Bossio, C., Mastrangelo, R., Morini, R., Tonna, N., Coco, S., Verderio, C., et al. (2013). A simple method to generate adipose stem cell-derived neurons for screening purposes. Journal of Molecular Neuroscience, 51(2), 274–281.CrossRefPubMedGoogle Scholar
  62. 62.
    Cirulli, F., & Alleva, E. (2009). The NGF saga: From animal models of psychosocial stress to stress-related psychopathology. Frontiers in Neuroendocrinology, 30(3), 379–395.CrossRefPubMedGoogle Scholar
  63. 63.
    Ernsberger, U. (2009). Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell and Tissue Research, 336(3), 349–384.CrossRefPubMedGoogle Scholar
  64. 64.
    Farias, I., Cano-Jaimez, M., Bellmunt, E., & Soriano, M. (2002). Regulation of neurogenesis by neurotrophins in developing spinal sensory ganglia. Brain Research Bulletin, 57(6), 809–816.CrossRefGoogle Scholar
  65. 65.
    Porcher, C., Hatchett, C., Longbottom, R. E., McAinch, K., Sihra, T. S., Moss, S. J., et al. (2011). Positive feedback regulation between gama-aminobutyric acid type A (GABAA) receptor signaling and brain-derived neurotrophic factor (BDNF) release in developing neurons. Journal of Biological Chemistry, 286(24), 21667–21677.CrossRefPubMedGoogle Scholar
  66. 66.
    Park, H., & Poo, M. M. (2013). Neurotrophin regulation of neural circuit development and function. Nature Reviews Neuroscience, 14(1), 7–23.CrossRefPubMedGoogle Scholar
  67. 67.
    Lin, Y. M. J., Hsin, I. L., Sun, H. S., Lin, S., Lai, Y. L., Chen, H. Y., et al. (2018). NTF3 is a novel target gene of the transcription factor POU3F2 and is required for neuronal differentiation. Molecular Neurobiology, 55(11), 8403–8413.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Christie, K. J., Emery, B., Denham, M., Bujalka, H., Cate, H. S., & Turnley, A. M. (2013). Transcriptional and translational regulation of stem cells. Advances in Experimental Medicine and Biology, 786, 129–155.CrossRefPubMedGoogle Scholar
  69. 69.
    Poon, V. Y., Choi, S., & Park, M. (2013). Growth factors in synaptic function. Frontiers in Synaptic Neuroscience, 18(5), 6.Google Scholar
  70. 70.
    Fornazari, M., Nascimento, I. C., Nery, A. A., da Silva, C. C., Kowaltowski, A. J., & Ulrich, H. (2011). Neuronal differentiation involves a shift from glucose oxidation to fermentation. Journal of Bioenergetics and Biomembranes, 43(5), 531–539.CrossRefPubMedGoogle Scholar
  71. 71.
    Negraes, P. D., Trujillo, C. A., Pillat, M. M., Teng, Y. D., & Ulrich, H. (2015). Roles of kinins in the nervous system. Cell Transplantation, 24(4), 613–623.CrossRefPubMedGoogle Scholar
  72. 72.
    Imayoshi, I., Isomura, A., Harima, Y., Kawaguchi, K., Kori, H., Miyachi, H., Kageyama, R., et al. (2013). Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science, 342(6163), 1203–1208.CrossRefPubMedGoogle Scholar
  73. 73.
    Mall, M., Kareta, M. S., Chanda, S., Ahlenius, H., Perotti, N., Zhou, B., et al. (2017). Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature, 544, 245–249.CrossRefPubMedGoogle Scholar
  74. 74.
    Robinson, M., Fraser, I., McKee, E., Scheck, K., Chang, L., & Willerth, S. M. (2018). Transdifferentiating astrocytes into neurons using ASCL1 functionalized with a novel intracellular protein delivery technology. Frontiers in Bioengineering and Biotechnology, 6, 173.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biochemistry, Institute of ChemistryUniversity of São PauloSão PauloBrazil
  2. 2.Heart Institute (InCor)University of São Paulo Medical SchoolSão PauloBrazil
  3. 3.Division of Hematology/Oncology, Department of Medicine, New Jersey Medical SchoolRutgers Biomedical and Health SciencesNewarkUSA

Personalised recommendations