Reprogramming of Keratinocytes as Donor or Target Cells Holds Great Promise for Cell Therapy and Regenerative Medicine

  • Yuehou Zhang
  • Wenzhi Hu
  • Kui Ma
  • Cuiping ZhangEmail author
  • Xiaobing FuEmail author


One of the most crucial branches of regenerative medicine is cell therapy, in which cellular material is injected into the patient to initiate the regenerative process. Cells obtained by reprogramming of the patient’s own cells offer ethical and clinical advantages could provide a new source of material for therapeutic applications. Studies to date have shown that only a subset of differentiated cell types can be reprogrammed. Among these, keratinocytes, which are the most abundant proliferating cell type in the epidermis, have gained increasing attention as both donor and target cells for reprogramming and have become a new focus of regenerative medicine. As target cells for the treatment of skin defects, keratinocytes can be differentiated or reprogrammed from embryonic stem cells, induced pluripotent stem cells, fibroblasts, adipose tissue stem cells, and mesenchymal cells. As donor cells, keratinocytes can be reprogrammed or direct reprogrammed into a number of cell types, including induced pluripotent stem cells, neural cells, and Schwann cells. In this review, we discuss recent advances in keratinocyte reprogramming, focusing on the induction methods, potential molecular mechanisms, conversion efficiency, and safety for clinical applications.

Graphical Abstract

KCs as target cells can be reprogrammed or differentiated from fibroblasts, iPSCs, ATSCs, and mesenchymal cells. And as donor cells, KCs can be reprogrammed or directly reprogrammded into iPSCs, neural cells, Schwann cells, and epidermal stem cells.


Reprogramming Keratinocytes iPSCs Regeneration medicine Stem cell 



embryonic stem cells


induced pluripotent stem cells


adipose tissue stem cells




retinoic acid


bone morphogenetic protein 4


induced keratinocytes


recessive dystrophic epidermolysis bullosa


Hair follicle stem cells


stem cell cassette


Oct4/Sox2/Nanog and Lin28




bone marrow mesenchymal stem cells



This work was supported by the National Nature Science Foundation of China (81571905, 81830064, 81721092), the National Key Research Development Plan (2017YFC1103300) and Military Logistics Research Key Project (AWS17J005).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no potential conflicts of interest.


  1. 1.
    Ellis, C., Ramzy, A., & Kieffer, T. J. (2017). Regenerative medicine and cell-based approaches to restore pancreatic function. Nature Reviews. Gastroenterology & Hepatology, 14, 612–628.CrossRefGoogle Scholar
  2. 2.
    Cho, G. S., Fernandez, L., & Kwon, C. (2014). Regenerative medicine for the heart: perspectives on stem-cell therapy. Antioxidants & Redox Signaling, 21, 2018–2031.CrossRefGoogle Scholar
  3. 3.
    Levy, M., Boulis, N., Rao, M., & Svendsen, C. N. (2016). Regenerative cellular therapies for neurologic diseases. Brain Research, 1638, 88–96.CrossRefGoogle Scholar
  4. 4.
    Sagaradze, G. D., Basalova, N. A., et al. (2019). Application of rat cryptorchidism model for the evaluation of mesenchymal stromal cell secretome regenerative potential. Biomedicine & Pharmacotherapy, 109, 1428–1436.CrossRefGoogle Scholar
  5. 5.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.CrossRefGoogle Scholar
  6. 6.
    Takahashi, K., Okita, K., Nakagawa, M., & Yamanaka, S. (2007). Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols, 2, 3081–3089.CrossRefGoogle Scholar
  7. 7.
    Israel, M. A., Yuan, S. H., et al. (2012). Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature, 482, 216–220.CrossRefGoogle Scholar
  8. 8.
    Lujan, E., Chanda, S., Ahlenius, H., Sudhof, T. C., & Wernig, M. (2012). Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 109, 2527–2532.CrossRefGoogle Scholar
  9. 9.
    Pang, Z. P., Yang, N., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476, 220–223.CrossRefGoogle Scholar
  10. 10.
    Wei, Y., Zeng, W., et al. (2012). Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix. European Cells & Materials, 23, 1–12.CrossRefGoogle Scholar
  11. 11.
    Pagliuca, F. W., Millman, J. R., et al. (2014). Generation of functional human pancreatic beta cells in vitro. Cell, 159, 428–439.CrossRefGoogle Scholar
  12. 12.
    Ebert, A. D., Diecke, S., Chen, I. Y., & Wu, J. C. (2015). Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand? EMBO Molecular Medicine, 7, 1090–1103.CrossRefGoogle Scholar
  13. 13.
    Doulames, V. M., & Plant, G. W. (2016). Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury. International Journal of Molecular Sciences, 17, 530.CrossRefGoogle Scholar
  14. 14.
    Xie, F., Tang, X., Zhang, Q., & Deng, C. (2015). Reprogramming human adipose tissue stem cells using epidermal keratinocyte extracts. Molecular Medicine Reports, 11, 182–188.CrossRefGoogle Scholar
  15. 15.
    Meas, S. J., Nishimura, K., Scheibinger, M., & Dabdoub, A. (2018). In vitro Methods to Cultivate Spiral Ganglion Cells, and Purification of Cellular Subtypes for Induced Neuronal Reprogramming. Frontiers in Neuroscience, 12, 822.CrossRefGoogle Scholar
  16. 16.
    Aasen, T., Raya, A., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26, 1276–1284.CrossRefGoogle Scholar
  17. 17.
    Basit, F., Mathan, T., Sancho, D., & de Vries, I. (2018). Human Dendritic Cell Subsets Undergo Distinct Metabolic Reprogramming for Immune Response. Frontiers in Immunology, 9, 2489.CrossRefGoogle Scholar
  18. 18.
    Wen, W., Cheng, X., et al. (2018). High-Level Precise Knockin of iPSCs by Simultaneous Reprogramming and Genome Editing of Human Peripheral Blood Mononuclear Cells. Stem Cell Reports, 10, 1821–1834.CrossRefGoogle Scholar
  19. 19.
    Chen, Y., Mistry, D. S., & Sen, G. L. (2014). Highly rapid and efficient conversion of human fibroblasts to keratinocyte-like cells. The Journal of Investigative Dermatology, 134, 335–344.CrossRefGoogle Scholar
  20. 20.
    Bajpai, V. K., Kerosuo, L., et al. (2017). Reprogramming Postnatal Human Epidermal Keratinocytes Toward Functional Neural Crest Fates. Stem Cells, 35, 1402–1415.CrossRefGoogle Scholar
  21. 21.
    Aasen, T., & Izpisua, B. J. (2010). Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nature Protocols, 5, 371–382.CrossRefGoogle Scholar
  22. 22.
    Bilousova, G., Chen, J., & Roop, D. R. (2011). Differentiation of mouse induced pluripotent stem cells into a multipotent keratinocyte lineage. The Journal of Investigative Dermatology, 131, 857–864.CrossRefGoogle Scholar
  23. 23.
    Kurita, M., Araoka, T., et al. (2018). In vivo reprogramming of wound-resident cells generates skin epithelial tissue. Nature, 561, 243–247.CrossRefGoogle Scholar
  24. 24.
    Piao, Y., Hung, S. S., Lim, S. Y., Wong, R. C., & Ko, M. S. (2014). Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors. Stem Cells Translational Medicine, 3, 787–791.CrossRefGoogle Scholar
  25. 25.
    Amoh, Y., Li, L., et al. (2005). Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proceedings of the National Academy of Sciences of the United States of America, 102, 17734–17738.CrossRefGoogle Scholar
  26. 26.
    Zhao, A., Yang, L., et al. (2016). Overexpression of cyclin D1 induces the reprogramming of differentiated epidermal cells into stem cell-like cells. Cell Cycle, 15, 644–653.CrossRefGoogle Scholar
  27. 27.
    Metallo, C. M., Ji, L., de Pablo, J. J., & Palecek, S. P. (2008). Retinoic acid and bone morphogenetic protein signaling synergize to efficiently direct epithelial differentiation of human embryonic stem cells. Stem Cells, 26, 372–380.CrossRefGoogle Scholar
  28. 28.
    Aberdam, D. (2004). Derivation of keratinocyte progenitor cells and skin formation from embryonic stem cells. The International Journal of Developmental Biology, 48, 203–206.CrossRefGoogle Scholar
  29. 29.
    Bakkers, J., Hild, M., Kramer, C., Furutani-Seiki, M., & Hammerschmidt, M. (2002). Zebrafish DeltaNp63 is a direct target of Bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Developmental Cell, 2, 617–627.CrossRefGoogle Scholar
  30. 30.
    Gambaro, K., Aberdam, E., Virolle, T., Aberdam, D., & Rouleau, M. (2006). BMP-4 induces a Smad-dependent apoptotic cell death of mouse embryonic stem cell-derived neural precursors. Cell Death and Differentiation, 13, 1075–1087.CrossRefGoogle Scholar
  31. 31.
    Yang, A., Schweitzer, R., et al. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature, 398, 714–718.CrossRefGoogle Scholar
  32. 32.
    Rizzino, A., & Wuebben, E. L. (2016). Sox2/Oct4: A delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochimica et Biophysica Acta, 1859, 780–791.CrossRefGoogle Scholar
  33. 33.
    Takahashi, K., Tanabe, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.CrossRefGoogle Scholar
  34. 34.
    Liu, S. P., Fu, R. H., et al. (2011). Induced pluripotent stem (iPS) cell research overview. Cell Transplantation, 20, 15–19.CrossRefGoogle Scholar
  35. 35.
    Iacovides, D., Rizki, G., Lapathitis, G., & Strati, K. (2016). Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes. Stem Cell Research & Therapy, 7, 98.CrossRefGoogle Scholar
  36. 36.
    Soufi, A., Donahue, G., & Zaret, K. S. (2012). Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell, 151, 994–1004.CrossRefGoogle Scholar
  37. 37.
    Landsverk, H. B., Hakelien, A. M., Kuntziger, T., Robl, J. M., Skalhegg, B. S., & Collas, P. (2002). Reprogrammed gene expression in a somatic cell-free extract. EMBO Reports, 3, 384–389.CrossRefGoogle Scholar
  38. 38.
    Zuk, P. A., Zhu, M., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.CrossRefGoogle Scholar
  39. 39.
    Cousin, B., Andre, M., Arnaud, E., Penicaud, L., & Casteilla, L. (2003). Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochemical and Biophysical Research Communications, 301, 1016–1022.CrossRefGoogle Scholar
  40. 40.
    Hakelien, A. M., Gaustad, K. G., & Collas, P. (2004). Transient alteration of cell fate using a nuclear and cytoplasmic extract of an insulinoma cell line. Biochemical and Biophysical Research Communications, 316, 834–841.CrossRefGoogle Scholar
  41. 41.
    Novo, E., Cannito, S., & Parola, M. (2016). In vivo reprogramming of hepatic myofibroblasts into hepatocytes attenuates liver fibrosis: back to the future? Stem Cell Investig, 3, 53.CrossRefGoogle Scholar
  42. 42.
    Li, H., & Chen, G. (2016). In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells. Neuron, 91, 728–738.CrossRefGoogle Scholar
  43. 43.
    Melino, G., Memmi, E. M., Pelicci, P. G., & Bernassola, F. (2015). Maintaining epithelial stemness with p63. Science Signaling, 8, re9.CrossRefGoogle Scholar
  44. 44.
    Kotterman, M. A., & Schaffer, D. V. (2014). Engineering adeno-associated viruses for clinical gene therapy. Nature Reviews. Genetics, 15, 445–451.CrossRefGoogle Scholar
  45. 45.
    Boonkaew, B., Tapeng, L., Netsrithong, R., Vatanashevanopakorn, C., Pattanapanyasat, K., & Wattanapanitch, M. (2018). Induced pluripotent stem cell line MUSIi006-A derived from hair follicle keratinocytes as a non-invasive somatic cell source. Stem Cell Research, 31, 79–82.CrossRefGoogle Scholar
  46. 46.
    Matsumura, W., Fujita, Y., et al. (2018). Establishment of integration-free induced pluripotent stem cells from human recessive dystrophic epidermolysis bullosa keratinocytes. Journal of Dermatological Science, 89, 263–271.CrossRefGoogle Scholar
  47. 47.
    Hung, S. S., Pebay, A., & Wong, R. C. (2015). Generation of Integration-free Human Induced Pluripotent Stem Cells Using Hair-derived Keratinocytes. Journal of Visualized Experiments, e53174.Google Scholar
  48. 48.
    Novak, A., Shtrichman, R., et al. (2010). Enhanced reprogramming and cardiac differentiation of human keratinocytes derived from plucked hair follicles, using a single excisable lentivirus. Cellular Reprogramming, 12, 665–678.CrossRefGoogle Scholar
  49. 49.
    Nichols, J., Zevnik, B., et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95, 379–391.CrossRefGoogle Scholar
  50. 50.
    Scholer, H. R., Ciesiolka, T., & Gruss, P. (1991). A nexus between Oct-4 and E1A: implications for gene regulation in embryonic stem cells. Cell, 66, 291–304.CrossRefGoogle Scholar
  51. 51.
    Jiang, R., Huang, B., et al. (2008). A potential model for studying the plasticity and reprogramming of human epidermal stem cells through preimplantation blastocyst microinjection. Cell Biology International, 32, 1567–1573.CrossRefGoogle Scholar
  52. 52.
    Liang, L., & Bickenbach, J. R. (2002). Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells, 20, 21–31.CrossRefGoogle Scholar
  53. 53.
    Grinnell, K. L., & Bickenbach, J. R. (2007). Skin keratinocytes pre-treated with embryonic stem cell-conditioned medium or BMP4 can be directed to an alternative cell lineage. Cell Proliferation, 40, 685–705.CrossRefGoogle Scholar
  54. 54.
    Bickenbach, J. R., & Grinnell, K. L. (2004). Epidermal stem cells: interactions in developmental environments. Differentiation, 72, 371–380.CrossRefGoogle Scholar
  55. 55.
    Hattori, N., Nishino, K., et al. (2004). Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. The Journal of Biological Chemistry, 279, 17063–17069.CrossRefGoogle Scholar
  56. 56.
    Tomioka, M., Nishimoto, M., et al. (2002). Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Research, 30, 3202–3213.CrossRefGoogle Scholar
  57. 57.
    Oh, H., Chi, X., et al. (2004). Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Annals of the New York Academy of Sciences, 1015, 182–189.CrossRefGoogle Scholar
  58. 58.
    Almaani, N., Nagy, N., et al. (2010). Revertant mosaicism in recessive dystrophic epidermolysis bullosa. The Journal of Investigative Dermatology, 130, 1937–1940.CrossRefGoogle Scholar
  59. 59.
    Dang, N., & Murrell, D. F. (2008). Mutation analysis and characterization of COL7A1 mutations in dystrophic epidermolysis bullosa. Experimental Dermatology, 17, 553–568.CrossRefGoogle Scholar
  60. 60.
    Tolar, J., Xia, L., et al. (2011). Induced pluripotent stem cells from individuals with recessive dystrophic epidermolysis bullosa. The Journal of Investigative Dermatology, 131, 848–856.CrossRefGoogle Scholar
  61. 61.
    Tolar, J., McGrath, J. A., et al. (2014). Patient-specific naturally gene-reverted induced pluripotent stem cells in recessive dystrophic epidermolysis bullosa. The Journal of Investigative Dermatology, 134, 1246–1254.CrossRefGoogle Scholar
  62. 62.
    Umegaki-Arao, N., Pasmooij, A. M., et al. (2014). Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Science Translational Medicine, 6, 264ra164.CrossRefGoogle Scholar
  63. 63.
    Lee, G., Kim, H., et al. (2007). Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nature Biotechnology, 25, 1468–1475.CrossRefGoogle Scholar
  64. 64.
    Mica, Y., Lee, G., Chambers, S. M., Tomishima, M. J., & Studer, L. (2013). Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell Reports, 3, 1140–1152.CrossRefGoogle Scholar
  65. 65.
    Iwamoto, K., Bundo, M., et al. (2005). DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. The Journal of Neuroscience, 25, 5376–5381.CrossRefGoogle Scholar
  66. 66.
    Sieber-Blum, M., Grim, M., Hu, Y. F., & Szeder, V. (2004). Pluripotent neural crest stem cells in the adult hair follicle. Developmental Dynamics, 231, 258–269.CrossRefGoogle Scholar
  67. 67.
    Lothian, C., & Lendahl, U. (1997). An evolutionarily conserved region in the second intron of the human nestin gene directs gene expression to CNS progenitor cells and to early neural crest cells. The European Journal of Neuroscience, 9, 452–462.CrossRefGoogle Scholar
  68. 68.
    Amoh, Y., Katsuoka, K., & Hoffman, R. M. (2010). The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine. Journal of Dermatological Science, 60, 131–137.CrossRefGoogle Scholar
  69. 69.
    Tohill, M. P., Mann, D. J., Mantovani, C. M., Wiberg, M., & Terenghi, G. (2004). Green fluorescent protein is a stable morphological marker for schwann cell transplants in bioengineered nerve conduits. Tissue Engineering, 10, 1359–1367.CrossRefGoogle Scholar
  70. 70.
    Fu, X., Sun, X., Li, X., & Sheng, Z. (2001). Dedifferentiation of epidermal cells to stem cells in vivo. Lancet, 358, 1067–1068.CrossRefGoogle Scholar
  71. 71.
    Li, H., Fu, X., Zhang, L., Sun, T., & Wang, J. (2007). In vivo dedifferentiation of human epidermal cells. Cell Biology International, 31, 1436–1441.CrossRefGoogle Scholar
  72. 72.
    Zhang, C., Chen, P., et al. (2012). Wnt/beta-catenin signaling is critical for dedifferentiation of aged epidermal cells in vivo and in vitro. Aging Cell, 11, 14–23.CrossRefGoogle Scholar
  73. 73.
    Zhao, Z., Zhang, C., et al. (2012). Differentiated epidermal cells regain the ability to regenerate a skin equivalent by increasing the level of beta-catenin in the cells. Cells, Tissues, Organs, 196, 353–361.CrossRefGoogle Scholar
  74. 74.
    Barrero, M. J., Berdasco, M., et al. (2012). DNA hypermethylation in somatic cells correlates with higher reprogramming efficiency. Stem Cells, 30, 1696–1702.CrossRefGoogle Scholar
  75. 75.
    Aoi, T., Yae, K., et al. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 321, 699–702.CrossRefGoogle Scholar
  76. 76.
    Ocana, O. H., & Nieto, M. A. (2010). Epithelial plasticity, stemness and pluripotency. Cell Research, 20, 1086–1088.CrossRefGoogle Scholar
  77. 77.
    Streckfuss-Bomeke, K., Wolf, F., et al. (2013). Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. European Heart Journal, 34, 2618–2629.CrossRefGoogle Scholar
  78. 78.
    Fuchs, E. (2007). Scratching the surface of skin development. Nature, 445, 834–842.CrossRefGoogle Scholar
  79. 79.
    Singhal, N., Graumann, J., et al. (2010). Chromatin-Remodeling Components of the BAF Complex Facilitate Reprogramming. Cell, 141, 943–955.CrossRefGoogle Scholar
  80. 80.
    Warren, L., Manos, P. D., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7, 618–630.CrossRefGoogle Scholar
  81. 81.
    Huangfu, D., Maehr, R., et al. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 26, 795–797.CrossRefGoogle Scholar
  82. 82.
    Mikkelsen, T. S., Hanna, J., et al. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454, 49–55.CrossRefGoogle Scholar
  83. 83.
    Maherali, N., & Hochedlinger, K. (2009). Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Current Biology, 19, 1718–1723.CrossRefGoogle Scholar
  84. 84.
    Linta, L., Stockmann, M., et al. (2012). Rat embryonic fibroblasts improve reprogramming of human keratinocytes into induced pluripotent stem cells. Stem Cells and Development, 21, 965–976.CrossRefGoogle Scholar
  85. 85.
    Tanabe, K., Nakamura, M., Narita, M., Takahashi, K., & Yamanaka, S. (2013). Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 110, 12172–12179.CrossRefGoogle Scholar
  86. 86.
    Kuno, A., Nishimura, K., & Takahashi, S. (2018). Time-course transcriptome analysis of human cellular reprogramming from multiple cell types reveals the drastic change occurs between the mid phase and the late phase. BMC Genomics, 19, 9.CrossRefGoogle Scholar
  87. 87.
    Di Stefano, B., Sardina, J. L., et al. (2014). C/EBPalpha poises B cells for rapid reprogramming into induced pluripotent stem cells. Nature, 506, 235–239.CrossRefGoogle Scholar
  88. 88.
    Han, J., Yuan, P., et al. (2010). Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature, 463, 1096–1100.CrossRefGoogle Scholar
  89. 89.
    Weidgang, C. E., Russell, R., et al. (2013). TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports, 1, 248–265.CrossRefGoogle Scholar
  90. 90.
    Klingenstein, M., Raab, S., Achberger, K., Kleger, A., Liebau, S., & Linta, L. (2016). TBX3 Knockdown Decreases Reprogramming Efficiency of Human Cells. Stem Cells International, 2016, 6759343.CrossRefGoogle Scholar
  91. 91.
    Unger, C., Gao, S., et al. (2009). Immortalized human skin fibroblast feeder cells support growth and maintenance of both human embryonic and induced pluripotent stem cells. Human Reproduction, 24, 2567–2581.CrossRefGoogle Scholar
  92. 92.
    Greber, B., Lehrach, H., & Adjaye, J. (2007). Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells, 25, 455–464.CrossRefGoogle Scholar
  93. 93.
    Zhang, Y., Wang, D., Chen, M., Yang, B., Zhang, F., & Cao, K. (2011). Intramyocardial transplantation of undifferentiated rat induced pluripotent stem cells causes tumorigenesis in the heart. PLoS One, 6, e19012.CrossRefGoogle Scholar
  94. 94.
    Kawai, H., Yamashita, T., et al. (2010). Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. Journal of Cerebral Blood Flow and Metabolism, 30, 1487–1493.CrossRefGoogle Scholar
  95. 95.
    Petrova, A., Capalbo, A., et al. (2016). Induced Pluripotent Stem Cell Differentiation and Three-Dimensional Tissue Formation Attenuate Clonal Epigenetic Differences in Trichohyalin. Stem Cells and Development, 25, 1366–1375.CrossRefGoogle Scholar
  96. 96.
    Sugiura, M., Kasama, Y., et al. (2014). Induced pluripotent stem cell generation-associated point mutations arise during the initial stages of the conversion of these cells. Stem Cell Reports, 2, 52–63.CrossRefGoogle Scholar
  97. 97.
    Polo, J. M., Liu, S., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28, 848–855.CrossRefGoogle Scholar
  98. 98.
    Sulkowski, M., Konieczny, P., Chlebanowska, P., & Majka, M. (2018). Introduction of Exogenous HSV-TK Suicide Gene Increases Safety of Keratinocyte-Derived Induced Pluripotent Stem Cells by Providing Genetic "Emergency Exit" Switch. International Journal of Molecular Sciences, 19.Google Scholar
  99. 99.
    Esteban, M. A. T. W., et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 6, 71–79.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MedicineNanKai UniversityTianjinPeople’s Republic of China
  2. 2.Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and RegenerationFourth Medical Center of General Hospital of PLABeijingPeople’s Republic of China

Personalised recommendations