Advertisement

The Therapeutic Potential of Mesenchymal Stromal Cells in the Treatment of Chemotherapy-Induced Tissue Damage

  • Alexander Rühle
  • Ramon Lopez Perez
  • Bingwen Zou
  • Anca-Ligia Grosu
  • Peter E. Huber
  • Nils H. NicolayEmail author
Article
  • 74 Downloads

Abstract

Chemotherapy constitutes one of the key treatment modalities for solid and hematological malignancies. Albeit being an effective treatment, chemotherapy application is often limited by its damage to healthy tissues, and curative treatment options for chemotherapy-related side effects are largely missing. As mesenchymal stromal cells (MSCs) are known to exhibit regenerative capacity mainly by supporting a beneficial microenvironment for tissue repair, MSC-based therapies may attenuate chemotherapy-induced tissue injuries. An increasing number of animal studies shows favorable effects of MSC-based treatments; however, clinical trials for MSC therapies in the context of chemotherapy-related side effects are rare. In this concise review, we summarize the current knowledge of the effects of MSCs on chemotherapy-induced tissue toxicities. Both preclinical and early clinical trials investigating MSC-based treatments for chemotherapy-related side reactions are presented, and mechanistic explanations about the regenerative effects of MSCs in the context of chemotherapy-induced tissue damage are discussed. Furthermore, challenges of MSC-based treatments are outlined that need closer investigations before these multipotent cells can be safely applied to cancer patients. As any pro-tumorigenicity of MSCs needs to be ruled out prior to clinical utilization of these cells for cancer patients, the pro- and anti-tumorigenic activities of MSCs are discussed in detail.

Keywords

Mesenchymal stromal cells (MSCs) stem cells tumors chemotherapy side effects 

Notes

Acknowledgements

We appreciate the scientific support of Rainer Saffrich, Patrick Wuchter, Klaus-Josef Weber and Jürgen Debus. The authors also thank the research group members Thuy Trinh, Sonevisay Sisombath, Marina Szymbara, Alexandra Tietz, Franziska Münz, Oliver Xia and Jannek Brauer for their help.

Compliance with Ethical Standards

Conflict of Interest

All authors declare that they have no conflicts of interest.

References

  1. 1.
    Einhorn, L. H., & Donohue, J. (1977). Cis-diamminedichloroplatinum, vinblastine, and bleomycin combination chemotherapy in disseminated testicular cancer. Annals of Internal Medicine, 87, 293–298.CrossRefPubMedGoogle Scholar
  2. 2.
    Nichols, C. R., Catalano, P. J., Crawford, E. D., Vogelzang, N. J., Einhorn, L. H., & Loehrer, P. J. (1998). Randomized comparison of cisplatin and etoposide and either bleomycin or ifosfamide in treatment of advanced disseminated germ cell tumors: an Eastern Cooperative Oncology Group, Southwest Oncology Group, and Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 16, 1287–1293.CrossRefPubMedGoogle Scholar
  3. 3.
    Diehl, V., Franklin, J., Hasenclever, D., et al. (1998). BEACOPP, a new dose-escalated and accelerated regimen, is at least as effective as COPP/ABVD in patients with advanced-stage Hodgkin's lymphoma: interim report from a trial of the German Hodgkin's Lymphoma Study Group. Journal of Clinical Oncology, 16, 3810–3821.CrossRefPubMedGoogle Scholar
  4. 4.
    Kuderer, N. M., Dale, D. C., Crawford, J., Cosler, L. E., & Lyman, G. H. (2006). Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer, 106, 2258–2266.CrossRefPubMedGoogle Scholar
  5. 5.
    Wood, W. C., Budman, D. R., Korzun, A. H., et al. (1994). Dose and dose intensity of adjuvant chemotherapy for stage II, node-positive breast carcinoma. The New England Journal of Medicine, 330, 1253–1259.CrossRefPubMedGoogle Scholar
  6. 6.
    Antman, K. S., Griffin, J. D., Elias, A., et al. (1988). Effect of recombinant human granulocyte-macrophage colony-stimulating factor on chemotherapy-induced myelosuppression. New England Journal of Medicine, 319, 593–598.CrossRefPubMedGoogle Scholar
  7. 7.
    Lipshultz, S. E., Rifai, N., Dalton, V. M., et al. (2004). The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. The New England Journal of Medicine, 351, 145–153.CrossRefPubMedGoogle Scholar
  8. 8.
    Shepherd, J. D., Pringle, L., Barnett, M., Klingemann, H., Reece, D., & Phillips, G. (1991). Mesna versus hyperhydration for the prevention of cyclophosphamide-induced hemorrhagic cystitis in bone marrow transplantation. Journal of Clinical Oncology, 9, 2016–2020.CrossRefPubMedGoogle Scholar
  9. 9.
    Friedenstein, A., Chailakhjan, R., & Lalykina, K. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Proliferation, 3, 393–403.CrossRefGoogle Scholar
  10. 10.
    Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., et al. (1974). Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Experimental Hematology, 2, 83–92.PubMedGoogle Scholar
  11. 11.
    Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6, 230–247.CrossRefGoogle Scholar
  12. 12.
    Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bieback, K., Kern, S., Kluter, H., & Eichler, H. (2004). Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells, 22, 625–634.CrossRefPubMedGoogle Scholar
  14. 14.
    I’nt Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., et al. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 22, 1338–1345.CrossRefGoogle Scholar
  15. 15.
    Toma, J. G., Akhavan, M., Fernandes, K. J., et al. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3, 778.CrossRefPubMedGoogle Scholar
  16. 16.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.CrossRefGoogle Scholar
  17. 17.
    Lee, J. W., Fang, X., Krasnodembskaya, A., Howard, J. P., & Matthay, M. A. (2011). Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem cells, 29, 913–919.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hocking, A. M., & Gibran, N. S. (2010). Mesenchymal stem cells: Paracrine signaling and differentiation during cutaneous wound repair. Experimental Cell Research, 316, 2213–2219.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gao, F., Chiu, S. M., Motan, D. A. L., et al. (2016). Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death &Amp Disease, 7, e2062.CrossRefGoogle Scholar
  20. 20.
    Le Blanc, K., Frassoni, F., Ball, L., et al. (2008). Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 371, 1579–1586.CrossRefPubMedGoogle Scholar
  21. 21.
    Lalu, M. M., McIntyre, L., Pugliese, C., et al. (2012). Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One, 7, e47559.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ruhle, A., Huber, P. E., Saffrich, R., Lopez Perez, R., & Nicolay, N. H. (2018). The current understanding of mesenchymal stem cells as potential attenuators of chemotherapy-induced toxicity. International Journal of Cancer.Google Scholar
  23. 23.
    Nicolay, N. H., Liang, Y., Lopez Perez, R., et al. (2015). Mesenchymal stem cells are resistant to carbon ion radiotherapy. Oncotarget, 6, 2076–2087.PubMedGoogle Scholar
  24. 24.
    Nicolay, N. H., Sommer, E., Lopez, R., et al. (2013). Mesenchymal stem cells retain their defining stem cell characteristics after exposure to ionizing radiation. International Journal of Radiation Oncology, Biology, Physics, 87, 1171–1178.CrossRefPubMedGoogle Scholar
  25. 25.
    Ruhle, A., Xia, O., Perez, R. L., et al. (2018). The Radiation Resistance of Human Multipotent Mesenchymal Stromal Cells Is Independent of Their Tissue of Origin. International Journal of Radiation Oncology, Biology, Physics.Google Scholar
  26. 26.
    Nicolay, N. H., Lopez Perez, R., Debus, J., & Huber, P. E. (2015). Mesenchymal stem cells - A new hope for radiotherapy-induced tissue damage? Cancer Letters, 366, 133–140.CrossRefPubMedGoogle Scholar
  27. 27.
    Nicolay, N. H., Lopez Perez, R., Rühle, A., et al. (2016). Mesenchymal stem cells maintain their defining stem cell characteristics after treatment with cisplatin. Scientific Reports, 6, 20035.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nicolay, N. H., Rühle, A., Perez, R. L., et al. (2016). Mesenchymal stem cells are sensitive to bleomycin treatment. Scientific Reports, 6, 26645.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nicolay, N. H., Rühle, A., Perez, R. L., et al. (2016). Mesenchymal stem cells exhibit resistance to topoisomerase inhibition. Cancer Letters, 374, 75–84.CrossRefPubMedGoogle Scholar
  30. 30.
    Oliveira, M. S., Carvalho, J. L., Campos, A. C., Gomes, D. A., de Goes, A. M., & Melo, M. M. (2014). Doxorubicin has in vivo toxicological effects on ex vivo cultured mesenchymal stem cells. Toxicology Letters, 224, 380–386.CrossRefPubMedGoogle Scholar
  31. 31.
    Yang, F., Chen, H., Liu, Y., et al. (2013). Doxorubicin caused apoptosis of mesenchymal stem cells via p38, JNK and p53 pathway. Cellular Physiology and Biochemistry, 32, 1072–1082.CrossRefPubMedGoogle Scholar
  32. 32.
    Mueller, L. P., Luetzkendorf, J., Mueller, T., Reichelt, K., Simon, H., & Schmoll, H. J. (2006). Presence of mesenchymal stem cells in human bone marrow after exposure to chemotherapy: evidence of resistance to apoptosis induction. Stem Cells, 24, 2753–2765.CrossRefPubMedGoogle Scholar
  33. 33.
    Oliver, L., Hue, E., Rossignol, J., et al. (2011). Distinct Roles of Bcl-2 and Bcl-Xl in the Apoptosis of Human Bone Marrow Mesenchymal Stem Cells during Differentiation. PLOS ONE, 6, e19820.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Crawford, J., Dale, D. C., & Lyman, G. H. (2004). Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer, 100, 228–237.CrossRefPubMedGoogle Scholar
  35. 35.
    Koç, O. N., Gerson, S. L., Cooper, B. W., et al. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology, 18, 307.CrossRefPubMedGoogle Scholar
  36. 36.
    Bernardo, M. E., Ball, L. M., Cometa, A. M., et al. (2011). Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transplant, 46, 200–207.CrossRefPubMedGoogle Scholar
  37. 37.
    Carrancio, S., Blanco, B., Romo, C., et al. (2011). Bone marrow mesenchymal stem cells for improving hematopoietic function: an in vitro and in vivo model. Part 2: Effect on bone marrow microenvironment. PLoS One, 6, e26241.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yin, T., & Li, L. (2006). The stem cell niches in bone. The Journal of Clinical Investigation, 116, 1195–1201.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sahni, V., Choudhury, D., & Ahmed, Z. (2009). Chemotherapy-associated renal dysfunction. Nature Reviews Nephrology, 5, 450.CrossRefPubMedGoogle Scholar
  40. 40.
    Florea, A.-M., & Büsselberg, D. (2011). Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 3, 1351–1371.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hartmann, J. T., & Lipp, H.-P. (2003). Toxicity of platinum compounds. Expert Opinion on Pharmacotherapy, 4, 889–901.CrossRefPubMedGoogle Scholar
  42. 42.
    Magnasco, A., Corselli, M., Bertelli, R., et al. (2008). Mesenchymal stem cells protective effect in adriamycin model of nephropathy. Cell Transplant, 17, 1157–1167.CrossRefPubMedGoogle Scholar
  43. 43.
    Morigi, M., Imberti, B., Zoja, C., et al. (2004). Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol, 15, 1794–1804.CrossRefPubMedGoogle Scholar
  44. 44.
    Park, J. H., Jang, H. R., Kim, D. H., et al. (2017). Early, but not late, treatment with human umbilical cord blood-derived mesenchymal stem cells attenuates cisplatin nephrotoxicity through immunomodulation. American Journal of Physiology. Renal Physiology, 313, F984–FF96.CrossRefPubMedGoogle Scholar
  45. 45.
    Sherif, I. O., Al-Mutabagani, L. A., Alnakhli, A. M., Sobh, M. A., & Mohammed, H. E. (2015). Renoprotective effects of angiotensin receptor blocker and stem cells in acute kidney injury: Involvement of inflammatory and apoptotic markers. Experimental Biology and Medicine (Maywood), 240, 1572–1579.CrossRefGoogle Scholar
  46. 46.
    Zoja, C., Garcia, P. B., Rota, C., et al. (2012). Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. American Journal of Physiology. Renal Physiology, 303, F1370–F1381.CrossRefPubMedGoogle Scholar
  47. 47.
    Huang, K., Kang, X., Wang, X., et al. (2015). Conversion of bone marrow mesenchymal stem cells into type II alveolar epithelial cells reduces pulmonary fibrosis by decreasing oxidative stress in rats. Molecular Medicine Reports, 11, 1685–1692.CrossRefPubMedGoogle Scholar
  48. 48.
    Kumamoto, M., Nishiwaki, T., Matsuo, N., Kimura, H., & Matsushima, K. (2009). Minimally cultured bone marrow mesenchymal stem cells ameliorate fibrotic lung injury. The European Respiratory Journal, 34, 740–748.CrossRefPubMedGoogle Scholar
  49. 49.
    Lee, S. H., Jang, A. S., Kim, Y. E., et al. (2010). Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respiratory Research, 11, 16.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Min, F., Gao, F., Li, Q., & Liu, Z. (2015). Therapeutic effect of human umbilical cord mesenchymal stem cells modified by angiotensin-converting enzyme 2 gene on bleomycin-induced lung fibrosis injury. Molecular Medicine Reports, 11, 2387–2396.CrossRefPubMedGoogle Scholar
  51. 51.
    Moodley, Y., Vaghjiani, V., Chan, J., et al. (2013). Anti-inflammatory effects of adult stem cells in sustained lung injury: a comparative study. PLoS One, 8, e69299.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Moodley, Y., Atienza, D., Manuelpillai, U., et al. (2009). Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. The American Journal of Pathology, 175, 303–313.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ortiz, L. A., Gambelli, F., McBride, C., et al. (2003). Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proceedings of the National Academy of Sciences, 100, 8407–8411.CrossRefGoogle Scholar
  54. 54.
    Reddy, M., Fonseca, L., Gowda, S., Chougule, B., Hari, A., & Totey, S. (2016). Human adipose-derived mesenchymal stem cells attenuate early stage of bleomycin induced pulmonary fibrosis: Comparison with pirfenidone. International Journal of Stem Cells, 9, 192–206.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Xu, J., Li, L., Xiong, J., Zheng, Y., Ye, Q., & Li, Y. (2015). Cyclophosphamide Combined with Bone Marrow Mesenchymal Stromal Cells Protects against Bleomycin-induced Lung Fibrosis in Mice. Annals of Clinical and Laboratory Science, 45, 292–300.PubMedGoogle Scholar
  56. 56.
    Abd Allah, S. H., Hussein, S., Hasan, M. M., Deraz, R. H. A., Hussein, W. F., & Sabik, L. M. E. (2017). Functional and Structural Assessment of the Effect of Human Umbilical Cord Blood Mesenchymal Stem Cells in Doxorubicin-Induced Cardiotoxicity. Journal of Cellular Biochemistry, 118, 3119–3129.CrossRefPubMedGoogle Scholar
  57. 57.
    Di, G. H., Jiang, S., Li, F. Q., et al. (2012). Human umbilical cord mesenchymal stromal cells mitigate chemotherapy-associated tissue injury in a pre-clinical mouse model. Cytotherapy, 14, 412–422.CrossRefPubMedGoogle Scholar
  58. 58.
    Mousa, H. S. E., Abdel Aal, S. M., & Abbas, N. A. T. (2018). Umbilical cord blood-mesenchymal stem cells and carvedilol reduce doxorubicin- induced cardiotoxicity: Possible role of insulin-like growth factor-1. Biomedicine & Pharmacotherapy, 105, 1192–1204.CrossRefGoogle Scholar
  59. 59.
    Oliveira, M. S., Melo, M. B., Carvalho, J. L., et al. (2013). Doxorubicin cardiotoxicity and cardiac function improvement after stem cell therapy diagnosed by strain echocardiography. J Cancer Sci Ther, 5, 52–57.CrossRefPubMedGoogle Scholar
  60. 60.
    Pınarlı, F. A., Turan, N. N., Güçlü Pınarlı, F., et al. (2013). Resveratrol and Adipose-derived Mesenchymal Stem Cells Are Effective in the Prevention and Treatment of Doxorubicin Cardiotoxicity in Rats. Pediatric Hematology and Oncology, 30, 226–238.CrossRefPubMedGoogle Scholar
  61. 61.
    Psaltis, P. J., Carbone, A., Nelson, A. J., et al. (2010). Reparative effects of allogeneic mesenchymal precursor cells delivered transendocardially in experimental nonischemic cardiomyopathy. JACC Cardiovascular Interventions, 3, 974–983.CrossRefPubMedGoogle Scholar
  62. 62.
    Yu, Q., Li, Q., Na, R., et al. (2014). Impact of repeated intravenous bone marrow mesenchymal stem cells infusion on myocardial collagen network remodeling in a rat model of doxorubicin-induced dilated cardiomyopathy. Molecular and Cellular Biochemistry, 387, 279–285.CrossRefPubMedGoogle Scholar
  63. 63.
    Abd-Allah, S. H., Shalaby, S. M., Pasha, H. F., et al. (2013). Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits. Cytotherapy, 15, 64–75.CrossRefPubMedGoogle Scholar
  64. 64.
    Badawy, A., Sobh, M. A., Ahdy, M., & Abdelhafez, M. S. (2017). Bone marrow mesenchymal stem cell repair of cyclophosphamide-induced ovarian insufficiency in a mouse model. International Journal of Women's Health, 9, 441–447.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Chen, X., Wang, Q., Li, X., Wang, Q., Xie, J., & Fu, X. (2018). Heat shock pretreatment of mesenchymal stem cells for inhibiting the apoptosis of ovarian granulosa cells enhanced the repair effect on chemotherapy-induced premature ovarian failure. Stem Cell Research & Therapy, 9, 240.CrossRefGoogle Scholar
  66. 66.
    Fu, X., He, Y., Xie, C., & Liu, W. (2008). Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy, 10, 353–363.CrossRefPubMedGoogle Scholar
  67. 67.
    Gabr, H., Rateb, M. A., El Sissy, M. H., Ahmed Seddiek, H., & Ali Abdelhameed Gouda, S. (2016). The effect of bone marrow-derived mesenchymal stem cells on chemotherapy induced ovarian failure in albino rats. Microscopy Research and Technique, 79, 938–947.CrossRefPubMedGoogle Scholar
  68. 68.
    Kilic, S., Pinarli, F., Ozogul, C., Tasdemir, N., Naz Sarac, G., & Delibasi, T. (2014). Protection from cyclophosphamide-induced ovarian damage with bone marrow-derived mesenchymal stem cells during puberty. Gynecol Endocrinol, 30, 135–140.CrossRefPubMedGoogle Scholar
  69. 69.
    Lai, D., Wang, F., Yao, X., Zhang, Q., Wu, X., & Xiang, C. (2015). Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure. Journal of Translational Medicine, 13, 155.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lee, H. J., Selesniemi, K., Niikura, Y., et al. (2007). Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. Journal of Clinical Oncology, 25, 3198–3204.CrossRefPubMedGoogle Scholar
  71. 71.
    Li, J., Yu, Q., Huang, H., et al. (2018). Human chorionic plate-derived mesenchymal stem cells transplantation restores ovarian function in a chemotherapy-induced mouse model of premature ovarian failure. Stem Cell Research & Therapy, 9, 81.CrossRefGoogle Scholar
  72. 72.
    Liu, J., Zhang, H., Zhang, Y., et al. (2014). Homing and restorative effects of bone marrow-derived mesenchymal stem cells on cisplatin injured ovaries in rats. Molecular Cell, 37, 865–872.CrossRefGoogle Scholar
  73. 73.
    Mohamed, S. A., Shalaby, S. M., Abdelaziz, M., et al. (2018). Human Mesenchymal Stem Cells Partially Reverse Infertility in Chemotherapy-Induced Ovarian Failure. Reproductive Sciences, 25, 51–63.CrossRefPubMedGoogle Scholar
  74. 74.
    Song, D., Zhong, Y., Qian, C., et al. (2016). Human umbilical cord mesenchymal stem cells therapy in cyclophosphamide-induced premature ovarian failure rat model. BioMed Research International, 2016, 2517514.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Sun, M., Wang, S., Li, Y., et al. (2013). Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell Research & Therapy, 4, 80.CrossRefGoogle Scholar
  76. 76.
    Takehara, Y., Yabuuchi, A., Ezoe, K., et al. (2012). The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Laboratory Investigation, 93, 181.CrossRefPubMedGoogle Scholar
  77. 77.
    Wang, Z., Wang, Y., Yang, T., Li, J., & Yang, X. (2017). Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice. Stem Cell Research & Therapy, 8, 11.CrossRefGoogle Scholar
  78. 78.
    Cakici, C., Buyrukcu, B., Duruksu, G., et al. (2013). Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: the sperm generation. BioMed Research International, 2013, 529589.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Lassalle, B., Mouthon, M. A., Riou, L., et al. (2008). Bone marrow-derived stem cells do not reconstitute spermatogenesis in vivo. Stem Cells, 26, 1385–1386.CrossRefPubMedGoogle Scholar
  80. 80.
    Lue, Y., Erkkila, K., Liu, P. Y., et al. (2007). Fate of Bone Marrow Stem Cells Transplanted into the Testis: Potential Implication for Men with Testicular Failure. The American Journal of Pathology, 170, 899–908.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Monsefi, M., Fereydouni, B., Rohani, L., & Talaei, T. (2013). Mesenchymal stem cells repair germinal cells of seminiferous tubules of sterile rats. Iran J Reprod Med, 11, 537–544.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Sherif, I. O., Sabry, D., Abdel-Aziz, A., & Sarhan, O. M. (2018). The role of mesenchymal stem cells in chemotherapy-induced gonadotoxicity. Stem Cell Research & Therapy, 9, 196.CrossRefGoogle Scholar
  83. 83.
    Zhang, D., Liu, X., Peng, J., et al. (2014). Potential spermatogenesis recovery with bone marrow mesenchymal stem cells in an azoospermic rat model. International Journal of Molecular Sciences, 15, 13151–13165.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Zhou, Y., Xu, H., Xu, W., et al. (2013). Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Research & Therapy, 4, 34.CrossRefGoogle Scholar
  85. 85.
    Bruno, S., Grange, C., Collino, F., et al. (2012). Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One, 7, e33115.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Wang, B., Jia, H., Zhang, B., et al. (2017). Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy. Stem Cell Research & Therapy, 8, 75.CrossRefGoogle Scholar
  87. 87.
    Théry, C., Witwer, K. W., Aikawa, E., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7, 1535750.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Gronhoj, C., Jensen, D. H., Vester-Glowinski, P., et al. (2018). Safety and Efficacy of Mesenchymal Stem Cells for Radiation-Induced Xerostomia: A Randomized, Placebo-Controlled Phase 1/2 Trial (MESRIX). International Journal of Radiation Oncology, Biology, Physics, 101, 581–592.CrossRefPubMedGoogle Scholar
  89. 89.
    Bolli, R., Hare, J. M., Henry, T. D., et al. (2018). Rationale and Design of the SENECA (StEm cell iNjECtion in cAncer survivors) Trial. American Heart Journal, 201, 54–62.CrossRefPubMedGoogle Scholar
  90. 90.
    Emadi, A., Jones, R. J., & Brodsky, R. A. (2009). Cyclophosphamide and cancer: golden anniversary. Nature Reviews. Clinical Oncology, 6, 638–647.CrossRefPubMedGoogle Scholar
  91. 91.
    Cox, P. J. (1979). Cyclophosphamide cystitis--identification of acrolein as the causative agent. Biochem Pharmacol, 28, 2045–2049.CrossRefPubMedGoogle Scholar
  92. 92.
    Payne, H., Adamson, A., Bahl, A., et al. (2013). Chemical- and radiation-induced haemorrhagic cystitis: current treatments and challenges. BJU International, 112, 885–897.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Atkinson, K., Biggs, J. C., Golovsky, D., et al. (1991). Bladder irrigation does not prevent haemorrhagic cystitis in bone marrow transplant recipients. Bone Marrow Transplant, 7, 351–354.PubMedGoogle Scholar
  94. 94.
    Murphy, C., Harden, E., Stevens, D., Lynch, J., Montes, V., & Herzig, R. (1994). The addition of mesna to hyperhydration does not decrease the incidence of hemorrhagic cystitis in patients receiving high-dose cyclophosphamide. Oncology Reports, 1, 265–266.PubMedGoogle Scholar
  95. 95.
    Chapel, A., Francois, S., Douay, L., Benderitter, M., & Voswinkel, J. (2013). New insights for pelvic radiation disease treatment: Multipotent stromal cell is a promise mainstay treatment for the restoration of abdominopelvic severe chronic damages induced by radiotherapy. World Journal of Stem Cells, 5, 106–111.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Wang, Y., Chen, F., Gu, B., Chen, G., Chang, H., & Wu, D. (2015). Mesenchymal stromal cells as an adjuvant treatment for severe late-onset hemorrhagic cystitis after allogeneic hematopoietic stem cell transplantation. Acta Haematologica, 133, 72–77.CrossRefPubMedGoogle Scholar
  97. 97.
    Ringdén, O., Uzunel, M., Sundberg, B., et al. (2007). Tissue repair using allogeneic mesenchymal stem cells for hemorrhagic cystitis, pneumomediastinum and perforated colon. Leukemia, 21, 2271.CrossRefPubMedGoogle Scholar
  98. 98.
    Ringden, O., & Le Blanc, K. (2011). Mesenchymal stem cells for treatment of acute and chronic graft-versus-host disease, tissue toxicity and hemorrhages. Best Practice & Research Clinical Haematology, 24, 65–72.CrossRefGoogle Scholar
  99. 99.
    Anumanthan, G., Makari, J. H., Honea, L., et al. (2008). Directed differentiation of bone marrow derived mesenchymal stem cells into bladder urothelium. The Journal of Urology, 180, 1778–1783.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Meadors, M., Floyd, J., & Perry, M. C. (2006). Pulmonary Toxicity of Chemotherapy. Seminars in Oncology, 33, 98–105.CrossRefPubMedGoogle Scholar
  101. 101.
    Abid, S. H., Malhotra, V., & Perry, M. C. (2001). Radiation-induced and chemotherapy-induced pulmonary injury. Current Opinion in Oncology, 13, 242–248.CrossRefPubMedGoogle Scholar
  102. 102.
    Santoro, A., & Bonadonna, G. (1979). Prolonged disease-free survival in MOPP-resistant Hodgkin's disease after treatment with adriamycin, bleomycin, vinblastine and dacarbazine (ABVD). Cancer Chemotherapy and Pharmacology, 2, 101–105.CrossRefPubMedGoogle Scholar
  103. 103.
    Cushing, B., Giller, R., Cullen, J. W., et al. (2004). Randomized Comparison of Combination Chemotherapy With Etoposide, Bleomycin, and Either High-Dose or Standard-Dose Cisplatin in Children and Adolescents With High-Risk Malignant Germ Cell Tumors: A Pediatric Intergroup Study—Pediatric Oncology Group 9049 and Children's Cancer Group 8882. Journal of Clinical Oncology, 22, 2691–2700.CrossRefPubMedGoogle Scholar
  104. 104.
    De Lena, M., Guzzon, A., Monfardini, S., & Bonadonna, G. (1972). Clinical, radiologic, and histopathologic studies on pulmonary toxicity induced by treatment with bleomycin (NSC-125066). Cancer Chemotherapy Reports, 56, 343–356.PubMedGoogle Scholar
  105. 105.
    Van Barneveld, P. W., van der Mark, T. W., Sleijfer, D. T., et al. (1984). Predictive factors for bleomycin-induced pneumonitis. The American Review of Respiratory Disease, 130, 1078–1081.PubMedGoogle Scholar
  106. 106.
    Holoye, P. Y., Luna, M. A., MacKay, B., & Bedrossian, C. W. (1978). Bleomycin hypersensitivity pneumonitis. Annals of Internal Medicine, 88, 47–49.CrossRefPubMedGoogle Scholar
  107. 107.
    Zhang, F., Zhang, L., Jiang, H. S., et al. (2011). Mobilization of bone marrow cells by CSF3 protects mice from bleomycin-induced lung injury. Respiration, 82, 358–368.CrossRefPubMedGoogle Scholar
  108. 108.
    Garcia, O., Carraro, G., Turcatel, G., et al. (2013). Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via CCL2 modulation in bronchoalveolar lavage. PLoS One, 8, e71679.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Lee, S. H., Lee, E. J., Lee, S. Y., et al. (2014). The effect of adipose stem cell therapy on pulmonary fibrosis induced by repetitive intratracheal bleomycin in mice. Experimental Lung Research, 40, 117–125.CrossRefPubMedGoogle Scholar
  110. 110.
    Srour, N., & Thebaud, B. (2015). Mesenchymal stromal cells in animal bleomycin pulmonary fibrosis models: A systematic review. Stem Cells Translational Medicine, 4, 1500–1510.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Shentu, T. P., Wong, S., Espinoza, C., Cernelc-Kohan, M., Hagood, J., et al. (2016). The FASEB Journal, 30, 160.2-.2.Google Scholar
  112. 112.
    Shentu, T.-P., Huang, T.-S., Cernelc-Kohan, M., et al. (2017). Thy-1 dependent uptake of mesenchymal stem cell-derived extracellular vesicles blocks myofibroblastic differentiation. Scientific Reports, 7, 18052.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Tzouvelekis, A., Paspaliaris, V., Koliakos, G., et al. (2013). A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. Journal of Translational Medicine, 11, 171.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Glassberg, M. K., Minkiewicz, J., Toonkel, R. L., et al. (2017). Allogeneic Human Mesenchymal Stem Cells in Patients With Idiopathic Pulmonary Fibrosis via Intravenous Delivery (AETHER): A Phase I Safety Clinical Trial. Chest, 151, 971–981.CrossRefPubMedGoogle Scholar
  115. 115.
    Weiss, D. J., Casaburi, R., Flannery, R., LeRoux-Williams, M., & Tashkin, D. P. (2013). A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest, 143, 1590–1598.CrossRefPubMedGoogle Scholar
  116. 116.
    Volkova, M., & Russell, R., 3rd. (2011). Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Current Cardiology Reviews, 7, 214–220.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Dent, R. G., & McColl, I. (1975). Letter: 5-Fluorouracil and angina. Lancet, 1, 347–348.CrossRefPubMedGoogle Scholar
  118. 118.
    Sorrentino, M. F., Kim, J., Foderaro, A. E., & Truesdell, A. G. (2012). 5-fluorouracil induced cardiotoxicity: review of the literature. Cardiology Journal, 19, 453–457.CrossRefPubMedGoogle Scholar
  119. 119.
    Gianni, L., Herman, E. H., Lipshultz, S. E., Minotti, G., Sarvazyan, N., & Sawyer, D. B. (2008). Anthracycline cardiotoxicity: from bench to bedside. Journal of Clinical Oncology, 26, 3777–3784.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Tomita, S., Ishida, M., Nakatani, T., et al. (2004). Bone marrow is a source of regenerated cardiomyocytes in doxorubicin-induced cardiomyopathy and granulocyte colony-stimulating factor enhances migration of bone marrow cells and attenuates cardiotoxicity of doxorubicin under electron microscopy. The Journal of Heart and Lung Transplantation, 23, 577–584.CrossRefPubMedGoogle Scholar
  121. 121.
    Qi, Z., Zhang, Y., Liu, L., Guo, X., Qin, J., & Cui, G. (2012). Mesenchymal stem cells derived from different origins have unique sensitivities to different chemotherapeutic agents. Cell Biology International, 36, 857–862.CrossRefPubMedGoogle Scholar
  122. 122.
    Lazzarini, E., Balbi, C., Altieri, P., et al. (2016). The human amniotic fluid stem cell secretome effectively counteracts doxorubicin-induced cardiotoxicity. Scientific Reports, 6, 29994.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Bollini, S., Cheung, K. K., Riegler, J., et al. (2011). Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells and Development, 20, 1985–1994.CrossRefPubMedGoogle Scholar
  124. 124.
    Maria, O. M., Eliopoulos, N., & Muanza, T. (2017). Radiation-Induced Oral Mucositis. Frontiers in Oncology, 7.Google Scholar
  125. 125.
    Naidu, M. U., Ramana, G. V., Rani, P. U., Mohan, I. K., Suman, A., & Roy, P. (2004). Chemotherapy-induced and/or radiation therapy-induced oral mucositis--complicating the treatment of cancer. Neoplasia, 6, 423–431.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Köstler, W. J., Hejna, M., Wenzel, C., & Zielinski, C. C. (2001). Oral mucositis complicating chemotherapy and/or radiotherapy: options for prevention and treatment. CA: a Cancer Journal for Clinicians, 51, 290–315.Google Scholar
  127. 127.
    Bellm, L. A., Epstein, J. B., Rose-Ped, A., Martin, P., & Fuchs, H. J. (2000). Patient reports of complications of bone marrow transplantation. Support Care Cancer, 8, 33–39.PubMedGoogle Scholar
  128. 128.
    Zhang, Q., Nguyen, A. L., Shi, S., et al. (2011). Three-dimensional spheroid culture of human gingiva-derived mesenchymal stem cells enhances mitigation of chemotherapy-induced oral mucositis. Stem cells and Development, 21, 937–947.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Bhatt A. Mesenchymal Stem Cells from Human Gingiva Ameliorate Murine Alimentary Mucositis: University of Southern California; 2011.Google Scholar
  130. 130.
    Maria, O. M., Shalaby, M., Syme, A., Eliopoulos, N., & Muanza, T. (2016). Adipose mesenchymal stromal cells minimize and repair radiation-induced oral mucositis. Cytotherapy, 18, 1129–1145.CrossRefPubMedGoogle Scholar
  131. 131.
    Schmidt, M., Haagen, J., Noack, R., Siegemund, A., Gabriel, P., & Dorr, W. (2014). Effects of bone marrow or mesenchymal stem cell transplantation on oral mucositis (mouse) induced by fractionated irradiation. Strahlentherapie und Onkologie, 190, 399–404.CrossRefPubMedGoogle Scholar
  132. 132.
    Schmidt, M., Piro-Hussong, A., Siegemund, A., Gabriel, P., & Dorr, W. (2014). Modification of radiation-induced oral mucositis (mouse) by adult stem cell therapy: single-dose irradiation. Radiation and Environmental Biophysics, 53, 629–634.CrossRefPubMedGoogle Scholar
  133. 133.
    Jensen, S. B., Pedersen, A. M. L., Vissink, A., et al. (2010). A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: prevalence, severity and impact on quality of life. Supportive Care in Cancer, 18, 1039–1060.CrossRefPubMedGoogle Scholar
  134. 134.
    Lombaert, I. M., Wierenga, P. K., Kok, T., Kampinga, H. H., deHaan, G., & Coppes, R. P. (2006). Mobilization of bone marrow stem cells by granulocyte colony-stimulating factor ameliorates radiation-induced damage to salivary glands. Clinical Cancer Research, 12, 1804–1812.CrossRefPubMedGoogle Scholar
  135. 135.
    Pignon, J. P., Bourhis, J., Domenge, C., & Designé, L. (2000). Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. The Lancet, 355, 949–955.CrossRefGoogle Scholar
  136. 136.
    Ruhle, A., Perez, R. L., Glowa, C., et al. (2017). Cisplatin radiosensitizes radioresistant human mesenchymal stem cells. Oncotarget, 8, 87809–87820.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Verstappen, C. C. P., Heimans, J. J., Hoekman, K., & Postma, T. J. (2003). Neurotoxic Complications of Chemotherapy in Patients with Cancer. Drugs, 63, 1549–1563.CrossRefPubMedGoogle Scholar
  138. 138.
    Petrou, P., Gothelf, Y., Argov, Z., et al. (2016). Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurology, 73, 337–344.CrossRefPubMedGoogle Scholar
  139. 139.
    Venkataramana, N. K., Kumar, S. K. V., Balaraju, S., et al. (2010). Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease. Translational Research, 155, 62–70.CrossRefPubMedGoogle Scholar
  140. 140.
    Connick, P., Kolappan, M., Crawley, C., et al. (2012). Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. The Lancet Neurology, 11, 150–156.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Wakabayashi, K., Nagai, A., Sheikh, A. M., et al. (2010). Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. Journal of Neuroscience Research, 88, 1017–1025.PubMedGoogle Scholar
  142. 142.
    Kopen, G. C., Prockop, D. J., & Phinney, D. G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences of the United States of America, 96, 10711–10716.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of neuroscience research, 61, 364–370.CrossRefPubMedGoogle Scholar
  144. 144.
    Lo Furno, D., Mannino, G., & Giuffrida, R. (2018). Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. Journal of Cellular Physiology, 233, 3982–3999.CrossRefPubMedGoogle Scholar
  145. 145.
    Neirinckx, V., Coste, C., Rogister, B., & Wislet-Gendebien, S. (2013). Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Translational Medicine, 2, 284–296.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Salehi, H., Amirpour, N., Niapour, A., & Razavi, S. (2016). An Overview of Neural Differentiation Potential of Human Adipose Derived Stem Cells. Stem Cell Reviews and Reports, 12, 26–41.CrossRefPubMedGoogle Scholar
  147. 147.
    Alizadeh, R., Bagher, Z., Kamrava, S. K., et al. (2019). Differentiation of human mesenchymal stem cells (MSC) to dopaminergic neurons: A comparison between Wharton’s Jelly and olfactory mucosa as sources of MSCs. Journal of Chemical Neuroanatomy, 96, 126–133.CrossRefPubMedGoogle Scholar
  148. 148.
    Chen, J., Li, Y., Wang, L., et al. (2001). Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 32, 1005–1011.CrossRefPubMedGoogle Scholar
  149. 149.
    Munz, F., Lopez Perez, R., Trinh, T., et al. (2018). Human mesenchymal stem cells lose their functional properties after paclitaxel treatment. Scientific Reports, 8, 312.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Harris, W. M., Zhang, P., Plastini, M., et al. (2017). Evaluation of function and recovery of adipose-derived stem cells after exposure to paclitaxel. Cytotherapy, 19, 211–221.CrossRefPubMedGoogle Scholar
  151. 151.
    Choron, R. L., Chang, S., Khan, S., et al. (2015). Paclitaxel impairs adipose stem cell proliferation and differentiation. The Journal of Surgical Research, 196, 404–415.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Li, J., Law, H. K., Lau, Y. L., & Chan, G. C. (2004). Differential damage and recovery of human mesenchymal stem cells after exposure to chemotherapeutic agents. British Journal of Haematology, 127, 326–334.CrossRefPubMedGoogle Scholar
  153. 153.
    Meirow, D., & Nugent, D. (2001). The effects of radiotherapy and chemotherapy on female reproduction. Human Reproduction Update, 7, 535–543.CrossRefPubMedGoogle Scholar
  154. 154.
    Warne, G., Fairley, K., Hobbs, J. B., & Martin, F. (1973). Cyclophosphamide-induced ovarian failure. New England Journal of Medicine, 289, 1159–1162.CrossRefPubMedGoogle Scholar
  155. 155.
    McDermott, E. M., & Powell, R. J. (1996). Incidence of ovarian failure in systemic lupus erythematosus after treatment with pulse cyclophosphamide. Annals of the Rheumatic Diseases, 55, 224–229.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Blumenfeld, Z. (2007). How to preserve fertility in young women exposed to chemotherapy? The role of GnRH agonist cotreatment in addition to cryopreservation of embrya, oocytes, or ovaries. The Oncologist, 12, 1044–1054.CrossRefPubMedGoogle Scholar
  157. 157.
    Liu, T., Huang, Y., Guo, L., Cheng, W., & Zou, G. (2012). CD44+/CD105+ human amniotic fluid mesenchymal stem cells survive and proliferate in the ovary long-term in a mouse model of chemotherapy-induced premature ovarian failure. International Journal of Medical Sciences, 9, 592–602.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Hershlag, A., & Schuster, M. W. (2002). Return of fertility after autologous stem cell transplantation. Fertility and Sterility, 77, 419–421.CrossRefPubMedGoogle Scholar
  159. 159.
    Telfer, E. E., Gosden, R. G., Byskov, A. G., et al. (2005). On regenerating the ovary and generating controversy. Cell, 122, 821–822.CrossRefPubMedGoogle Scholar
  160. 160.
    Edessy, M., Hosni, H. N., Shady, Y., Waf, Y., Bakr, S., & Kamel, M. (2016). Autologous stem cells therapy, the first baby of idiopathic premature ovarian failure. Acta Medica International, 3, 19.CrossRefGoogle Scholar
  161. 161.
    Yang, M. Y., & Fortune, J. E. (2007). Vascular endothelial growth factor stimulates the primary to secondary follicle transition in bovine follicles in vitro. Molecular Reproduction and Development, 74, 1095–1104.CrossRefPubMedGoogle Scholar
  162. 162.
    Lee, S. J., Schover, L. R., Partridge, A. H., et al. (2006). American Society of Clinical Oncology Recommendations on Fertility Preservation in Cancer Patients. Journal of Clinical Oncology, 24, 2917–2931.CrossRefPubMedGoogle Scholar
  163. 163.
    Tal, R., Botchan, A., Hauser, R., Yogev, L., Paz, G., & Yavetz, H. (2000). Follow-up of sperm concentration and motility in patients with lymphoma. Human Reproduction, 15, 1985–1988.CrossRefPubMedGoogle Scholar
  164. 164.
    Nayernia, K., Lee, J. H., Drusenheimer, N., et al. (2006). Derivation of male germ cells from bone marrow stem cells. Laboratory Investigation, 86, 654–663.CrossRefPubMedGoogle Scholar
  165. 165.
    Yazawa, T., Mizutani, T., Yamada, K., et al. (2006). Differentiation of adult stem cells derived from bone marrow stroma into Leydig or adrenocortical cells. Endocrinology, 147, 4104–4111.CrossRefPubMedGoogle Scholar
  166. 166.
    Bhartiya, D. (2013). Are Mesenchymal Cells Indeed Pluripotent Stem Cells or Just Stromal Cells? OCT-4 and VSELs Biology Has Led to Better Understanding. Stem Cells International, 2013, 6.Google Scholar
  167. 167.
    Wuchter, P., Bieback, K., Schrezenmeier, H., et al. (2015). Standardization of Good Manufacturing Practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy, 17, 128–139.CrossRefPubMedGoogle Scholar
  168. 168.
    Sensebe, L., Gadelorge, M., & Fleury-Cappellesso, S. (2013). Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Research & Therapy, 4, 66.CrossRefGoogle Scholar
  169. 169.
    Witzeneder, K., Lindenmair, A., Gabriel, C., et al. (2013). Human-derived alternatives to fetal bovine serum in cell culture. Transfusion Medicine and Hemotherapy, 40, 417–423.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Bieback, K., Hecker, A., Kocaomer, A., et al. (2009). Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells, 27, 2331–2341.CrossRefPubMedGoogle Scholar
  171. 171.
    Schallmoser, K., Bartmann, C., Rohde, E., et al. (2007). Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion, 47, 1436–1446.CrossRefPubMedGoogle Scholar
  172. 172.
    Hsieh, J. Y., Fu, Y. S., Chang, S. J., Tsuang, Y. H., & Wang, H. W. (2010). Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord. Stem Cells and Development, 19, 1895–1910.CrossRefPubMedGoogle Scholar
  173. 173.
    Kern, S., Eichler, H., Stoeve, J., Kluter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301.CrossRefPubMedGoogle Scholar
  174. 174.
    Wagner, W., Wein, F., Seckinger, A., et al. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology, 33, 1402–1416.CrossRefPubMedGoogle Scholar
  175. 175.
    Nicolay, N. H., Sommer, E., Perez, R. L., et al. (2014). Mesenchymal stem cells are sensitive to treatment with kinase inhibitors and ionizing radiation. Strahlenther Onkol, 190, 1037–1045.CrossRefPubMedGoogle Scholar
  176. 176.
    Melzer D, Neumann U, Ebell W, et al. Imatinib mesylate (STI571) considerably affects normal human bone marrow stromal cell growth in Vitro. Am Soc Hematology; 2004.Google Scholar
  177. 177.
    Normanno, N., De Luca, A., Aldinucci, D., et al. (2005). Gefitinib inhibits the ability of human bone marrow stromal cells to induce osteoclast differentiation: implications for the pathogenesis and treatment of bone metastasis. Endocrine-Related Cancer, 12, 471–482.CrossRefPubMedGoogle Scholar
  178. 178.
    Ewer, S. M., & Ewer, M. S. (2008). Cardiotoxicity profile of trastuzumab. Drug Safety, 31, 459–467.CrossRefPubMedGoogle Scholar
  179. 179.
    Wang, Y., Chen, X., Cao, W., & Shi, Y. (2014). Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nature Immunology, 15, 1009.CrossRefPubMedGoogle Scholar
  180. 180.
    Chen, Y., Chen, S., Liu, L.-Y., et al. (2014). Mesenchymal stem cells ameliorate experimental autoimmune hepatitis by activation of the programmed death 1 pathway. Immunology Letters, 162, 222–228.CrossRefPubMedGoogle Scholar
  181. 181.
    Rasmusson, I., Ringdén, O., Sundberg, B., & Le Blanc, K. (2003). Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 76, 1208–1213.CrossRefPubMedGoogle Scholar
  182. 182.
    Studeny, M., Marini, F. C., Dembinski, J. L., et al. (2004). Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. Journal of the National Cancer Institute, 96, 1593–1603.CrossRefPubMedGoogle Scholar
  183. 183.
    Christodoulou, I., Goulielmaki, M., Devetzi, M., Panagiotidis, M., Koliakos, G., & Zoumpourlis, V. (2018). Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem Cell Research & Therapy, 9, 336.CrossRefGoogle Scholar
  184. 184.
    Klopp, A. H., Gupta, A., Spaeth, E., Andreeff, M., & Marini, F., 3rd. (2011). Concise review: Dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells, 29, 11–19.CrossRefPubMedGoogle Scholar
  185. 185.
    Schroeder, T., Geyh, S., Germing, U., & Haas, R. (2016). Mesenchymal stromal cells in myeloid malignancies. Blood Research, 51, 225–232.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Geyh, S., Rodriguez-Paredes, M., Jager, P., et al. (2016). Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia. Leukemia, 30, 683–691.CrossRefPubMedGoogle Scholar
  187. 187.
    Geyh, S., Oz, S., Cadeddu, R. P., et al. (2013). Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia, 27, 1841–1851.CrossRefPubMedGoogle Scholar
  188. 188.
    Bernardo, M. E., Zaffaroni, N., Novara, F., et al. (2007). Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Breast Cancer Research, 67, 9142–9149.Google Scholar
  189. 189.
    Meza-Zepeda, L. A., Noer, A., Dahl, J. A., Micci, F., Myklebost, O., & Collas, P. (2008). High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. Journal of Cellular and Molecular Medicine, 12, 553–563.CrossRefPubMedGoogle Scholar
  190. 190.
    Røsland, G. V., Svendsen, A., Torsvik, A., et al. (2009). Long-term Cultures of Bone Marrow–Derived Human Mesenchymal Stem Cells Frequently Undergo Spontaneous Malignant Transformation. Cancer Research, 69, 5331–5339.CrossRefPubMedGoogle Scholar
  191. 191.
    Rubio, D., Garcia-Castro, J., Martín, M. C., et al. (2005). Spontaneous Human Adult Stem Cell Transformation. Cancer Research, 65, 3035–3039.CrossRefPubMedGoogle Scholar
  192. 192.
    Torsvik, A., Røsland, G. V., Svendsen, A., et al. (2010). Spontaneous Malignant Transformation of Human Mesenchymal Stem Cells Reflects Cross-Contamination: Putting the Research Field on Track – Letter. Cancer Research, 70, 6393–6396.CrossRefPubMedGoogle Scholar
  193. 193.
    Barkholt, L., Flory, E., Jekerle, V., et al. (2013). Risk of tumorigenicity in mesenchymal stromal cell-based therapies--bridging scientific observations and regulatory viewpoints. Cytotherapy, 15, 753–759.CrossRefPubMedGoogle Scholar
  194. 194.
    Tarte, K., Gaillard, J., Lataillade, J.-J., et al. (2010). Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood, 115, 1549–1553.CrossRefPubMedGoogle Scholar
  195. 195.
    Reeder, C. E., & Gordon, D. (2006). Managing oncology costs. American Journal of Managed Care, 12, S3.PubMedGoogle Scholar
  196. 196.
    Pereira Chilima, T. D., Moncaubeig, F., & Farid, S. S. (2018). Impact of allogeneic stem cell manufacturing decisions on cost of goods, process robustness and reimbursement. Biochemical Engineering Journal, 137, 132–151.CrossRefGoogle Scholar
  197. 197.
    Galipeau, J., & Sensébé, L. (2018). Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell, 22, 824–833.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Sheridan C. First off-the-shelf mesenchymal stem cell therapy nears European approval. Nature Publishing Group; 2018.Google Scholar
  199. 199.
    Yu, T. T. L., Gupta, P., Ronfard, V., Vertes, A. A., & Bayon, Y. (2018). Recent progress in european advanced therapy medicinal products and beyond. Frontiers in Bioengineering and Biotechnology, 6, 130.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Panes, J., Garcia-Olmo, D., Van Assche, G., et al. (2016). Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn's disease: a phase 3 randomised, double-blind controlled trial. Lancet, 388, 1281–1290.CrossRefPubMedGoogle Scholar
  201. 201.
    Waltz, E. (2013). Mesoblast acquires Osiris' stem cell business. Nature Biotechnology, 31, 1061.CrossRefGoogle Scholar
  202. 202.
    Cuende, N., Rasko, J. E. J., Koh, M. B. C., Dominici, M., & Ikonomou, L. (2018). Cell, tissue and gene products with marketing authorization in 2018 worldwide. Cytotherapy, 20, 1401–1413.CrossRefPubMedGoogle Scholar
  203. 203.
    Bach, P. B., Giralt, S. A., & Saltz, L. B. (2017). FDA Approval of tisagenlecleucel: promise and complexities of a $475 000 cancer DRUGFDA approval of tisagenlecleucel as CAR-T therapy for Leukemia FDA approval of Tisagenlecleucel as CAR-T Therapy for Leukemia. Journal of the American Medical Association, 318, 1861–1862.CrossRefPubMedGoogle Scholar
  204. 204.
    van Nimwegen, K. J., van Soest, R. A., Veltman, J. A., et al. (2016). Is the $1000 genome as near as we think? A cost analysis of next-generation sequencing. Clinical Chemistry, 62, 1458–1464.CrossRefPubMedGoogle Scholar
  205. 205.
    Chaudhury, S., Nemecek, E. R., Mahadeo, K. M., et al. (2018). A Phase 3 Single-Arm, Prospective Study of Remestemcel-L, Ex-Vivo Cultured Adult Human Mesenchymal Stromal Cells, for the Treatment of Steroid Refractory Acute Gvhd in Pediatric Patients. Biology of Blood and Marrow Transplantation, 24, S171–S1S2.CrossRefGoogle Scholar
  206. 206.
    Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E., & Ringden, O. (2003). HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology, 31, 890–896.CrossRefPubMedGoogle Scholar
  207. 207.
    Hare, J. M., Fishman, J. E., Gerstenblith, G., et al. (2012). Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. Jama, 308, 2369–2379.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Rühle A, Huber PE. [Normal tissue: radiosensitivity, toxicity, consequences for planning]. Radiologe 2018.Google Scholar
  209. 209.
    Rühle, A., Huber, P. E., Saffrich, R., Lopez Perez, R., & Nicolay, N. H. (2018). The current understanding of mesenchymal stem cells as potential attenuators of chemotherapy-induced toxicity. International Journal of Cancer.Google Scholar
  210. 210.
    Zhuo, Y., Li, S. H., Chen, M. S., et al. (2010). Aging impairs the angiogenic response to ischemic injury and the activity of implanted cells: combined consequences for cell therapy in older recipients. The Journal of Thoracic and Cardiovascular Surgery, 139, 1286-94, 94 e1-2.CrossRefGoogle Scholar
  211. 211.
    Stolzing, A., Jones, E., McGonagle, D., & Scutt, A. (2008). Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev, 129, 163–173.CrossRefPubMedGoogle Scholar
  212. 212.
    Lund, T. C., Kobs, A., Blazar, B. R., & Tolar, J. (2010). Mesenchymal stromal cells from donors varying widely in age are of equal cellular fitness after in vitro expansion under hypoxic conditions. Cytotherapy, 12, 971–981.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Radiation OncologyHeidelberg University HospitalHeidelbergGermany
  2. 2.Department of Molecular and Radiation OncologyGerman Cancer Research Center (dkfz)HeidelbergGermany
  3. 3.Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Oncology (NCRO)HeidelbergGermany
  4. 4.Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital & Laboratory of Stress Medicine, West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
  5. 5.Department of Radiation OncologyFreiburg University Medical CenterFreiburgGermany
  6. 6.German Cancer Consortium (DKTK) Partner Site FreiburgGerman Cancer Research Center (dkfz)HeidelbergGermany

Personalised recommendations