Advertisement

Molecular-Physiological Aspects of Regulatory Effect of Peptide Retinoprotectors

  • V. Khavinson
  • S. Trofimova
  • A. Trofimov
  • I. SolominEmail author
Article
  • 28 Downloads

Abstract

Retinal diseases were always difficult problem for clinical ophthalmology. Modern methods of their treatment only decrease risk of complications, however in Russia was created better technology for this purpose: peptide bioregulators, which were made by sequential adding of amino acids one to another, binding with the promoter region of genes, and promoting retinoprotective effect by regulation of their expression, improving the state of the retina.

Keywords

Short peptides Peptide bioregulators DNA Retinal diseases Binding sites Promoter regions 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict ofinterest.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Statement of Human Rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Statement on the Welfare of Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. 1.
    Zhu, Q., Liu, Z., Wang, C., et al. (2015). Lentiviral-mediated growth-associated protein-43 modification of bone marrow mesenchymal stem cells improves traumatic optic neuropathy in rats. Molecular Medicine Reports, 12(4), 5691–5700.  https://doi.org/10.3892/mmr.2015.4132.CrossRefGoogle Scholar
  2. 2.
    Falavarjani, K. G., & Nguyen, Q. D. (2013). Adverse events and complications associated with intravitreal injection of anti-vegf agents: A review of literature. Eye (London, England), 27, 787–789.  https://doi.org/10.1038/eye.2013.107. CrossRefGoogle Scholar
  3. 3.
    Shikari, H., Silva, P. S., & Sun, J. K. (2014). Complications of intravitreal injections in patients with diabetes. Seminars in Ophthalmology, 29(5–6), 276–289.  https://doi.org/10.3109/08820538.2014.962167.CrossRefGoogle Scholar
  4. 4.
    Day, S., Acquah, K., & Mruthyunjaya, P. (2011). Ocular complications after anti-vascular endothelial growth factor therapy in medicare patients with age-related macular degeneration. American Journal of Ophthalmology, 152(2), 266–272.  https://doi.org/10.1016/j.ajo.2011.01.053.CrossRefGoogle Scholar
  5. 5.
    Gupta, A., Sun, J. K., & Silva, P. S. (2018). Complications of intravitreous injections in patients with diabetes. Seminars in Ophthalmology, 33(1), 42–50.  https://doi.org/10.1080/08820538.2017.1353811.CrossRefGoogle Scholar
  6. 6.
    Afarid, M., Sarvestani, A. S., Rahat, F., & Azimi, A. (2018). Intravitreal injection of bevacizumab: Review of our previous experience. Iranian Journal of Pharmaceutical Research: IJPR, 17(3), 1093–1098.Google Scholar
  7. 7.
    Cislo-Pakuluk, A., & Marycz, K. (2017). A promising tool in retina regeneration: Current perspectives and challenges when using mesenchymal progenitor stem cells in veterinary and human ophthalmological applications. Stem Cell Reviews and Reports, 13(5), 598–602.  https://doi.org/10.1007/s12015-017-9750-4.CrossRefGoogle Scholar
  8. 8.
    Bennis, A., Jacobs, J. G., Catsburg, L. A. E., ten Brink, J. B., Koster, C., Schlingemann, R. O., van Meurs, J., Gorgels, T. G. M. F., Moerland, P. D., Heine, V. M., & Bergen, A. A. (2017). Stem cell derived retinal pigment epithelium: The role of pigmentation as maturation marker and gene expression profile comparison with human endogenous retinal pigment epithelium. Stem Cell Reviews and Reports, 13(5), 659–669.  https://doi.org/10.1007/s12015-017-9754-0.CrossRefGoogle Scholar
  9. 9.
    Siqueira, R. C., Messias, A., Messias, K., Arcieri, R. S., Ruiz, M. A., Souza, N. F., Martins, L. C., & Jorge, R. (2015). Quality of life in patients with retinitis pigmentosa submitted to intravitreal use of bone marrow-derived stem cells (reticell -clinical trial). Stem Cell Research & Therapy, 6(1), 29–34.  https://doi.org/10.1186/s13287-015-0020-6.CrossRefGoogle Scholar
  10. 10.
    Swoboda, J. G., Elliott, J., Deshmukh, V., de Lichtervelde, L., Shen, W., Tremblay, M. S., Peters, E. C., Cho, C. Y., Lu, B., Girman, S., Wang, S., & Schultz, P. G. (2013). Small molecule mediated proliferation of primary retinal pigment epithelial cells. ACS Chemical Biology, 8(7), 1407–1411.  https://doi.org/10.1021/cb4001712.CrossRefGoogle Scholar
  11. 11.
    Webb, S., Gabrelow, C., Pierce, J., Gibb, E., & Elliott, J. (2016). Retinoic acid receptor signaling preserves tendon stem cell characteristics and prevents spontaneous differentiation in vitro. Stem Cell Research & Therapy, 7, 7–45.  https://doi.org/10.1186/s13287-016-0306-3.CrossRefGoogle Scholar
  12. 12.
    Khavinson, V. K., Linkova, N. S., Trofimov, A. V., et al. (2011). Morphofunctional fundamentals for peptide regulation of aging. Biology Bulletin Reviews, 1(4), 390–394.CrossRefGoogle Scholar
  13. 13.
    Khavinson, V. K., Pronyaeva, V. E., Linkova, N. S., & Trofimova, S. V. (2013). Peptidergic regulation of differentiation of embrionic cells. Cell Technologies in Biology and Medicine, 1, 172–175.Google Scholar
  14. 14.
    Khavinson, V. K. (2002). Peptides and aging. Neuroendocrinology Letters, 23(Suppl. 3, Special Issue).Google Scholar
  15. 15.
    Khavinson V. Kh. (2001). Tetrapeptide, stimulating functional activity of the retina, pharmacological substance on its basis, and the method of its application. Patent of the Russian Federation No. 2161982.Google Scholar
  16. 16.
    Khavinson, V. K., Malinin, V. V., Trofimova, S. V., & Zemchikhina, V. N. (2002). Inductive activity of retinal peptides. Bulletin of Experimental Biology and Medicine, 11(134), 560–563.  https://doi.org/10.1023/A:1022654717358.Google Scholar
  17. 17.
    Khavinson, V. K., Razumovsky, M. I., Trofimova, S. V., & Razumovskaya, A. M. (2003). Retinoprotective effect of epithalon in Campbell rats of various ages. Bulletin of Experimental Biology and Medicine, 135(5), 581–583.  https://doi.org/10.1023/A:1024931812822.CrossRefGoogle Scholar
  18. 18.
    Khavinson, V. K., Zemchikhina, V. N., Trofimova, S. V., & Malinin, V. V. (2003). Effect of peptides on proliferative activity of retinal and pigmented epithelial cells. Bulletin of Experimental Biology and Medicine, 135(6), 597–599.  https://doi.org/10.1023/A:1025497806636.CrossRefGoogle Scholar
  19. 19.
    Khavinson, V. K., Razumovsky, M., Trofimova, S., et al. (2002). Pineal-regulating tetrapeptide epitalon improves eye retina condition in retinitis pigmentosa. Neuroendocrinology Letters, 23(4), 365–368.Google Scholar
  20. 20.
    Caputi S., Trubiani O., Bruna S., Trofimova S. (2018). Short peptides regulate proliferation and neuronal differentation of stem cells. In: Book of abstracts international symposium of experts «effective current approaches in anti-aging medicine and gerontology», Sweden, 13–14 April, 2018, pp. 24–26.Google Scholar
  21. 21.
    Casini, G., Catalani, E., Dal Monte, M., & Bagnoli, P. (2005). Functional aspects of the somatostatinergic system in the retina and the potential therapeutic role of somatostatin in retinal disease. Histology and Histopathology, 20(2), 615–632.  https://doi.org/10.14670/HH-20.615.Google Scholar
  22. 22.
    Lagreze, W. A., Pielen, A., Steingart, R., et al. (2005). The peptides ADNF-9 and NAP increase survival and neurite outgrowth of rat retinal ganglion cells in vitro. Investigative Ophthalmology & Visual Science, 46(3), 933–938.  https://doi.org/10.1167/iovs.04-0766.CrossRefGoogle Scholar
  23. 23.
    Khavinson, V. K., Pronyaeva, V. E., Linkova, N. S., Trofimova, S. V., & Umnov, R. S. (2014). Molecular-physiological aspects of peptide regulation of the function of the retina in retinitis pigmentosa. Human Physiology, 40(1), 129–134.  https://doi.org/10.1134/S036211971401006X.CrossRefGoogle Scholar
  24. 24.
    Khavinson, V. K., Soloveva, Y., Tarnovskaya, S. I., & Linkova, N. S. (2013). Mechanism of biological activity of short peptides: Cell penetration and epigenetic regulation of gene expression. Biology Bulletin Reviews, 3, 451–455.CrossRefGoogle Scholar
  25. 25.
    Fedoreyeva, L. I., Kireev, I. I., Khavinson, V. K., & Vanyushin, B. F. (2011). Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA. Biochemistry, 76(11), 1210–1219.  https://doi.org/10.1134/S000629791111022.Google Scholar
  26. 26.
    Khavinson, V. K., Fedoreeva, L. I., & Vanyushin, B. F. (2011). Short peptides modulate the effect of endonucleases of wheat seedling. Doklady Biochemistry and Biophysics, 437, 64–67.  https://doi.org/10.1134/S1607672911020025.CrossRefGoogle Scholar
  27. 27.
    Khavinson, V. K., Fedoreeva, L. I., & Vanyushin, B. F. (2011). Site-specific binding of short peptides with dna modulated eukaryotic endonuclease activity. Bulletin of Experimental Biology and Medicine, 151(1), 66–70.CrossRefGoogle Scholar
  28. 28.
    Khavinson, V. K., Linkova, N. S., Pronyaeva, V. E., Chalisova, N. I., Koncevaya, E. A., Polyakova, V. O., Kvetnaya, T. V., Kvetnoy, I. M., & Yakovlev, G. M. (2012). A method of creating a cell monolayer based on organotypic culture for screening of physiologically active substances. Bulletin of Experimental Biology and Medicine, 2, 759–763.  https://doi.org/10.1007/s10517-012-1829-y.Google Scholar
  29. 29.
    Khavinson, V. K., Tarnovskaya, S. I., Linkova, N. S., Pronyaeva, V. E., Shataeva, L. K., & Yakutseni, P. P. (2012). Short cell-penetrating peptides: A model of interactions with gene promoter sites. Bulletin of Experimental Biology and Medicine, 154(9), 391–396.  https://doi.org/10.1007/s10517-013-1961-3.Google Scholar
  30. 30.
    Datseris Y., Diamanti R., Trofimova S. (2016). Results of many years of application of peptide bioregulators in patients with retinitis pigmentosa. In: Book of Abstracts. Proceedings of V European Congress of Preventive, Regenerative and Anti-Aging Medicine, Saint Petersburg. September 8–10, 2016. Saint Petersburg: FlyPrint., pp.31–32.Google Scholar
  31. 31.
    Datseris Y., Diamanti R., Trofimova S. (2018). Retinoprotective effect of peptide bioregulators in treatment of retinitis pigmentosa. In: Book of Abstracts International Symposium of Experts «Effective Current Approaches in Anti-Aging Medicine and Gerontology», Sweden, 13–14 April, 2018, pp.30–33.Google Scholar
  32. 32.
    Khavinson V. Kh., Malinin V. V. (2005). Gerontological aspects of genom peptide regulation. Basel (Switzerland): Karger AG.  https://doi.org/10.1007/s10541-005-0245-6.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Saint Petersburg Institute of Bioregulation and GerontlogySaint PetersburgRussia
  2. 2.Pavlov Institute of Physiology RASSaint PetersburgRussia

Personalised recommendations