Stem Cell Reviews and Reports

, Volume 15, Issue 3, pp 404–414 | Cite as

Gelatin Based Polymer Cell Coating Improves Bone Marrow-Derived Cell Retention in the Heart after Myocardial Infarction

  • Anuhya Gottipati
  • Lakshman Chelvarajan
  • Hsuan Peng
  • Raymond Kong
  • Calvin F. Cahall
  • Cong Li
  • Himi Tripathi
  • Ahmed Al-Darraji
  • Shaojing Ye
  • Eman Elsawalhy
  • Ahmed Abdel-Latif
  • Brad J. BerronEmail author



Acute myocardial infarction (AMI) and the ensuing ischemic heart disease are approaching an epidemic state. Limited stem cell retention following intracoronary administration has reduced the clinical efficacy of this novel therapy. Polymer based cell coating is biocompatible and has been shown to be safe. Here, we assessed the therapeutic utility of gelatin-based biodegradable cell coatings on bone marrow derived cell retention in ischemic heart.


Gelatin based cell coatings were formed from the surface-mediated photopolymerization of 3% gelatin methacrylamide and 1% PEG diacrylate. Cell coating was confirmed using a multimodality approach including flow cytometry, imaging flow cytometry (ImageStream System) and immunohistochemistry. Biocompatibility of cell coating, metabolic activity of coated cells, and the effect of cell coating on the susceptibility of cells for engulfment were assessed using in vitro models. Following myocardial infarction and GFP+ BM-derived mesenchymal stem cell transplantation, flow cytometric and immunohistochemical assessment of retained cells was performed.


Coated cells are viable and metabolically active with coating degrading within 72 h in vitro. Importantly, cell coating does not predispose bone marrow cells to aggregation or increase their susceptibility to phagocytosis. In vitro and in vivo studies demonstrated no evidence of heightened immune response or increased phagocytosis of coated cells. Cell transplantation studies following myocardial infarction proved the improved retention of coated bone marrow cells compared to uncoated cells.


Gelation based polymer cell coating is biologically safe and biodegradable. Therapies employing these strategies may represent an attractive target for improving outcomes of cardiac regenerative therapies in human studies.


Cell coating Polymer Photo-polymerization Bone marrow mesenchymal stem cells Myocardial infarction 



Dr. Abdel-Latif is supported by the University of Kentucky COBRE Early Career Program (P20 GM103527) and the NIH Grant R01 HL124266. This work was partially supported by R01 HL127682 and the National Science Foundation under Award CBET-1351531.

Compliance with Ethical Standards

Conflict of Interest



  1. 1.
    Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., de Ferranti, S., Després, J. P., Fullerton, H. J., Howard, V. J., Huffman, M. D., Judd, S. E., Kissela, B. M., Lackland, D. T., Lichtman, J. H., Lisabeth, L. D., Liu, S., Mackey, R. H., Matchar, D. B., McGuire, D., Mohler, E. R., III, Moy, C. S., Muntner, P., Mussolino, M. E., Nasir, K., Neumar, R. W., Nichol, G., Palaniappan, L., Pandey, D. K., Reeves, M. J., Rodriguez, C. J., Sorlie, P. D., Stein, J., Towfighi, A., Turan, T. N., Virani, S. S., Willey, J. Z., Woo, D., Yeh, R. W., Turner, M. B., & American Heart Association Statistics Committee and Stroke Statistics Subcommittee. (2015). Heart disease and stroke statistics--2015 update: A report from the American Heart Association. Circulation, 131(4), e29–322.Google Scholar
  2. 2.
    Asahara, T., Kawamoto, A., & Masuda, H. (2011). Concise review: Circulating endothelial progenitor cells for vascular medicine. Stem Cells, 29(11), 1650–1655.Google Scholar
  3. 3.
    Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L., Hertenstein, B., Ganser, A., Knapp, W. H., & Drexler, H. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111(17), 2198–2202.Google Scholar
  4. 4.
    Quyyumi, A., et al. (2015). One year follow-up results from PRESERVE-AMI: A randomized, double-blind, placebo controlled clinical trial of intracoronary infusion of autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Journal of the American College of Cardiology, 55(10), A1593.Google Scholar
  5. 5.
    Afzal, M. R., Samanta, A., Shah, Z. I., Jeevanantham, V., Abdel-Latif, A., Zuba-Surma, E. K., & Dawn, B. (2015). Adult bone marrow cell therapy for ischemic heart disease: Evidence and insights from randomized controlled trials. Circulation Research, 117(6), 558–575.Google Scholar
  6. 6.
    Kavanagh, D. P., Robinson, J., & Kalia, N. (2014). Mesenchymal stem cell priming: Fine-tuning adhesion and function. Stem Cell Reviews, 10(4), 587–599.Google Scholar
  7. 7.
    Zhou, Y., Zimber, M., Yuan, H., Naughton, G. K., Fernan, R., & Li, W. J. (2016). Effects of human fibroblast-derived extracellular matrix on mesenchymal stem cells. Stem Cell Reviews, 12(5), 560–572.Google Scholar
  8. 8.
    Arnaoutova, I., George, J., Kleinman, H. K., & Benton, G. (2012). Basement membrane matrix (BME) has multiple uses with stem cells. Stem Cell Reviews, 8(1), 163–169.Google Scholar
  9. 9.
    Purcell, B. P., Elser, J. A., Mu, A., Margulies, K. B., & Burdick, J. A. (2012). Synergistic effects of SDF-1alpha chemokine and hyaluronic acid release from degradable hydrogels on directing bone marrow derived cell homing to the myocardium. Biomaterials, 33(31), 7849–7857.Google Scholar
  10. 10.
    MacArthur, J. W., Jr., Purcell, B. P., Shudo, Y., Cohen, J. E., Fairman, A., Trubelja, A., Patel, J., Hsiao, P., Yang, E., Lloyd, K., Hiesinger, W., Atluri, P., Burdick, J. A., & Woo, Y. J. (2013). Sustained release of engineered stromal cell-derived factor 1-alpha from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction. Circulation, 128(11 Suppl 1), S79–S86.Google Scholar
  11. 11.
    Liu, G., Li, L., Huo, D., Li, Y., Wu, Y., Zeng, L., Cheng, P., Xing, M., Zeng, W., & Zhu, C. (2017). A VEGF delivery system targeting MI improves angiogenesis and cardiac function based on the tropism of MSCs and layer-by-layer self-assembly. Biomaterials, 127, 117–131.Google Scholar
  12. 12.
    Nash, M. E., Fan, X., Carroll, W. M., Gorelov, A. V., Barry, F. P., Shaw, G., & Rochev, Y. A. (2013). Thermoresponsive substrates used for the expansion of human mesenchymal stem cells and the preservation of immunophenotype. Stem Cell Reviews, 9(2), 148–157.Google Scholar
  13. 13.
    Sarig, U., & Machluf, M. (2011). Engineering cell platforms for myocardial regeneration. Expert Opinion on Biological Therapy, 11(8), 1055–1077.Google Scholar
  14. 14.
    D'Souza, S., Murata, H., Jose, M. V., Askarova, S., Yantsen, Y., Andersen, J. D., Edington, C. D. J., Clafshenkel, W. P., Koepsel, R. R., & Russell, A. J. (2014). Engineering of cell membranes with a bisphosphonate-containing polymer using ATRP synthesis for bone targeting. Biomaterials, 35(35), 9447–9458.Google Scholar
  15. 15.
    Romero, G., Lilly, J. J., Abraham, N. S., Shin, H. Y., Balasubramaniam, V., Izumi, T., & Berron, B. J. (2015). Protective polymer coatings for high-throughput, high-purity cellular isolation. ACS Applied Materials & Interfaces, 7(32), 17598–17602.Google Scholar
  16. 16.
    Lilly, J. L., Romero, G., Xu, W., Shin, H. Y., & Berron, B. J. (2015). Characterization of molecular transport in ultrathin hydrogel coatings for cellular immunoprotection. Biomacromolecules, 16(2), 541–549.Google Scholar
  17. 17.
    Gao, E., Lei, Y. H., Shang, X., Huang, Z. M., Zuo, L., Boucher, M., Fan, Q., Chuprun, J. K., Ma, X. L., & Koch, W. J. (2010). A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circulation Research, 107(12), 1445–1453.Google Scholar
  18. 18.
    Klyachkin, Y. M., Nagareddy, P. R., Ye, S., Wysoczynski, M., Asfour, A., Gao, E., Sunkara, M., Brandon, J. A., Annabathula, R., Ponnapureddy, R., Solanki, M., Pervaiz, Z. H., Smyth, S. S., Ratajczak, M. Z., Morris, A. J., & Abdel-Latif, A. (2015). Pharmacological elevation of circulating bioactive Phosphosphingolipids enhances myocardial recovery after acute infarction. Stem Cells Translational Medicine, 4, 1333–1343.Google Scholar
  19. 19.
    Caroti, C. M., Ahn, H., Salazar, H. F., Joseph, G., Sankar, S. B., Willett, N. J., Wood, L. B., Taylor, W. R., & Lyle, A. N. (2017). A novel technique for accelerated culture of murine mesenchymal stem cells that allows for sustained multipotency. Scientific Reports, 7(1), 13334.Google Scholar
  20. 20.
    Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., Libby, P., Weissleder, R., & Pittet, M. J. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. The Journal of Experimental Medicine, 204(12), 3037–3047.Google Scholar
  21. 21.
    van der Laan, A. M., ter Horst, E. N., Delewi, R., Begieneman, M. P. V., Krijnen, P. A. J., Hirsch, A., Lavaei, M., Nahrendorf, M., Horrevoets, A. J., Niessen, H. W. M., & Piek, J. J. (2014). Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. European Heart Journal, 35(6), 376–385.Google Scholar
  22. 22.
    Epelman, S., Liu, P. P., & Mann, D. L. (2015). Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nature Reviews. Immunology, 15(2), 117–129.Google Scholar
  23. 23.
    Peterson, J. T., et al. (2000). Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovascular Research, 46(2), 307–315.Google Scholar
  24. 24.
    Guerin, C. L., Rossi, E., Saubamea, B., Cras, A., Mignon, V., Silvestre, J. S., & Smadja, D. M. (2017). Human very small embryonic-like cells support vascular maturation and therapeutic revascularization induced by endothelial progenitor cells. Stem Cell Reviews, 13(4), 552–560.Google Scholar
  25. 25.
    Kaushik, A., & Bhartiya, D. (2018). Pluripotent very small embryonic-like stem cells in adult testes - an alternate premise to explain testicular germ cell tumors. Stem Cell Reviews, 14(6), 793–800.Google Scholar
  26. 26.
    Shaikh, A., Anand, S., Kapoor, S., Ganguly, R., & Bhartiya, D. (2017). Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and Germ & Hematopoietic Cells in culture. Stem Cell Reviews, 13(2), 202–216.Google Scholar
  27. 27.
    Ratajczak, M. Z., Kucia, M., Jadczyk, T., Greco, N. J., Wojakowski, W., Tendera, M., & Ratajczak, J. (2012). Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: Can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia, 26(6), 1166–1173.Google Scholar
  28. 28.
    Wojakowski, W., Kucia, M., Zuba-Surma, E., Jadczyk, T., Książek, B., Ratajczak, M. Z., & Tendera, M. (2011). Very small embryonic-like stem cells in cardiovascular repair. Pharmacology & Therapeutics, 129(1), 21–28.Google Scholar
  29. 29.
    Zuba-Surma, E. K., Wojakowski, W., Ratajczak, M. Z., & Dawn, B. (2011). Very small embryonic-like stem cells: Biology and therapeutic potential for heart repair. Antioxidants & Redox Signaling, 15(7), 1821–1834.Google Scholar
  30. 30.
    Losordo, D. W., Henry, T. D., Davidson, C., Sup Lee, J., Costa, M. A., Bass, T., Mendelsohn, F., Fortuin, F. D., Pepine, C. J., Traverse, J. H., Amrani, D., Ewenstein, B. M., Riedel, N., Story, K., Barker, K., Povsic, T. J., Harrington, R. A., Schatz, R. A., & the ACT34-CMI Investigators. (2011). Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circulation Research, 109(4), 428–436.Google Scholar
  31. 31.
    Zuba-Surma, E. K., Guo, Y., Taher, H., Sanganalmath, S. K., Hunt, G., Vincent, R. J., Kucia, M., Abdel-Latif, A., Tang, X. L., Ratajczak, M. Z., Dawn, B., & Bolli, R. (2011). Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodelling after myocardial infarction. Journal of Cellular and Molecular Medicine, 15(6), 1319–1328.Google Scholar
  32. 32.
    Blandinieres, A., et al. (2018). Endothelial colony-forming cells do not participate to Fibrogenesis in a bleomycin-induced pulmonary fibrosis model in nude mice. Stem Cell Reviews, 14(6), 812–822.Google Scholar
  33. 33.
    d'Audigier, C., et al. (2018). Egfl7 represses the Vasculogenic potential of human endothelial progenitor cells. Stem Cell Reviews, 14(1), 82–91.Google Scholar
  34. 34.
    Brenner, W., et al. (2004). 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. Journal of Nuclear Medicine, 45(3), 512–518.Google Scholar
  35. 35.
    Abbott, J. D., Huang, Y., Liu, D., Hickey, R., Krause, D. S., & Giordano, F. J. (2004). Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 110(21), 3300–3305.Google Scholar
  36. 36.
    Kucia, M., et al. (2004). CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. Journal of Molecular Histology, 35(3), 233–245.Google Scholar
  37. 37.
    Marquez-Curtis, L. A., Turner, A. R., Sridharan, S., Ratajczak, M. Z., & Janowska-Wieczorek, A. (2011). The ins and outs of hematopoietic stem cells: Studies to improve transplantation outcomes. Stem Cell Reviews, 7(3), 590–607.Google Scholar
  38. 38.
    McQuibban, G. A., Butler, G. S., Gong, J. H., Bendall, L., Power, C., Clark-Lewis, I., & Overall, C. M. (2001). Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. The Journal of Biological Chemistry, 276(47), 43503–43508.Google Scholar
  39. 39.
    McQuibban, G. A., et al. (2002). Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood, 100(4), 1160–1167.Google Scholar
  40. 40.
    Agarwal, U., Ghalayini, W., Dong, F., Weber, K., Zou, Y. R., Rabbany, S. Y., Rafii, S., & Penn, M. S. (2010). Role of cardiac myocyte CXCR4 expression in development and left ventricular remodeling after acute myocardial infarction. Circulation Research, 107(5), 667–676.Google Scholar
  41. 41.
    Lilly, J. L., & Berron, B. J. (2016). The role of surface receptor density in surface-initiated polymerizations for Cancer cell isolation. Langmuir, 32(22), 5681–5689.Google Scholar
  42. 42.
    Lilly, J. L., et al. (2014). Interfacial polymerization for colorimetric labeling of protein expression in cells. PLoS One, 9(12), e115630.Google Scholar
  43. 43.
    Fedorovich, N. E., Alblas, J., de Wijn, J. R., Hennink, W. E., Verbout, A. J., & Dhert, W. J. A. (2007). Hydrogels as extracellular matrices for skeletal tissue engineering: State-of-the-art and novel application in organ printing. Tissue Engineering, 13(8), 1905–1925.Google Scholar
  44. 44.
    Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 60(15), 1638–1649.Google Scholar
  45. 45.
    Lin, C. C., & Anseth, K. S. (2009). PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharmaceutical Research, 26(3), 631–643.Google Scholar
  46. 46.
    Takagi, J., Asai, H., & Saito, Y. (1992). A collagen/gelatin-binding decapeptide derived from bovine propolypeptide of von Willebrand factor. Biochemistry, 31(36), 8530–8534.Google Scholar
  47. 47.
    San, B. H., Li, Y., Tarbet, E. B., & Yu, S. M. (2016). Nanoparticle assembly and gelatin binding mediated by triple helical collagen mimetic peptide. ACS Applied Materials & Interfaces, 8(31), 19907–19915.Google Scholar
  48. 48.
    Chan, T. R., Stahl, P. J., Li, Y., & Yu, S. M. (2015). Collagen-gelatin mixtures as wound model, and substrates for VEGF-mimetic peptide binding and endothelial cell activation. Acta Biomaterialia, 15, 164–172.Google Scholar
  49. 49.
    Blackburn, N. J., et al. (2015). Timing underpins the benefits associated with injectable collagen biomaterial therapy for the treatment of myocardial infarction. Biomaterials, 39, 182–192.Google Scholar
  50. 50.
    Holladay, C. A., Duffy, A. M., Chen, X., Sefton, M. V., O’Brien, T. D., & Pandit, A. S. (2012). Recovery of cardiac function mediated by MSC and interleukin-10 plasmid functionalised scaffold. Biomaterials, 33(5), 1303–1314.Google Scholar
  51. 51.
    Serpooshan, V., Zhao, M., Metzler, S. A., Wei, K., Shah, P. B., Wang, A., Mahmoudi, M., Malkovskiy, A. V., Rajadas, J., Butte, M. J., Bernstein, D., & Ruiz-Lozano, P. (2013). The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials, 34(36), 9048–9055.Google Scholar
  52. 52.
    Quyyumi, A. A., Vasquez, A., Kereiakes, D. J., Klapholz, M., Schaer, G. L., Abdel-Latif, A., Frohwein, S., Henry, T. D., Schatz, R. A., Dib, N., Toma, C., Davidson, C. J., Barsness, G. W., Shavelle, D. M., Cohen, M., Poole, J., Moss, T., Hyde, P., Kanakaraj, A. M., Druker, V., Chung, A., Junge, C., Preti, R. A., Smith, R. L., Mazzo, D. J., Pecora, A., & Losordo, D. W. (2017). PreSERVE-AMI: A randomized, double-blind, placebo-controlled clinical trial of intracoronary Administration of Autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Circulation Research, 120(2), 324–331.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anuhya Gottipati
    • 1
  • Lakshman Chelvarajan
    • 2
  • Hsuan Peng
    • 2
  • Raymond Kong
    • 3
  • Calvin F. Cahall
    • 1
  • Cong Li
    • 1
  • Himi Tripathi
    • 2
  • Ahmed Al-Darraji
    • 2
  • Shaojing Ye
    • 2
  • Eman Elsawalhy
    • 2
  • Ahmed Abdel-Latif
    • 2
  • Brad J. Berron
    • 1
    Email author
  1. 1.Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA
  2. 2.Gill Heart and Vascular Institute and Division of Cardiovascular MedicineUniversity of Kentucky and the Lexington VA Medical CenterLexingtonUSA
  3. 3.MilliporeSigmaSeattleUSA

Personalised recommendations