Advertisement

Stem Cell Reviews and Reports

, Volume 15, Issue 1, pp 3–12 | Cite as

MicroRNAs in the Migration of Mesenchymal Stem Cells

  • Lihong He
  • Huanxiang ZhangEmail author
Article
  • 152 Downloads

Abstract

Mesenchymal stem cells (MSCs) represent a promising source of cell-based therapies for treatment of a wide variety of injuries and diseases. Their tropism and migration to the damaged sites, which are elicited by cytokines secreted from tissues around pathology, are the prerequisite for tissue repair and regeneration. Better understanding of the elicited-migration of MSCs and discovering conditions that elevate their migration ability, will help to increase their homing to pathologies and improve therapeutic efficacy. It is increasingly recognized that microRNAs are important regulators of cell migration. Here we summarize current understanding of the microRNA-regulated migration of MSCs.

Keywords

Mesenchymal stem cells Cell migration miRNAs Signaling pathway Cytokines 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 31371407, 30870642) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Funding

This contribution is supported by the National Natural Science Foundation of China (Grant no. 31371407, 30870642) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no potential conflicts of interest.

References

  1. 1.
    Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews Genetics, 9, 102–114.Google Scholar
  2. 2.
    Hausser, J., & Zavolan, M. (2014). Identification and consequences of miRNA-target interactions - beyond repression of gene expression. Nature Reviews Genetics, 15, 599–612.Google Scholar
  3. 3.
    Huntzinger, E., & Izaurralde, E. (2011). Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nature Reviews Genetics, 12, 99–110.Google Scholar
  4. 4.
    Lindsay, S. L., Johnstone, S. A., McGrath, M. A., Mallinson, D., & Barnett, S. C. (2016). Comparative miRNA-based fingerprinting reveals biological differences in human olfactory mucosa-and bone-marrow-derived mesenchymal stromal cells. Stem Cell Reports, 6, 729–742.Google Scholar
  5. 5.
    Bellayr, I. H., Kumar, A., & Puri, R. K. (2017). MicroRNA expression in bone marrow-derived human multipotent stromal cells. BMC Genomics, 18, 605–617.Google Scholar
  6. 6.
    Ali, N. M., Boo, L., Yeap, S. K., et al. (2016). Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone marrow-derived human mesenchymal stem cells. Peer J, e1536, 4.Google Scholar
  7. 7.
    Hsieh, J. Y., Huang, T. S., Cheng, S. M., Lin, W. S., Tsai, T. N., Lee, O. K., & Wang, H. W. (2013). MiR-146a-5p circuitry uncouples cell proliferation and migration, but not differentiation, in human mesenchymal stem cells. Nucleic Acids Research, 41, 9753–9763.Google Scholar
  8. 8.
    Baglio, S. R., Devescovi, V., Granchi, D., & Baldini, N. (2013). MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene, 527, 321–331.Google Scholar
  9. 9.
    Chang, C. C., Veno, M. T., Chen, L., et al. (2018). Global microRNA profiling in human bone marrow skeletal-stromal or mesenchymal-stem cells identified candidates for bone regeneration. Molecular Therapy, 26, 593–605.Google Scholar
  10. 10.
    Cui, L. N., Zhou, X. M., Li, J. G., et al. (2012). Dynamic microRNA profiles of hepatic differentiated human umbilical cord lining-derived mesenchymal stem cells. PLoS One, 7, e44737.Google Scholar
  11. 11.
    Huat, T. J., Khan, A. A., Abdullah, J. M., Idris, F. M., & Jaafar, H. (2015). MicroRNA expression profile of neural progenitor-like cells derived from rat bone marrow mesenchymal stem cells under the influence of IGF-1, bFGF and EGF. International Journal of Molecular Sciences, 16, 9693–9718.Google Scholar
  12. 12.
    Gothelf, Y., Kaspi, H., Abramov, N., & Aricha, R. (2017). MiRNA profiling of NurOwn (R): Mesenchymal stem cells secreting neurotrophic factors. Stem Cell Research & Therapy, 8, 249–257.Google Scholar
  13. 13.
    Clark, E. A., Kalomoiris, S., Nolta, J. A., & Fierro, F. A. (2014). Concise review: microRNA function in multipotent mesenchymal stromal cells. Stem Cells, 32, 1074–1082.Google Scholar
  14. 14.
    Guo, L., Zhao, R. C. H., & Wu, Y. J. (2011). The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Experimental Hematology, 39, 608–616.Google Scholar
  15. 15.
    Peng, S. P., Gao, D., Gao, C. D., Wei, P. P., Niu, M., & Shuai, C. J. (2016). MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (review). Molecular Medicine Reports, 14, 623–629.Google Scholar
  16. 16.
    Huang, C., Geng, J. N., & Jiang, S. W. (2017). MicroRNAs in regulation of osteogenic differentiation of mesenchymal stem cells. Cell and Tissue Research, 368, 229–238.Google Scholar
  17. 17.
    Kang, H., & Hata, A. (2015). The role of microRNAs in cell fate determination of mesenchymal stem cells: Balancing adipogenesis and osteogenesis. BMB Reports, 48, 319–323.Google Scholar
  18. 18.
    Hamam, D., Ali, D., Kassem, M., Aldahmash, A., & Alajez, N. M. (2015). MicroRNAs as regulators of adipogenic differentiation of mesenchymal stem cells. Stem Cells and Development, 24, 417–425.Google Scholar
  19. 19.
    Parsons, J. T., Horwitz, A. R., & Schwartz, M. A. (2010). Cell adhesion: Integrating cytoskeletal dynamics and cellular tension. Nature Reviews Molecular Cell Biology, 11, 633–643.Google Scholar
  20. 20.
    Huang, S. L., & He, X. H. (2010). MicroRNAs: Tiny RNA molecules, huge driving forces to move the cell. Protein & Cell, 1, 916–926.Google Scholar
  21. 21.
    Chen, D., Xia, Y. L., Zuo, K., et al. (2015). Crosstalk between SDF-1/CXCR4 and SDF-1/CXCR7 in cardiac stem cell migration. Scientific Reports, 5, 16813–16821.Google Scholar
  22. 22.
    Liu, X. L., Duan, B. Y., Cheng, Z. K., et al. (2011). SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein & Cell, 2, 845–854.Google Scholar
  23. 23.
    Son, B. R., Zhao, D. L., Marquez-Curtis, L. A., Shirvaikar, N., Ratajczak, M. Z., & Janowska-Wieczorek, A. (2004). SDF-1-CXCR4 and HGF-c-met axes regulate mobilization/recruitment to injured tissue of human mesenchymal stem cells. Blood, 642a, 104.Google Scholar
  24. 24.
    Lu, M. H., Hu, C. J., Chen, L., et al. (2013). miR-27b represses migration of mouse MSCs to burned margins and prolongs wound repair through silencing SDF-1a. PLoS One, 8, e68972.Google Scholar
  25. 25.
    Lu, M. H., Li, C. Z., Hu, C. J., et al. (2012). MicroRNA-27b suppresses mouse MSC migration to the liver by targeting SDF-1 alpha in vitro. Biochemical and Biophysical Research Communications, 421, 389–395.Google Scholar
  26. 26.
    Pillai, M. M., Yang, X., Balakrishnan, I., Bemis, L., & Torok-Storb, B. (2010). MiR-886-3p down regulates CXCL12 (SDF1) expression in human marrow stromal cells. PLoS One, 5, e14304.Google Scholar
  27. 27.
    Li, J. N., Li, L., Li, Z. X., et al. (2015). The role of miR-205 in the VEGF-mediated promotion of human ovarian cancer cell invasion. Gynecologic Oncology, 137, 125–133.Google Scholar
  28. 28.
    Susuki, D., Kimura, S., Naganuma, S., Tsuchiyama, K., Tanaka, T., Kitamura, N., Fujieda, S., & Itoh, H. (2011). Regulation of microRNA expression by hepatocyte growth factor in human head and neck squamous cell carcinoma. Cancer Science, 102, 2164–2171.Google Scholar
  29. 29.
    Tome, M., Lopez-Romero, P., Albo, C., et al. (2011). MiR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death and Differentiation, 18, 985–995.Google Scholar
  30. 30.
    Yue, Q., Zhang, Y., Li, X. Y., et al. (2016). MiR-124 suppresses the chemotactic migration of rat mesenchymal stem cells toward HGF by downregulating Wnt/beta-catenin signaling. European Journal of Cell Biology, 95, 342–353.Google Scholar
  31. 31.
    Zhu, A., Kang, N., He, L., Li, X., Xu, X., & Zhang, H. (2016). MiR-221 and miR-26b regulate chemotactic migration of MSCs toward HGF through activation of Akt and FAK. Journal of Cellular Biochemistry, 117, 1370–1383.Google Scholar
  32. 32.
    Chi, Y., Cui, J., Wang, Y., du, W., Chen, F., Li, Z., Ma, F., Song, B., Xu, F., Zhao, Q., Han, Z., & Han, Z. (2016). Interferongamma alters the microRNA profile of umbilical cord-derived mesenchymal stem cells. Molecular Medicine Reports, 14, 4187–4197.Google Scholar
  33. 33.
    Fayyad-Kazan, H., Fayyad-Kazan, M., Badran, B., Bron, D., Lagneaux, L., & Najar, M. (2017). Study of the microRNA expression profile of foreskin derived mesenchymal stromal cells following inflammation priming. Journal of Translational Medicine, 15, 10.Google Scholar
  34. 34.
    He, L. H., Wang, X. Y., Kang, N. X., et al. (2018). MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling. Cell and Tissue Research, 372, 99–114.Google Scholar
  35. 35.
    Neth, P., Ries, C., Karow, M., Egea, V., Ilmer, M., & Jochum, M. (2007). The Wnt signal transduction pathway in stem cells and cancer cells: Influence on cellular invasion. Stem Cell Reviews, 3, 18–29.Google Scholar
  36. 36.
    Ryu, C. H., Park, S. A., Kim, S. M., Lim, J. Y., Jeong, C. H., Jun, J. A., Oh, J. H., Park, S. H., Oh, W. I., & Jeun, S. S. (2010). Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochemical and Biophysical Research Communications, 398, 105–110.Google Scholar
  37. 37.
    Li, X. Y., He, L. H., Yue, Q., et al. (2017). MiR-9-5p promotes MSC migration by activating beta-catenin signaling pathway. American Journal of Physiology-Cell Physiology, 313, C80–C93.Google Scholar
  38. 38.
    Sotsios, Y., & Ward, S. G. (2000). Phosphoinositide 3-kinase: A key biochemical signal for cell migration in response to chemokines. Immunological Reviews, 177, 217–235.Google Scholar
  39. 39.
    Garcia-Martinez, J. M., Moran, J., Clarke, R. G., et al. (2009). Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochemical Journal, 421, 29–42.Google Scholar
  40. 40.
    Mora, A., Davies, A. M., Bertrand, L., Sharif, I., Budas, G. R., Jovanović, S., Mouton, V., Kahn, C. R., Lucocq, J. M., Gray, G. A., Jovanović, A., & Alessi, D. R. (2003). Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. The EMBO Journal, 22, 4666–4676.Google Scholar
  41. 41.
    Mora, A., Lipina, C., Tronche, F., Sutherland, C., & Alessi, D. R. (2005). Deficiency of PDK1 in liver results in glucose intolerance, impairment of insulin-regulated gene expression and liver failure. Biochemical Journal, 385, 639–648.Google Scholar
  42. 42.
    Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307, 1098–1101.Google Scholar
  43. 43.
    Song, M. S., Salmena, L., & Pandolfi, P. P. (2012). The functions and regulation of the PTEN tumour suppressor. Nature Reviews Molecular Cell Biology, 13, 283–296.Google Scholar
  44. 44.
    Zheng, B., Wang, C., He, L., Xu, X., Qu, J., Hu, J., & Zhang, H. (2013). Neural differentiation of mesenchymal stem cells influences chemotactic responses to HGF. Journal of Cellular Physiology, 228, 149–162.Google Scholar
  45. 45.
    Dabbah, M., Attar-Schneider, O., Zismanov, V., Matalon, S. T., Lishner, M., & Drucker, L. (2016). Multiple myeloma cells promote migration of bone marrow mesenchymal stem cells by altering their translation initiation. Journal of Leukocyte Biology, 100, 761–770.Google Scholar
  46. 46.
    Aman, A., & Piotrowski, T. (2008). Wnt/beta-catenin and FGF signaling control collective cell migration by restricting chemokine receptor expression. Developmental Cell, 15, 749–761.Google Scholar
  47. 47.
    Asad, M., Wong, M. K., Tan, T. Z., Choolani, M., Low, J., Mori, S., Virshup, D., Thiery, J. P., & Huang, R. Y. J. (2014). FZD7 drives in vitro aggressiveness in stem-a subtype of ovarian cancer via regulation of non-canonical Wnt/PCP pathway. Cell Death & Disease, 5, e1346.Google Scholar
  48. 48.
    Gomez-Orte, E., Saenz-Narciso, B., Moreno, S., & Cabello, J. (2013). Multiple functions of the noncanonical Wnt pathway. Trends in Genetics, 29, 545–553.Google Scholar
  49. 49.
    Montcouquiol, M., Crenshaw, E. B., & Kelley, M. W. (2006). Noncanonical Wnt signaling and neural polarity. Annual Review of Neuroscience, 29, 363–386.Google Scholar
  50. 50.
    Song, J. L., Nigam, P., Tektas, S. S., & Selva, E. (2015). MicroRNA regulation of Wnt signaling pathways in development and disease. Cellular Signalling, 27, 1380–1391.Google Scholar
  51. 51.
    Ueno, K., Hirata, H., Hinoda, Y., & Dahiya, R. (2013). Frizzled homolog proteins, microRNAs and Wnt signaling in cancer. International Journal of Cancer, 132, 1731–1740.Google Scholar
  52. 52.
    Wu, X. Y., Shen, Q. T., Oristian, D. S., et al. (2011). Skin stem cells orchestrate directional migration by regulating microtubule-ACF7 connections through GSK3 beta. Cell, 144, 341–352.Google Scholar
  53. 53.
    Köhler, A., Schambony, A., & Wedlich, D. . (2007). Cell migration under control of Wnt-signaling in the vertebrate embryo. Advances in Developmental Biology, 17, 159–201.Google Scholar
  54. 54.
    Zhang, J., Han, C., & Wu, T. (2012). MicroRNA-26a promotes cholangiocarcinoma growth by activating beta-catenin. Gastroenterology, 143, 246–256.e248.Google Scholar
  55. 55.
    Kim, Y. S., Noh, M. Y., Kim, J. Y., Yu, H. J., Kim, K. S., Kim, S. H., & Koh, S. H. (2013). Direct GSK-3beta inhibition enhances mesenchymal stromal cell migration by increasing expression of beta-PIX and CXCR4. Molecular Neurobiology, 47, 811–820.Google Scholar
  56. 56.
    Lapid, K., Itkin, T., D'Uva, G., et al. (2013). GSK3 beta regulates physiological migration of stem/progenitor cells via cytoskeletal rearrangement. Journal of Clinical Investigation, 123, 1705–1717.Google Scholar
  57. 57.
    Sun, T., Rodriguez, M., & Kim, L. (2009). Glycogen synthase kinase 3 in the world of cell migration. Development, Growth & Differentiation, 51, 735–742.Google Scholar
  58. 58.
    Yucel, G., & Oro, A. E. (2011). Cell migration: GSK3 beta steers the cytoskeleton's tip. Cell, 144, 319–321.Google Scholar
  59. 59.
    Karow, M., Popp, T., Egea, V., Ries, C., Jochum, M., & Neth, P. (2009). Wnt signalling in mouse mesenchymal stem cells: Impact on proliferation, invasion and MMP expression. Journal of Cellular and Molecular Medicine, 13, 2506–2520.Google Scholar
  60. 60.
    Neth, P., Ciccarella, M., Egea, V., Hoelters, J., Jochum, M., & Ries, C. (2006). Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells, 24, 1892–1903.Google Scholar
  61. 61.
    Romer, L. H., Birukov, K. G., & Garcia, J. G. N. (2006). Focal adhesions - paradigm for a signaling nexus. Circulation Research, 98, 606–616.Google Scholar
  62. 62.
    Zamir, E., & Geiger, B. (2001). Molecular complexity and dynamics of cell-matrix adhesions. Journal of Cell Science, 114, 3583–3590.Google Scholar
  63. 63.
    Hamadi, A., Bouali, M., Dontenwill, M., Stoeckel, H., Takeda, K., & Ronde, P. (2005). Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. Journal of Cell Science, 118, 4415–4425.Google Scholar
  64. 64.
    Illc, D., Furuta, Y., Kanazawa, S., et al. (1995). Reduced sell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 377, 539–544.Google Scholar
  65. 65.
    Zhang, F. X., Jing, S. H., Ren, T. M., & Lin, J. T. (2013). MicroRNA-10b promotes the migration of mouse bone marrow-derived mesenchymal stem cells and downregulates the expression of E-cadherin. Molecular Medicine Reports, 8, 1084–1088.Google Scholar
  66. 66.
    Vogelmann, R., Nguyen-Tat, M. D., Giehl, K., Adler, G., Wedlich, D., & Menke, A. (2005). TGF beta-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. Journal of Cell Science, 118, 4901–4912.Google Scholar
  67. 67.
    Chang, W., Kim, R., Park, S. I., Jung, Y. J., Ham, O., Lee, J., Kim, J. H., Oh, S., Lee, M. Y., Kim, J., Park, M. S., Chung, Y. A., Hwang, K. C., & Maeng, L. S. (2015). Enhanced healing of rat calvarial bone defects with hypoxic conditioned medium from mesenchymal stem cells through increased endogenous stem cell migration via regulation of ICAM-1 targeted-microRNA-221. Molecules and Cells, 38, 643–650.Google Scholar
  68. 68.
    Etienne-Manneville, S. (2013). Microtubules in cell migration. Annual Review of Cell and Developmental Biology, 29, 471–499.Google Scholar
  69. 69.
    Watanabe, T., Noritake, J., & Kaibuchi, K. (2005). Regulation of microtubules in cell migration. Trends in Cell Biology, 15, 76–83.Google Scholar
  70. 70.
    Delaloy, C., Liu, L., Lee, J. A., Su, H., Shen, F., Yang, G. Y., Young, W. L., Ivey, K. N., & Gao, F. B. (2010). MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell, 6, 323–335.Google Scholar
  71. 71.
    Phinney, D. G., & Pittenger, M. F. (2017). Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells, 35, 851–858.Google Scholar
  72. 72.
    Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N. E., Timmers, L., van Rijen, H. V., Doevendans, P. A., Pasterkamp, G., Lim, S. K., & de Kleijn, D. P. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10, 301–312.Google Scholar
  73. 73.
    Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S. K., Choo, A., Chen, T. S., Salto-Tellez, M., Timmers, L., Lee, C. N., el Oakley, R. M., Pasterkamp, G., de Kleijn, D. P. V., & Lim, S. K. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4, 214–222.Google Scholar
  74. 74.
    Vonk, L. A., van Dooremalen, S. F. J., Liv, N., Klumperman, J., Coffer, P. J., Saris, D. B. F., & Lorenowicz, M. J. (2018). Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics, 8, 906–920.Google Scholar
  75. 75.
    Bruno, S., Grange, C., Deregibus, M. C., Calogero, R. A., Saviozzi, S., Collino, F., Morando, L., Busca, A., Falda, M., Bussolati, B., Tetta, C., & Camussi, G. (2009). Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. Journal of the American Society of Nephrology, 20, 1053–1067.Google Scholar
  76. 76.
    Xin, H. Q., Li, Y., Liu, Z. W., et al. (2013). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells, 31, 2737–2746.Google Scholar
  77. 77.
    Li, T. F., Yan, Y. M., Wang, B. Y., et al. (2013). Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells and Development, 22, 845–854.Google Scholar
  78. 78.
    Zhang, B., Wang, M., Gong, A. H., et al. (2015). HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells, 33, 2158–2168.Google Scholar
  79. 79.
    Nakamura, Y., Miyaki, S., Ishitobi, H., Matsuyama, S., Nakasa, T., Kamei, N., Akimoto, T., Higashi, Y., & Ochi, M. (2015). Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Letters, 589, 1257–1265.Google Scholar
  80. 80.
    Tao, S. C., Yuan, T., Zhang, Y. L., Yin, W. J., Shang-Chun, G., & Zhang, C. Q. (2017). Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 7, 180–195.Google Scholar
  81. 81.
    Zhu, J., Lu, K., Zhang, N., et al. (2017). Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artificial Cells, Nanomedicine, and Biotechnology, 1–12.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell ResearchMedical College of Soochow UniversitySuzhouChina

Personalised recommendations