Skip to main content

Advertisement

Log in

Long Noncoding RNAs: New Players in the Osteogenic Differentiation of Bone Marrow- and Adipose-Derived Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are an important population of multipotent stem cells that differentiate into multiple lineages and display great potential in bone regeneration and repair. Although the role of protein-coding genes in the osteogenic differentiation of MSCs has been extensively studied, the functions of noncoding RNAs in the osteogenic differentiation of MSCs are unclear. The recent application of next-generation sequencing to MSC transcriptomes has revealed that long noncoding RNAs (lncRNAs) are associated with the osteogenic differentiation of MSCs. LncRNAs are a class of non-coding transcripts of more than 200 nucleotides in length. Noncoding RNAs are thought to play a key role in osteoblast differentiation through various regulatory mechanisms including chromatin modification, transcription factor binding, competent endogenous mechanism, and other post-transcriptional mechanisms. Here, we review the roles of lncRNAs in the osteogenic differentiation of bone marrow- and adipose-derived stem cells and provide a theoretical foundation for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Djebali, S., Davis, C. A., Merkel, A., et al. (2012). Landscape of transcription in human cells. Nature, 489(7414), 101–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews Genetics, 12(12), 861 – 74.

    Article  PubMed  CAS  Google Scholar 

  3. Fu, X. D. (2014). Non-coding RNA: a new frontier in regulatory biology. National Science Review, 1, 190–204.

    Article  PubMed  CAS  Google Scholar 

  4. Sone, M., Hayashi, T., Tarui, H., et al. (2007). The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. Journal of Cell Science, 120(Pt 15), 2498 – 506.

    Article  PubMed  CAS  Google Scholar 

  5. Guttman, M., Donaghey, J., Carey, B. W., et al. (2011). LincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477(7364), 295–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wapinski, O., & Chang, H. Y. (2011). Long noncoding RNAs and human disease. Trends in Cell Biology, 21(6), 354 – 61.

    Article  PubMed  CAS  Google Scholar 

  7. Guttman, M., & Rinn, J. L. (2012). Modular regulatory principles of large non-coding RNAs. Nature, 482(7385), 339 – 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ma, L., Bajic, V. B., & Zhang, Z. (2013). On the classification of long non-coding RNAs. RNA Biology, 10(6), 925 – 33.

    Article  PubMed  CAS  Google Scholar 

  9. Cabili, M. N., Trapnell, C., Goff, L., et al. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development, 25(18), 1915–1927.

    Article  CAS  Google Scholar 

  10. Ulitsky, I., & Bartel, D. P. (2013). lincRNAs: genomics, evolution, and mechanisms. Cell, 154(1), 26–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bartolomei, M. S., Zemel, S., & Tilghman, S. M. (1991). Parental imprinting of the mouse H19 gene. Nature, 351(6322), 153–155.

    Article  PubMed  CAS  Google Scholar 

  12. Willingham, A. T., Orth, A. P., Batalov, S., et al. (2005). A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science, 309(5740), 1570–1573.

    Article  PubMed  CAS  Google Scholar 

  13. Rinn, J. L., Kertesz, M., Wang, J. K., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311–1323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N., & Akoulitchev, A. (2007). Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature, 445(7128), 666 – 70.

    Article  PubMed  CAS  Google Scholar 

  15. Lee, J. T. (2009). Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes & Development, 23(16), 1831–1842.

    Article  CAS  Google Scholar 

  16. Lv, D., Sun, R., Yu, Q., & Zhang, X. (2016). The long non-coding RNA maternally expressed gene 3 activates p53 and is downregulated in esophageal squamous cell cancer. Tumour Biology.

  17. Rumman, M., Dhawan, J., & Kassem, M. (2015). Concise review: quiescence in adult stem cells: biological significance and relevance to tissue regeneration. Stem Cells, 33, 2903–2912.

    Article  PubMed  Google Scholar 

  18. Bianco, P., Riminucci, M., Gronthos, S., & Robey, P. G. (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells, 19, pp. 180 – 92.

    Article  PubMed  CAS  Google Scholar 

  19. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  PubMed  CAS  Google Scholar 

  20. da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119, 2204–2213.

    Article  PubMed  CAS  Google Scholar 

  21. Quarto, R., Mastrogiacomo, M., Cancedda, R., et al. (2001). Repair of large bone defects with the use of autologous bone marrow stromal cells. The New England Journal of Medicine, 344(5), 385–386.

    Article  PubMed  CAS  Google Scholar 

  22. Rastegar, F., Rastegar, F., Shenaq, D., et al. (2010). Mesenchymal stem cells: molecular characteristics and clinical applications. World Journal of Stem Cells, 2(4), 67–80.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gaur, T., Lengner, C. J., Hovhannisyan, H., et al. (2005). Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. The Journal of Biological Chemistry, 280(39), 33132–33140.

    Article  PubMed  CAS  Google Scholar 

  24. Chen, G., Deng, C., & Li, Y. P. (2012). TGF-beta and BMP signaling in osteoblast differentiation and bone formation. International Journal of Biological Sciences, 8(2), 272 – 88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Deng, Z. L., Sharff, K. A., Tang, N., et al. (2008). Regulation of osteogenic differentiation during skeletal development. Frontiers in Bioscience, 13, 2001–2021.

    Article  PubMed  CAS  Google Scholar 

  26. Javed, A., Bae, J. S., Afzal, F., et al. (2008). Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal. The Journal of Biological Chemistry, 283(13), 8412–8422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hong, J. H., & Yaffe, M. B. (2006). TAZ: a beta-catenin-like molecule that regulates mesenchymal stem cell differentiation. Cell Cycle, 5(2), 176–179.

    Article  PubMed  CAS  Google Scholar 

  28. Chen, Q., Shou, P., Zheng, C., et al. (2016). Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death and Differentiation, 23(7), 1128–1139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li, H., Li, T., Fan, J., et al. (2015). miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death and Differentiation, 22(12), 1935–1945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhang, J. F., Fu, W. M., He, M. L., et al. (2011). MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biology, 8(5), 829 – 38.

    Article  PubMed  CAS  Google Scholar 

  31. Huang, S., Wang, S., Bian, C., et al. (2012). Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells and Development, 21(13), 2531–2540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wang, J., Guan, X., Guo, F., et al. (2013). miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor-related protein 6. Cell Death & Disease, 4, e845.

    Article  CAS  Google Scholar 

  33. Li, Z., Hassan, M. Q., Volinia, S., et al. (2008). A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proceedings of the National Academy of Sciences of the United States of America, 105(37), 13906–13911.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang, W., Dong, R., Diao, S., Du, J., Fan, Z., & Wang, F. (2017). Differential long noncoding RNA/mRNA expression profiling and functional network analysis during osteogenic differentiation of human bone marrow mesenchymal stem cells. Stem Cell Research & Therapy, 8, 30.

    Article  CAS  Google Scholar 

  35. Tye, C. E., Gordon, J. A., Martin-Buley, L. A., Stein, J. L., Lian, J. B., & Stein, G. S. (2015). Could lncRNAs be the missing links in control of mesenchymal stem cell differentiation? Journal of Cellular Physiology, 230(3), 526 – 34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wang, L., Wang, Y., Li, Z., & Yu, B. (2015). Differential expression of long noncoding ribonucleic acids during osteogenic differentiation of human bone marrow mesenchymal stem cells. International Orthopaedics, 39(5), 1013–1019.

    Article  PubMed  Google Scholar 

  37. Zuo, C., Wang, Z., Lu, H., Dai, Z., Liu, X., & Cui, L. (2013). Expression profiling of lncRNAs in C3H10T1/2 mesenchymal stem cells undergoing early osteoblast differentiation. Molecular Medicine Reports, 8(2), 463–467.

    Article  PubMed  Google Scholar 

  38. Song, W. Q., Gu, W. Q., Qian, Y. B., Ma, X., Mao, Y. J., & Liu, W. J. (2015). Identification of long non-coding RNA involved in osteogenic differentiation from mesenchymal stem cells using RNA-Seq data. Genetics and Molecular Research, 14(4), 18268–18279.

    Article  PubMed  CAS  Google Scholar 

  39. Cui, Y., Lu, S., Tan, H., Li, J., Zhu, M., & Xu, Y. (2016). Silencing of long non-coding RNA NONHSAT009968 ameliorates the staphylococcal protein a-inhibited osteogenic differentiation in human bone mesenchymal stem cells. Cellular Physiology and Biochemistry, 39(4), 1347–1359.

    Article  PubMed  CAS  Google Scholar 

  40. Cai, X., & Cullen, B. R. (2007). The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA, 13(3), 313–316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Huang, Y., Zheng, Y., Jia, L., & Li, W. (2015). Long noncoding RNA H19 promotes osteoblast differentiation via TGF-beta1/Smad3/HDAC signaling pathway by deriving miR-675. Stem Cells, 33(12), 3481–3492.

    Article  PubMed  CAS  Google Scholar 

  42. Liang, W. C., Fu, W. M., Wang, Y. B., et al. (2016). H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Scientific Reports, 6, 20121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ohnishi, Y., Tanaka, T., Yamada, R., et al. (2000). Identification of 187 single nucleotide polymorphisms (SNPs) among 41 candidate genes for ischemic heart disease in the Japanese population. Human Genetics 106(3), 288 – 92.

    Article  PubMed  CAS  Google Scholar 

  44. Vausort, M., Wagner, D. R., & Devaux, Y. (2014). Long noncoding RNAs in patients with acute myocardial infarction. Circulation Research, 115(7), 668 – 77.

    Article  PubMed  CAS  Google Scholar 

  45. Yan, B., Yao, J., Liu, J. Y., et al. (2015). lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circulation Research, 116(7), 1143–1156.

    Article  PubMed  CAS  Google Scholar 

  46. Barry, G., Briggs, J. A., Vanichkina, D. P., et al. (2014). The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Molecular Psychiatry, 19(4), 486 – 94.

    Article  PubMed  CAS  Google Scholar 

  47. Jin, C., Zheng, Y., Huang, Y., Liu, Y., Jia, L., Zhou, Y., et al. (2017). Long non-coding RNA MIAT knockdown promotes osteogenic differentiation of human adipose-derived stem cells. Cell Biology International, 41(1), 33–41.

    Article  PubMed  CAS  Google Scholar 

  48. Shen, Y., Dong, L. F., Zhou, R. M., et al. (2016). Role of long non-coding RNA MIAT in proliferation, apoptosis and migration of lens epithelial cells: a clinical and in vitro study. Journal of Cellular and Molecular Medicine, 20(3), 537 – 48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kretz, M., Webster, D. E., Flockhart, R. J., et al. (2012). Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes & Development, 26(4), 338 – 43.

    Article  CAS  Google Scholar 

  50. Zhu, L., & Xu, P. C. (2013). Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression. Biochemical and Biophysical Research Communications, 432(4), 612–617.

    Article  PubMed  CAS  Google Scholar 

  51. Jia, Q., Jiang, W., & Ni, L. (2015). Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells. Archives of Oral Biology, 60(2), 234 – 41.

    Article  PubMed  CAS  Google Scholar 

  52. Jia, Q., Chen, X., Jiang, W., Wang, W., Guo, B., & Ni, L. (2016). The Regulatory Effects of Long Noncoding RNA-ANCR on Dental Tissue-Derived Stem Cells. Stem Cells International, 2016, 3146805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Chisholm, K. M., Wan, Y., Li, R., Montgomery, K. D., Chang, H. Y., & West, R. B. (2012). Detection of long non-coding RNA in archival tissue: correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS One, 7(10), e47998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Endo, H., Shiroki, T., Nakagawa, T., et al. (2013). Enhanced expression of long non-coding RNA HOTAIR is associated with the development of gastric cancer. PLoS One, 8(10), e77070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yang, Z., Zhou, L., Wu, L. M., et al. (2011). Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Annals of Surgical Oncology, 18(5), 1243–1250.

    Article  PubMed  Google Scholar 

  56. Xing, D., Liang, J. Q., Li, Y., et al. (2014). Identification of long noncoding RNA associated with osteoarthritis in humans. Orthopaedic Surgery, 6(4), 288 – 93.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wei, B., Wei, W., Zhao, B., Guo, X., & Liu, S. (2017). Long non-coding RNA HOTAIR inhibits miR-17-5p to regulate osteogenic differentiation and proliferation in non-traumatic osteonecrosis of femoral head. PLoS One, 12(2), e0169097.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Anwar, S. L., Krech, T., Hasemeier, B., et al. (2012). Loss of imprinting and allelic switching at the DLK1-MEG3 locus in human hepatocellular carcinoma. PloS One, 7, e49462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhou, Y., Zhang, X., & Klibanski, A. (2012). MEG3 noncoding RNA: a tumor suppressor. Journal of Molecular Endocrinology, 48(3), R45-53.

    Article  PubMed  CAS  Google Scholar 

  60. Zhuang, W., Ge, X., Yang, S., et al. (2015). Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells, 33(6), 1985–1997.

    Article  PubMed  CAS  Google Scholar 

  61. Li, Z., Jin, C., Chen, S., et al. (2017). Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Molecular and Cellular Biochemistry.

  62. Wang, Q., Li, Y., Zhang, Y., et al. (2017). LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed Pharmacother, 89, 1178–1186.

    Article  PubMed  CAS  Google Scholar 

  63. Zhao, Y., Feng, G., Wang, Y., Yue, Y., & Zhao, W. (2014). Regulation of apoptosis by long non-coding RNA HIF1A-AS1 in VSMCs: implications for TAA pathogenesis. International Journal of Clinical and Experimental Pathology, 7(11), 7643–7652.

    PubMed  PubMed Central  Google Scholar 

  64. Wang, S., Zhang, X., Yuan, Y., et al. (2015). BRG1 expression is increased in thoracic aortic aneurysms and regulates proliferation and apoptosis of vascular smooth muscle cells through the long non-coding RNA HIF1A-AS1 in vitro. European Journal of Cardio-Thoracic Surgery, 47(3), 439–46.

    Article  PubMed  Google Scholar 

  65. Xu, Y., Wang, S., Tang, C., & Chen, W. (2015). Upregulation of long non-coding RNA HIF 1alpha-anti-sense 1 induced by transforming growth factor-beta-mediated targeting of sirtuin 1 promotes osteoblastic differentiation of human bone marrow stromal cells. Molecular Medicine Reports, 12(5), 7233–7238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wang, Y., Dang, Y., Liu, J., & Ouyang, X. (2016). The function of homeobox genes and lncRNAs in cancer. Oncology Letters, 12(3), 1635–1641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhu, X. X., Yan, Y. W., Chen, D., et al. (2016). Long non-coding RNA HoxA-AS3 interacts with EZH2 to regulate lineage commitment of mesenchymal stem cells. Oncotarget, 7(39), 63561–63570.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Augoff, K., McCue, B., Plow, E. F., & Sossey-Alaoui, K. (2012). miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Molecular Cancer, 11, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Yang, H., Liu, P., Zhang, J., et al. (2016). Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR-193b. Oncogene, 35(28), 3647–3657.

    Article  PubMed  CAS  Google Scholar 

  70. Jin, C., Jia, L., Huang, Y. et al. (2016). Inhibition of lncRNA MIR31HG promotes osteogenic differentiation of human adipose-derived stem cells. Stem Cells.

  71. Sheik Mohamed, J., Gaughwin, P. M., Lim, B., Robson, P., & Lipovich, L. (2010). Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA, 16(2), 324 – 37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Li, H., Li, H., Zhang, Z., Chen, Z., & Zhang, D. (2015). Osteogenic growth peptide promotes osteogenic differentiation of mesenchymal stem cells mediated by LncRNA AK141205-induced upregulation of CXCL13. Biochemical and Biophysical Research Communications, 466(1), 82 – 8.

    Article  PubMed  CAS  Google Scholar 

  73. Cao, B., Liu, N., & Wang, W. (2016). High glucose prevents osteogenic differentiation of mesenchymal stem cells via lncRNA AK028326/CXCL13 pathway. Biomedicine and Pharmacotherapy, 84, 544–551.

    Article  PubMed  CAS  Google Scholar 

  74. Pasquinelli, A. E. (2012). MicroRNAs and their targets: recognition, regu- lation and an emerging reciprocal relationship. Nature Reviews Genetics, 13, 271–282.

    Article  PubMed  CAS  Google Scholar 

  75. Quinn, J. J., & Chang, H. Y. (2016). Unique features of long non-coding RNA biogenesis and function. Nature Reviews Genetics, 17, 47–62.

    Article  PubMed  CAS  Google Scholar 

  76. Egger, G., et al. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429(6990), 457 –63.

    Article  PubMed  CAS  Google Scholar 

  77. Helin, K., & Dhanak, D. (2013). Chromatin proteins and modifications as drug targets. Nature, 502(7472), 480–488.

    Article  PubMed  CAS  Google Scholar 

  78. Hemming, S., Cakouros, D., senmann, S., et al. (2014). EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells, 32(3), 802–15.

    Article  PubMed  CAS  Google Scholar 

  79. Guil, S., Soler, M., Portela, A., et al. (2012). Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nature Structural and Molecular Biology, 19(7), 664–70.

    Article  PubMed  CAS  Google Scholar 

  80. Ghosal, S., Das, S., & Chakrabarti, J. (2013). Long noncoding RNAs: new players in the molecular mechanism for maintenance and differentiation of pluripotent stem cells. Stem Cells and Development, 22(16), 2240–2253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Khalil, A. M., Guttman, M., Huarte, M., et al. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 106(28), 11667–11672.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Miyoshi, N., Wagatsuma, H., Wakana, S., et al. (2000). Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes to Cells, 5(3), 211–20.

    Article  PubMed  CAS  Google Scholar 

  83. Tay, Y., Rinn, J., & Pandolfi, P. P. (2014). The multilayered complexity of ceRNA crosstalk and competition. Nature, 505(7483), 344–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Xing, C. Y., Hu, X. Q., Xie, F. Y., et al. (2015). Long non-coding RNA HOTAIR modulates c-KIT expression through sponging miR-193a in acute myeloid leukemia. FEBS Letters, 589(15), 1981–1987.

    Article  PubMed  CAS  Google Scholar 

  85. Cai, H., Xue, Y., Wang, P., et al. (2015). The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget, 6(23), 19759–19779.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Keniry, A., et al. (2012). The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nature Cell Biology, 14(7), 659–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wu, Y., et al. (2014). Long noncoding RNA HOTAIR involvement in cancer. Tumour Biology, 35(10), 9531–9538.

    Article  PubMed  CAS  Google Scholar 

  88. Kogure, T., Yan, I. K., Lin, W. L., & Patel, T. (2013). Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes Cancer, 4(7–8), 261–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Conigliaro, A., Costa, V., Lo Dico, A., et al. (2015). CD90 + liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Molecular Cancer, 14, 155.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Thery, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, 3, Unit 3 22.

    PubMed  Google Scholar 

  91. Hewson, C., & Morris, K. V. (2016). Form and Function of Exosome-Associated Long Non-coding RNAs in Cancer. Current Topics in Microbiology and Immunology, 394, 41–56.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by grants from the National Natural Science Foundation of China (Nos. 81670957, 81772876, and 81700938), a grant from the Peking University (PKU) School and Hospital of Stomatology (No. PKUSS20140104), and seed grants from the PKU School of Stomatology for PostDoc (No. YS0203) and the Beijing Natural Science Foundation (No. 7172239).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfei Zheng or Weiran Li.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Jia, L., Li, X. et al. Long Noncoding RNAs: New Players in the Osteogenic Differentiation of Bone Marrow- and Adipose-Derived Mesenchymal Stem Cells. Stem Cell Rev and Rep 14, 297–308 (2018). https://doi.org/10.1007/s12015-018-9801-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9801-5

Keywords

Navigation