Advertisement

Stem Cell Reviews and Reports

, Volume 14, Issue 1, pp 141–143 | Cite as

A Fully-Closed and Automated Hollow Fiber Bioreactor for Clinical-Grade Manufacturing of Human Mesenchymal Stem/Stromal Cells

  • Amanda Mizukami
  • Mario Soares de Abreu Neto
  • Francisco Moreira
  • Ana Fernandes-Platzgummer
  • Yi-Feng Huang
  • William Milligan
  • Joaquim M. S. Cabral
  • Cláudia L. da Silva
  • Dimas T. Covas
  • Kamilla SwiechEmail author
Article

The use of mesenchymal stem/stromal cells (MSC) for cellular therapy and regenerative medicine has been boosted by the increasing demand for biological substitutes that can restore, maintain and/or improve the functions of damaged tissues and organs in several diseases. The successful clinical implementation of MSC-based therapies must address the need for ex-vivo expansion due to the low frequency of these cells in the available tissues and the high doses (1-100 × 106cells/kg patient) required for an infusion. The manufacturing of high cell doses/lot will be possible through the use of bioreactors that present several advantages when compared to the traditional flask-based methods: traceability, scalability, reduced manual handling and easy monitorability and control of culture parameters. Moreover, the use of defined serum-/xenogeneic(xeno)-free culture medium formulations could result in substantial improvements for MSC production in terms of cell reproducibility, stability and...

Notes

Acknowledgements

This work was supported by FAPESP (2012/23228-4), CTC- Center for Cell-based Therapies (FAPESP 2013/08135-2) and National Institute of Science and Technology in Stem Cell and Cell Therapy (CNPq 573754-2008-0 and FAPESP 2008/578773). The authors acknowledge Fundação para a Ciência e a Tecnologia (FCT), Portugal, through iBB – Institute for Bioengineering and Biosciences under the project UID/BIO/04565/ 2013 and Programa Operacional Regional de Lisboa 2020 (project no. 007317) and grant SFRH/BD/90081/2012 (awarded to FM). We also acknowledge the funding received from Programa Operacional Regional de Lisboa 2020 through the project PRECISE - Accelerating progress toward the new era of precision medicine (Project N. 16394).

Compliance with Ethical Standards

Ethical Approval

All procedures performed with human samples were in accordance with the ethical standards of the institutional and/or national research committee.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Disclosure of Potential Conflict of Interest

The authors have declared that there is no conflict of interest.

References

  1. 1.
    de Soure, A. M., Fernandes-Platzgummer, A., da Silva, C. L., & Cabral, J. M. (2016). Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells. J Biotechnol, 236, 88–109.CrossRefPubMedGoogle Scholar
  2. 2.
    Mizukami, M., Fernandes-Platzgummer, A., Carmelo, J. G., Swiech, K., Covas, D. T., Cabral, J. M., et al. (2016). Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells. Biotechnol J, 11(8), 1048–1059.CrossRefPubMedGoogle Scholar
  3. 3.
    Dos Santos, V. T., Mizukami, A., Orellana, M. D., Caruso, S. R., da Silva, F. B., Traina, F., et al. (2017). Characterization of Human AB Serum for Mesenchymal Stromal Cell Expansion. Transfus Med Hemother, 44(1), 11–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Lechanteur, C., Baila, S., Janssen, M. E., Giet, O., Briquet, A., Baudoux, E., et al. (2014). Large-Scale Clinical Expansion of Mesenchymal Stem Cells in the GMP-Compliant, Closed Automated Quantum® Cell Expansion System: Comparison with Expansion in Traditional T-Flasks. J Stem Cell Res Ther, 4(8), 1–11.CrossRefGoogle Scholar
  5. 5.
    Haack-Sorensen, M., Follin, B., Juhl, M., Brorsen, S. K., Sondergaard, R. H., Kastrup, J., et al. (2016). Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture. J Transl Med, 14(1), 319.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lambrechts, T., Papantoniou, I., Rice, B., Schrooten, J., Luyten, F. P., & Aerts, J. M. (2016). Large-scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor. Cytotherapy, 18(9), 1219–1233.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Amanda Mizukami
    • 1
  • Mario Soares de Abreu Neto
    • 1
  • Francisco Moreira
    • 2
  • Ana Fernandes-Platzgummer
    • 2
    • 3
  • Yi-Feng Huang
    • 4
  • William Milligan
    • 4
    • 5
  • Joaquim M. S. Cabral
    • 2
    • 3
  • Cláudia L. da Silva
    • 2
    • 3
  • Dimas T. Covas
    • 1
  • Kamilla Swiech
    • 1
    • 6
    Email author
  1. 1.Center for Cell-based Therapy, Regional Blood Center of Ribeirão PretoUniversity of São PauloRibeirão Preto-SPBrazil
  2. 2.Department of Bioengineering and IBB-Institute for Bioengineering and BiosciencesInstituto Superior Técnico, Universidade de LisboaLisboaPortugal
  3. 3.The Discoveries Centre for Regenerative and Precision Medicine, Lisbon CampusInstituto Superior Técnico, Universidade de LisboaLisboaPortugal
  4. 4.R&D, AventaCell BioMedical Corp., Ltd.New Taipei CityTaiwan, Republic of China
  5. 5.R&D, AventaCell BioMedical Corp., Ltd.AtlantaUSA
  6. 6.Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São Paulo.Ribeirão PretoBrazil

Personalised recommendations