Stem Cell Reviews and Reports

, Volume 14, Issue 1, pp 58–70 | Cite as

Noncoding RNAs in the Regulation of Pluripotency and Reprogramming

  • Vladimir V. Sherstyuk
  • Sergey P. Medvedev
  • Suren M. ZakianEmail author


Pluripotent stem cells have great potential for developmental biology and regenerative medicine. Embryonic stem cells, which are obtained from blastocysts, and induced pluripotent stem cells, which are generated by the reprogramming of somatic cells, are two main types of pluripotent cells. It is important to understand the regulatory network that controls the pluripotency state and reprogramming process. Various types of noncoding RNAs (ncRNAs) have emerged as substantial components of regulatory networks. The most studied class of ncRNAs in the context of pluripotency and reprogramming is microRNAs (miRNAs). In addition to canonical microRNAs, other types of small RNAs with miRNA-like function are expressed in PSCs. Another class of ncRNAs, long ncRNAs, are also involved in pluripotency and reprogramming regulation. Thousands of ncRNAs have been annotated to date, and a significant number of the molecules do not have known function. In this review, we briefly summarized recent advances in this field and described existing genome-editing approaches to study ncRNA functions.


Pluripotent stem cells Pluripotency Reprogramming Noncoding RNA MicroRNA Long noncoding RNA Genome editing CRISPR/Cas9 



This work was supported by the Russian Science Foundation (project №16-14-10084).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest.


  1. 1.
    Comings, D. E. (1972). The structure and function of chromatin. Advances in Human Genetics, 3, 237–431.PubMedCrossRefGoogle Scholar
  2. 2.
    Ohno, S. (1972). So much “junk” DNA in our genome. Brookhaven Symposia in Biology, 23, 366–370.PubMedGoogle Scholar
  3. 3.
    Djebali, S., Davis, C. A., Merkel, A., et al. (2012). Landscape of transcription in human cells. Nature, 489, 101–108.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kung, J. T., Colognori, D., & Lee, J. T. (2013). Long noncoding RNAs: past, present, and future. Genetics, 193, 651–669.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Mattick, J. S., & Makunin, I. V. (2005). Small regulatory RNAs in mammals. Human molecular genetics, 14 Spec No 1, R121-132.Google Scholar
  6. 6.
    Babiarz, J. E., Ruby, J. G., Wang, Y., Bartel, D. P., & Blelloch, R. (2008). Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes & Development, 22, 2773–2785.CrossRefGoogle Scholar
  7. 7.
    Aravin, A. A., Hannon, G. J., & Brennecke, J. (2007). The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science, 318, 761–764.PubMedCrossRefGoogle Scholar
  8. 8.
    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.PubMedCrossRefGoogle Scholar
  9. 9.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.PubMedCrossRefGoogle Scholar
  10. 10.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.PubMedCrossRefGoogle Scholar
  11. 11.
    Gregory, R. I., Yan, K. P., Amuthan, G., et al. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature, 432, 235–240.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 10, 126–139.PubMedCrossRefGoogle Scholar
  13. 13.
    Winter, J., Jung, S., Keller, S., Gregory, R. I., & Diederichs, S. (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology, 11, 228–234.PubMedCrossRefGoogle Scholar
  14. 14.
    Kanellopoulou, C., Muljo, S. A., Kung, A. L., et al. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes & Development, 19, 489–501.CrossRefGoogle Scholar
  15. 15.
    Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, S., & Hannon, G. J. (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 12135–12140.Google Scholar
  16. 16.
    Qi, J., Yu, J. Y., Shcherbata, H. R., et al. (2009). microRNAs regulate human embryonic stem cell division. Cell cycle (Georgetown, Tex.), 8, 3729–3741.CrossRefGoogle Scholar
  17. 17.
    Wang, Y., Baskerville, S., Shenoy, A., Babiarz, J. E., Baehner, L., & Blelloch, R. (2008). Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nature Genetics, 40, 1478–1483.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Calabrese, J. M., Seila, A. C., Yeo, G. W., & Sharp, P. A. (2007). RNA sequence analysis defines Dicer’s role in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 18097–18102.Google Scholar
  19. 19.
    Leung, A. K., Young, A. G., Bhutkar, A., et al. (2011). Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nature Structural & Molecular Biology, 18, 237–244.CrossRefGoogle Scholar
  20. 20.
    Marson, A., Levine, S. S., Cole, M. F., et al. (2008). Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 134, 521–533.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A., & Kosik, K. S. (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 137, 647–658.PubMedCrossRefGoogle Scholar
  22. 22.
    Jouneau, A., Ciaudo, C., Sismeiro, O., et al. (2012). Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. Rna, 18, 253–264.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Tesar, P. J., Chenoweth, J. G., Brook, F. A., et al. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448, 196–199.PubMedCrossRefGoogle Scholar
  24. 24.
    Bar, M., Wyman, S. K., Fritz, B. R., et al. (2008). MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem cells (Dayton, Ohio), 26, 2496–2505.CrossRefGoogle Scholar
  25. 25.
    Laurent, L. C., Chen, J., Ulitsky, I., et al. (2008). Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence. Stem cells (Dayton, Ohio), 26, 1506–1516.CrossRefGoogle Scholar
  26. 26.
    Lin, S., Cheung, W. K., Chen, S., et al. (2010). Computational identification and characterization of primate-specific microRNAs in human genome. Computational Biology and Chemistry, 34, 232–241.PubMedCrossRefGoogle Scholar
  27. 27.
    Nguyen, P. N., Huang, C. J., Sugii, S., Cheong, S. K., & Choo, K. B. (2017). Selective activation of miRNAs of the primate-specific chromosome 19 miRNA cluster (C19MC) in cancer and stem cells and possible contribution to regulation of apoptosis. Journal of Biomedical Science, 24, 20.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Cloonan, N. (2015). Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 37, 379–388.CrossRefGoogle Scholar
  31. 31.
    Broughton, J. P., Lovci, M. T., Huang, J. L., Yeo, G. W., & Pasquinelli, A. E. (2016). Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Molecular Cell, 64, 320–333.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Zheng, G. X., Ravi, A., Calabrese, J. M., et al. (2011). A latent pro-survival function for the mir-290-295 cluster in mouse embryonic stem cells. PLoS Genetics, 7, e1002054.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Cao, Y., Guo, W. T., Tian, S., et al. (2015). miR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency. The EMBO Journal, 34, 609–623.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sinkkonen, L., Hugenschmidt, T., Berninger, P., et al. (2008). MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nature Structural & Molecular Biology, 15, 259–267.CrossRefGoogle Scholar
  35. 35.
    Kanellopoulou, C., Gilpatrick, T., Kilaru, G., et al. (2015). Reprogramming of Polycomb-Mediated Gene Silencing in Embryonic Stem Cells by the miR-290 Family and the Methyltransferase Ash1l. Stem Cell Reports, 5, 971–978.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sherstyuk, V. V., Medvedev, S. P., Elisaphenko, E. A., et al. (2017). Genome-wide profiling and differential expression of microRNA in rat pluripotent stem cells. Scientific Reports, 7, 2787.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zhang, W., Zhong, L., Wang, J., & Han, J. (2016). Distinct MicroRNA Expression Signatures of Porcine Induced Pluripotent Stem Cells under Mouse and Human ESC Culture Conditions. PloS One, 11, e0158655.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Maraghechi, P., Hiripi, L., Toth, G., Bontovics, B., Bosze, Z., & Gocza, E. (2013). Discovery of pluripotency-associated microRNAs in rabbit preimplantation embryos and embryonic stem-like cells. Reproduction (Cambridge, England), 145, 421–437.CrossRefGoogle Scholar
  39. 39.
    Nichols, J., Silva, J., Roode, M., & Smith, A. (2009). Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development (Cambridge, England), 136, 3215–3222.CrossRefGoogle Scholar
  40. 40.
    Silva, J., Barrandon, O., Nichols, J., Kawaguchi, J., Theunissen, T. W., & Smith, A. (2008). Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biology, 6, e253.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wray, J., Kalkan, T., Gomez-Lopez, S., et al. (2011). Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nature Cell Biology, 13, 838–845.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ying, Q. L., Wray, J., Nichols, J., et al. (2008). The ground state of embryonic stem cell self-renewal. Nature, 453, 519–523.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Yan, Y., Yang, X., Li, T. T., et al. (2017). Significant differences of function and expression of microRNAs between ground state and serum-cultured pluripotent stem cells. Journal of Genetics and Genomics = Yi chuan xue bao, 44, 179–189.PubMedCrossRefGoogle Scholar
  44. 44.
    Wang, A., He, Q., & Zhong, Y. (2015). Systematically dissecting the global mechanism of miRNA functions in mouse pluripotent stem cells. BMC genomics, 16, 490.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ai, Z., Shao, J., Shi, X., et al. (2016). Maintenance of Self-Renewal and Pluripotency in J1 Mouse Embryonic Stem Cells through Regulating Transcription Factor and MicroRNA Expression Induced by PD0325901. Stem Cells International, 2016, 1792573.Google Scholar
  46. 46.
    Wu, Y., Liu, F., Liu, Y., et al. (2015). GSK3 inhibitors CHIR99021 and 6-bromoindirubin-3′-oxime inhibit microRNA maturation in mouse embryonic stem cells. Scientific Reports, 5, 8666.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cirera-Salinas, D., Yu, J., Bodak, M., Ngondo, R. P., Herbert, K. M., & Ciaudo, C. (2017). Noncanonical function of DGCR8 controls mESC exit from pluripotency. The Journal of Cell Biology, 216, 355–366.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gonzalez, F., Boue, S., & Izpisua Belmonte, J. C. (2011). Methods for making induced pluripotent stem cells: reprogramming a la carte. Nature Reviews Genetics, 12, 231–242.PubMedCrossRefGoogle Scholar
  49. 49.
    Hou, P., Li, Y., Zhang, X., et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341, 651–654.PubMedCrossRefGoogle Scholar
  50. 50.
    Lin, S. L., Chang, D. C., Chang-Lin, S., et al. (2008). Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. Rna, 14, 2115–2124.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Anokye-Danso, F., Trivedi, C. M., Juhr, D., et al. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8, 376–388.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Miyoshi, N., Ishii, H., Nagano, H., et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 8, 633–638.PubMedCrossRefGoogle Scholar
  53. 53.
    Judson, R. L., Babiarz, J. E., Venere, M., & Blelloch, R. (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature Biotechnology, 27, 459–461.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bernstein, B. E., Mikkelsen, T. S., Xie, X., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326.PubMedCrossRefGoogle Scholar
  55. 55.
    Chin, M. H., Mason, M. J., Xie, W., et al. (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell, 5, 111–123.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Meissner, A., Mikkelsen, T. S., Gu, H., et al. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454, 766–770.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Panopoulos, A. D., Yanes, O., Ruiz, S., et al. (2012). The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Research, 22, 168–177.PubMedCrossRefGoogle Scholar
  58. 58.
    Phanstiel, D. H., Brumbaugh, J., Wenger, C. D., et al. (2011). Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nature Methods, 8, 821–827.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gruber, A. J., Grandy, W. A., Balwierz, P. J., et al. (2014). Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways. Nucleic Acids Research, 42, 9313–9326.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Li, Z., Yang, C. S., Nakashima, K., & Rana, T. M. (2011). Small RNA-mediated regulation of iPS cell generation. The EMBO Journal, 30, 823–834.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Liao, B., Bao, X., Liu, L., et al. (2011). MicroRNA cluster 302–367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. The Journal of Biological Chemistry, 286, 17359–17364.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Subramanyam, D., Lamouille, S., Judson, R. L., et al. (2011). Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nature Biotechnology, 29, 443–448.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Samavarchi-Tehrani, P., Golipour, A., David, L., et al. (2010). Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 7, 64–77.PubMedCrossRefGoogle Scholar
  64. 64.
    Li, R., Liang, J., Ni, S., et al. (2010). A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 7, 51–63.PubMedCrossRefGoogle Scholar
  65. 65.
    Gregory, P. A., Bert, A. G., Paterson, E. L., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10, 593–601.PubMedCrossRefGoogle Scholar
  66. 66.
    Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. The Journal of Biological Chemistry, 283, 14910–14914.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wang, G., Guo, X., Hong, W., et al. (2013). Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proceedings of the National Academy of Sciences of the United States of America, 110, 2858–2863.Google Scholar
  68. 68.
    Judson, R. L., Greve, T. S., Parchem, R. J., & Blelloch, R. (2013). MicroRNA-based discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells. Nature Structural & Molecular Biology, 20, 1227–1235.CrossRefGoogle Scholar
  69. 69.
    Hu, S., Wilson, K. D., Ghosh, Z., et al. (2013). MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem cells (Dayton, Ohio), 31, 259–268.CrossRefGoogle Scholar
  70. 70.
    Choi, Y. J., Lin, C. P., Ho, J. J., et al. (2011). miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nature Cell Biology, 13, 1353–1360.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Prigione, A., Rohwer, N., Hoffmann, S., et al. (2014). HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem cells (Dayton, Ohio), 32, 364–376.CrossRefGoogle Scholar
  72. 72.
    Folmes, C. D., Martinez-Fernandez, A., Faustino, R. S., et al. (2013). Nuclear reprogramming with c-Myc potentiates glycolytic capacity of derived induced pluripotent stem cells. Journal of Cardiovascular Translational Research, 6, 10–21.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang, J., Nuebel, E., Daley, G. Q., Koehler, C. M., & Teitell, M. A. (2012). Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell, 11, 589–595.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Konno, M., Koseki, J., Kawamoto, K., et al. (2015). Embryonic MicroRNA-369 Controls Metabolic Splicing Factors and Urges Cellular Reprograming. PloS One, 10, e0132789.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lee, M. R., Mantel, C., Lee, S. A., Moon, S. H., & Broxmeyer, H. E. (2016). MiR-31/SDHA Axis Regulates Reprogramming Efficiency through Mitochondrial Metabolism. Stem Cell Reports, 7, 1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Guo, X., Liu, Q., Wang, G., et al. (2013). microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming. Cell Research, 23, 142–156.PubMedCrossRefGoogle Scholar
  77. 77.
    He, X., Cao, Y., Wang, L., et al. (2014). Human fibroblast reprogramming to pluripotent stem cells regulated by the miR19a/b-PTEN axis. PloS One, 9, e95213.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wu, F., Tao, L., Gao, S., et al. (2017). miR-6539 is a novel mediator of somatic cell reprogramming that represses the translation of Dnmt3b. The Journal of Reproduction and Development, 63, 415–423.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ye, D., Wang, G., Liu, Y., et al. (2012). MiR-138 promotes induced pluripotent stem cell generation through the regulation of the p53 signaling. Stem cells (Dayton, Ohio), 30, 1645–1654.CrossRefGoogle Scholar
  80. 80.
    Yang, C. S., Li, Z., & Rana, T. M. (2011). microRNAs modulate iPS cell generation. Rna, 17, 1451–1460.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Worringer, K. A., Rand, T. A., Hayashi, Y., et al. (2014). The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell, 14, 40–52.PubMedCrossRefGoogle Scholar
  82. 82.
    Pfaff, N., Liebhaber, S., Mobus, S., et al. (2017). Inhibition of miRNA-212/132 improves the reprogramming of fibroblasts into induced pluripotent stem cells by de-repressing important epigenetic remodelling factors. Stem Cell Research, 20, 70–75.PubMedCrossRefGoogle Scholar
  83. 83.
    Barta, T., Peskova, L., Collin, J., et al. (2016). Brief Report: Inhibition of miR-145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells. Stem cells (Dayton, Ohio), 34, 246–251.CrossRefGoogle Scholar
  84. 84.
    Ma, Y., Yao, N., Liu, G., et al. (2015). Functional screen reveals essential roles of miR-27a/24 in differentiation of embryonic stem cells. The EMBO Journal, 34, 361–378.PubMedCrossRefGoogle Scholar
  85. 85.
    Zhang, L., Zheng, Y., Sun, Y., et al. (2016). MiR-134-Mbd3 axis regulates the induction of pluripotency. Journal of Cellular and Molecular Medicine, 20, 1150–1158.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Liu, Z., Skamagki, M., Kim, K., & Zhao, R. (2015). Canonical MicroRNA Activity Facilitates but May Be Dispensable for Transcription Factor-Mediated Reprogramming. Stem Cell Reports, 5, 1119–1127.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Miyoshi, K., Miyoshi, T., & Siomi, H. (2010). Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Molecular Genetics and Genomics : MGG, 284, 95–103.PubMedCrossRefGoogle Scholar
  88. 88.
    Morin, R. D., O’Connor, M. D., Griffith, M., et al. (2008). Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Research, 18, 610–621.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Luciano, D. J., Mirsky, H., Vendetti, N. J., & Maas, S. (2004). RNA editing of a miRNA precursor. Rna, 10, 1174–1177.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Yang, W., Chendrimada, T. P., Wang, Q., et al. (2006). Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nature Structural & Molecular Biology, 13, 13–21.CrossRefGoogle Scholar
  91. 91.
    Pantano, L., Estivill, X., & Marti, E. (2010). SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Research, 38, e34.PubMedCrossRefGoogle Scholar
  92. 92.
    Tan, G. C., Chan, E., Molnar, A., et al. (2014). 5′ isomiR variation is of functional and evolutionary importance. Nucleic Acids Research, 42, 9424–9435.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Cloonan, N., Wani, S., Xu, Q., et al. (2011). MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biology, 12, R126.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hinton, A., Hunter, S. E., Afrikanova, I., et al. (2014). sRNA-seq analysis of human embryonic stem cells and definitive endoderm reveals differentially expressed microRNAs and novel IsomiRs with distinct targets. Stem cells (Dayton, Ohio), 32, 2360–2372.CrossRefGoogle Scholar
  95. 95.
    Yuan, Z., Ding, S., Yan, M., et al. (2015). Variability of miRNA expression during the differentiation of human embryonic stem cells into retinal pigment epithelial cells. Gene, 569, 239–249.PubMedCrossRefGoogle Scholar
  96. 96.
    Clancy, J. L., Patel, H. R., Hussein, S. M., et al. (2014). Small RNA changes en route to distinct cellular states of induced pluripotency. Nature Communications, 5, 5522.PubMedCrossRefGoogle Scholar
  97. 97.
    Langenberger, D., Bermudez-Santana, C., Hertel, J., Hoffmann, S., Khaitovich, P., & Stadler, P. F. (2009). Evidence for human microRNA-offset RNAs in small RNA sequencing data. Bioinformatics (Oxford, England), 25, 2298–2301.CrossRefGoogle Scholar
  98. 98.
    Asikainen, S., Heikkinen, L., Juhila, J., et al. (2015). Selective microRNA-Offset RNA expression in human embryonic stem cells. PloS One, 10, e0116668.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Zhao, J., Schnitzler, G. R., Iyer, L. K., Aronovitz, M. J., Baur, W. E., & Karas, R. H. (2016). MicroRNA-Offset RNA Alters Gene Expression and Cell Proliferation. PloS One, 11, e0156772.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Dupuis-Sandoval, F., Poirier, M., & Scott, M. S. (2015). The emerging landscape of small nucleolar RNAs in cell biology. Wiley Interdisciplinary Reviews RNA, 6, 381–397.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Newton, K., Petfalski, E., Tollervey, D., & Caceres, J. F. (2003). Fibrillarin is essential for early development and required for accumulation of an intron-encoded small nucleolar RNA in the mouse. Molecular and Cellular Biology, 23, 8519–8527.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zhang, Y., Xu, C., Gu, D., et al. (2017). H/ACA Box Small Nucleolar RNA 7A Promotes the Self-Renewal of Human Umbilical Cord Mesenchymal Stem Cells. Stem cells (Dayton, Ohio), 35, 222–235.CrossRefGoogle Scholar
  103. 103.
    Fong, Y. W., Ho, J. J., Inouye, C., & Tjian, R. (2014). The dyskerin ribonucleoprotein complex as an OCT4/SOX2 coactivator in embryonic stem cells. eLife, 3.Google Scholar
  104. 104.
    Skreka, K., Schafferer, S., Nat, I. R., et al. (2012). Identification of differentially expressed non-coding RNAs in embryonic stem cell neural differentiation. Nucleic Acids Research, 40, 6001–6015.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Brameier, M., Herwig, A., Reinhardt, R., Walter, L., & Gruber, J. (2011). Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Research, 39, 675–686.PubMedCrossRefGoogle Scholar
  106. 106.
    Ender, C., Krek, A., Friedlander, M. R., et al. (2008). A human snoRNA with microRNA-like functions. Molecular Cell, 32, 519–528.PubMedCrossRefGoogle Scholar
  107. 107.
    Taft, R. J., Glazov, E. A., Lassmann, T., Hayashizaki, Y., Carninci, P., & Mattick, J. S. (2009). Small RNAs derived from snoRNAs. Rna, 15, 1233–1240.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Mattick, J. S. (2007). A new paradigm for developmental biology. The Journal of Experimental Biology, 210, 1526–1547.PubMedCrossRefGoogle Scholar
  109. 109.
    Guttman, M., Amit, I., Garber, M., et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458, 223–227.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Guttman, M., Garber, M., Levin, J. Z., et al. (2010). Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology, 28, 503–510.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    St Laurent, G., Vyatkin, Y., Antonets, D., et al. (2016). Functional annotation of the vlinc class of non-coding RNAs using systems biology approach. Nucleic Acids Research, 44, 3233–3252.PubMedCrossRefGoogle Scholar
  112. 112.
    Derrien, T., Johnson, R., Bussotti, G., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Research, 22, 1775–1789.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Guttman, M., Donaghey, J., Carey, B. W., et al. (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477, 295–300.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Lin, N., Chang, K. Y., Li, Z., et al. (2014). An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Molecular Cell, 53, 1005–1019.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Chakraborty, D., Kappei, D., Theis, M., et al. (2012). Combined RNAi and localization for functionally dissecting long noncoding RNAs. Nature Methods, 9, 360–362.PubMedCrossRefGoogle Scholar
  116. 116.
    Ng, S. Y., Johnson, R., & Stanton, L. W. (2012). Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. The EMBO Journal, 31, 522–533.PubMedCrossRefGoogle Scholar
  117. 117.
    Sheik Mohamed, J., Gaughwin, P. M., Lim, B., Robson, P., & Lipovich, L. (2010). Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. Rna, 16, 324–337.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Wu, C. S., Yu, C. Y., Chuang, C. Y., et al. (2014). Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency. Genome Research, 24, 25–36.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Yu, C. Y., & Kuo, H. C. (2016). The Trans-Spliced Long Noncoding RNA tsRMST Impedes Human Embryonic Stem Cell Differentiation Through WNT5A-Mediated Inhibition of the Epithelial-to-Mesenchymal Transition. Stem cells (Dayton, Ohio), 34, 2052–2062.CrossRefGoogle Scholar
  120. 120.
    Shevchenko, A. I., Zakharova, I. S., & Zakian, S. M. (2013). The evolutionary pathway of x chromosome inactivation in mammals. Acta Naturae, 5, 40–53.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J., & Lee, J. T. (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 322, 750–756.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Khalil, A. M., Guttman, M., Huarte, M., et al. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 106, 11667–11672.Google Scholar
  123. 123.
    Yang, Y. W., Flynn, R. A., Chen, Y., et al. (2014). Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. eLife, 3, e02046.Google Scholar
  124. 124.
    Zhou, Y., Dai, Q. S., Zhu, S. C., et al. (2016). AK048794 maintains the mouse embryonic stem cell pluripotency by functioning as an miRNA sponge for miR-592. The Biochemical Journal, 473, 3639–3654.PubMedCrossRefGoogle Scholar
  125. 125.
    Wang, Y., Xu, Z., Jiang, J., et al. (2013). Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Developmental Cell, 25, 69–80.PubMedCrossRefGoogle Scholar
  126. 126.
    Durruthy-Durruthy, J., Sebastiano, V., Wossidlo, M., et al. (2016). The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nature Genetics, 48, 44–52.PubMedCrossRefGoogle Scholar
  127. 127.
    Niazi, F., & Valadkhan, S. (2012). Computational analysis of functional long noncoding RNAs reveals lack of peptide-coding capacity and parallels with 3′ UTRs. Rna, 18, 825–843.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Mumtaz, M. A., & Couso, J. P. (2015). Ribosomal profiling adds new coding sequences to the proteome. Biochemical Society Transactions, 43, 1271–1276.PubMedCrossRefGoogle Scholar
  129. 129.
    Ingolia, N. T., Lareau, L. F., & Weissman, J. S. (2011). Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell, 147, 789–802.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Ingolia, N. T., Brar, G. A., Stern-Ginossar, N., et al. (2014). Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Reports, 8, 1365–1379.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Banfai, B., Jia, H., Khatun, J., et al. (2012). Long noncoding RNAs are rarely translated in two human cell lines. Genome Research, 22, 1646–1657.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Guttman, M., Russell, P., Ingolia, N. T., Weissman, J. S., & Lander, E. S. (2013). Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell, 154, 240–251.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Ji, Z., Song, R., Regev, A., & Struhl, K. (2015). Many lncRNAs, 5′UTRs, and pseudogenes are translated and some are likely to express functional proteins. eLife, 4, e08890.Google Scholar
  134. 134.
    Nelson, B. R., Makarewich, C. A., Anderson, D. M., et al. (2016). A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 351, 271–275.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Szafron, L. M., Balcerak, A., Grzybowska, E. A., et al. (2015). The Novel Gene CRNDE Encodes a Nuclear Peptide (CRNDEP) Which Is Overexpressed in Highly Proliferating Tissues. PloS One, 10, e0127475.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Hussein, S. M., Puri, M. C., Tonge, P. D., et al. (2014). Genome-wide characterization of the routes to pluripotency. Nature, 516, 198–206.PubMedCrossRefGoogle Scholar
  137. 137.
    Kim, D. H., Marinov, G. K., Pepke, S., et al. (2015). Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell, 16, 88–101.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Loewer, S., Cabili, M. N., Guttman, M., et al. (2010). Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 42, 1113–1117.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Zhang, A., Zhou, N., Huang, J., et al. (2013). The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Research, 23, 340–350.PubMedCrossRefGoogle Scholar
  140. 140.
    Kang, L., Wang, J., Zhang, Y., Kou, Z., & Gao, S. (2009). iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 5, 135–138.PubMedCrossRefGoogle Scholar
  141. 141.
    Stadtfeld, M., Apostolou, E., Akutsu, H., et al. (2010). Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature, 465, 175–181.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Sverdlov, E. D. (2000). Retroviruses and primate evolution. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 22, 161–171.CrossRefGoogle Scholar
  143. 143.
    Goke, J., Lu, X., Chan, Y. S., et al. (2015). Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell, 16, 135–141.PubMedCrossRefGoogle Scholar
  144. 144.
    Santoni, F. A., Guerra, J., & Luban, J. (2012). HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology, 9, 111.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Wang, J., Xie, G., Singh, M., et al. (2014). Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature, 516, 405–409.PubMedCrossRefGoogle Scholar
  146. 146.
    Yue, D., Liu, H., & Huang, Y. (2009). Survey of Computational Algorithms for MicroRNA Target Prediction. Current Genomics, 10, 478–492.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Chi, S. W., Zang, J. B., Mele, A., & Darnell, R. B. (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 460, 479–486.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Hafner, M., Landthaler, M., Burger, L., et al. (2010). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141, 129–141.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Kuhn, D. E., Martin, M. M., Feldman, D. S., Terry, A. V. Jr., Nuovo, G. J., & Elton, T. S. (2008). Experimental validation of miRNA targets. Methods (San Diego, Calif.), 44, 47–54.CrossRefGoogle Scholar
  150. 150.
    Bassett, A. R., Azzam, G., Wheatley, L., et al. (2014). Understanding functional miRNA-target interactions in vivo by site-specific genome engineering. Nature Communications, 5, 4640.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Esau, C. C. (2008). Inhibition of microRNA with antisense oligonucleotides. Methods (San Diego, Calif.), 44, 55–60.CrossRefGoogle Scholar
  152. 152.
    Tay, F. C., Lim, J. K., Zhu, H., Hin, L. C., & Wang, S. (2015). Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells. Advanced Drug Delivery Reviews, 81, 117–127.PubMedCrossRefGoogle Scholar
  153. 153.
    Chang, H., Yi, B., Ma, R., Zhang, X., Zhao, H., & Xi, Y. (2016). CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Scientific Reports, 6, 22312.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Zhang, Z., Xiang, D., Heriyanto, F., Gao, Y., Qian, Z., & Wu, W. S. (2013). Dissecting the roles of miR-302/367 cluster in cellular reprogramming using TALE-based repressor and TALEN. Stem Cell Reports, 1, 218–225.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Liu, Z., Hui, Y., Shi, L., et al. (2016). Efficient CRISPR/Cas9-Mediated Versatile, Predictable, and Donor-Free Gene Knockout in Human Pluripotent Stem Cells. Stem Cell Reports, 7, 496–507.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Essletzbichler, P., Konopka, T., Santoro, F., et al. (2014). Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Research, 24, 2059–2065.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Han, J., Zhang, J., Chen, L., et al. (2014). Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biology, 11, 829–835.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Ho, T. T., Zhou, N., Huang, J., et al. (2015). Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Research, 43, e17.PubMedCrossRefGoogle Scholar
  159. 159.
    Zhu, S., Li, W., Liu, J., et al. (2016). Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nature Biotechnology, 34, 1279–1286.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Cong, L., Zhou, R., Kuo, Y. C., Cunniff, M., & Zhang, F. (2012). Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nature Communications, 3, 968.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Qi, L. S., Larson, M. H., Gilbert, L. A., et al. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Gilbert, L. A., Larson, M. H., Morsut, L., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154, 442–451.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Vladimir V. Sherstyuk
    • 1
    • 2
    • 3
    • 4
  • Sergey P. Medvedev
    • 1
    • 2
    • 3
    • 4
  • Suren M. Zakian
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Federal Research Center Institute of Cytology and GeneticsThe Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.E.Meshalkin National medical research centerMinistry of Healthcare of the Russian FederationNovosibirskRussia
  3. 3.Institute of Chemical Biology and Fundamental MedicineThe Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations