Stem Cell Reviews and Reports

, Volume 14, Issue 2, pp 247–261 | Cite as

Generation of Photoreceptor Precursors from Mouse Embryonic Stem Cells

Article
  • 279 Downloads

Abstract

Embryonic stem cell (ESC) differentiation can be used to model development and to produce transplantable cells of the desired phenotype. ESCs can reproducibly generate retinal cells but the derivation of photoreceptor precursors is variable and depends on an array of exogenous factors and intrinsic cell–cell interactions. In this work, we have defined the use of exogenous signaling factors, dissociation, and adherent versus 3-dimensional (3D) conditions on the derivation of retinal cells from pluripotent mouse ESCs. Differentiation protocols were chosen based on the developmental stage and cell population of interest and evaluated by expression of developmental stage- and lineage-specific marker genes. We present a relatively simple protocol that guides differentiating ESCs through stages that correspond to the sequence of in vivo developmental events and is optimized for studying the time frame between eye field formation and photoreceptor precursor development in the equivalent of embryonic retina. Step-wise exposure of adherent cultures to exogenous factors facilitated expression of eye field transcription factors and limited non-specific differentiation. Dissociation after the establishment of eye field and retinal progenitor cell gene expression did not cause substantial loss in expression of markers of mature photoreceptors. Finally, 3D organoids improved expression of photoreceptor genes and region-specific architecture but required more technical manipulation. We demonstrate the usefulness of this ESC-retinal induction protocol in screening for factors that improve photoreceptor precursor yield by evaluating response to alterations in Activin signaling.

Keywords

Mouse embryonic stem cells Differentiation Retina Photoreceptor Development 

Notes

Acknowledgements

We thank Sarah Bronson for her generous gift of the BK3 and HM1 mouse ESC lines. This work was funded by the Macula Vision Research Foundation and the PA Lions Sight Conservation and Eye Research Foundation.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no potential conflicts of interest.

Supplementary material

12015_2017_9773_MOESM1_ESM.docx (4.4 mb)
Supplementary material 1 (DOCX 4540 KB)

References

  1. 1.
    Lamba, D. A., Karl, M. O., Ware, C. B., & Reh, T. A. (2006). Efficient generation of retinal progenitor cells from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103(34), 12769–12774.  https://doi.org/10.1073/pnas.0601990103.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Singh, R. K., Mallela, R. K., Cornuet, P. K., Reifler, A. N., Chervenak, A. P., West, M. D., … Nasonkin, I. O. (2015). Characterization of three-dimensional retinal tissue derived from human embryonic stem cells in adherent monolayer cultures. Stem Cells and Development, 24(23), 2778–2795.  https://doi.org/10.1089/scd.2015.0144.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Osakada, F., Ikeda, H., Sasai, Y., & Takahashi, M. (2009). Stepwise differentiation of pluripotent stem cells into retinal cells. Nature Protocols, 4(6), 811–824.  https://doi.org/10.1038/nprot.2009.51.CrossRefPubMedGoogle Scholar
  4. 4.
    Ikeda, H., Osakada, F., Watanabe, K., Mizuseki, K., Haraguchi, T., Miyoshi, H., … Sasai, Y. (2005). Generation of Rx+/Pax6 + neural retinal precursors from embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11331–11336.  https://doi.org/10.1073/pnas.0500010102.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Niehrs, C., Glinka, A., Wu, W., Onichtchouk, D., & Blumenstock, C. (1997). Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature, 389(6650), 517–519.  https://doi.org/10.1038/39092.CrossRefPubMedGoogle Scholar
  6. 6.
    Bertacchi, M., Lupo, G., Pandolfini, L., Casarosa, S., D’Onofrio, M., Pedersen, R. A., … Cremisi, F. (2015). Activin/nodal signaling supports retinal progenitor specification in a narrow time window during pluripotent stem cell neuralization. Stem Cell Reports, 5(4), 532–545.  https://doi.org/10.1016/j.stemcr.2015.08.011.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mellough, C. B., Collin, J., Khazim, M., White, K., Sernagor, E., Steel, D. H. W., & Lako, M. (2015). IGF-1 signaling plays an important role in the formation of three-dimensional laminated neural retina and other ocular structures from human embryonic stem cells. Stem Cells, 33(8), 2416–2430.  https://doi.org/10.1002/stem.2023.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kengaku, M., & Okamoto, H. (1995). bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development, 121(9). Retrieved from http://dev.biologists.org/content/121/9/3121.long.
  9. 9.
    Durston, A. J., Timmermans, J. P. M., Hage, W. J., Hendriks, H. F. J., de Vries, N. J., Heideveld, M., & Nieuwkoop, P. D. (1989). Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature, 340(6229), 140–144.  https://doi.org/10.1038/340140a0.CrossRefPubMedGoogle Scholar
  10. 10.
    Lu, A. Q., Popova, E. Y., & Barnstable, C. J. (2017). Activin signals through SMAD2/3 to increase photoreceptor precursor yield during embryonic stem cell differentiation. Stem Cell Reports.  https://doi.org/10.1016/j.stemcr.2017.06.021.Google Scholar
  11. 11.
    Bronson, S. K., Plaehn, E. G., Kluckman, K. D., & Maeda, N. (1996). Single-copy transgenic mice with chosen-site integration. Proceedings of the National Academy of Sciences of the United States of America, 93, 9067–9072.  https://doi.org/10.1073/pnas.93.17.9067.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Koller, B. H., Hagemann, L. J., Doetschman, T., Hagaman, J. R., Huang, S., Williams, P. J., … Smithies, O. (1989). Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proceedings of the National Academy of Sciences, 86(22), 8927–8931.  https://doi.org/10.1073/pnas.86.22.8927.CrossRefGoogle Scholar
  13. 13.
    Magin, T. M., McWhir, J., & Melton, D. W. (1992). A new mouse embryonic stem cell line with good germ line contribution and gene targeting frequency. Nucleic Acids Research, 20(14), 3795–3796.  https://doi.org/10.1093/nar/20.14.3795.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hoerndli, F. J., Toigo, M., Schild, A., Götz, J., & Day, P. J. (2004). Reference genes identified in SH-SY5Y cells using custom-made gene arrays with validation by quantitative polymerase chain reaction. Analytical Biochemistry, 335(1), 30–41.  https://doi.org/10.1016/j.ab.2004.08.028.CrossRefPubMedGoogle Scholar
  15. 15.
    Warrington, J. A., Nair, A., Mahadevappa, M., & Tsyganskaya, M. (2000). Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiological Genomics, 2(3), 143–147. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11015593.
  16. 16.
    Barnstable, C. J. (1987). Immunological studies of the diversity and development of the mammalian visual system. Immunological Reviews, 100, 47–78. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3326827.
  17. 17.
    La Torre, A., Lamba, D. A., Jayabalu, A., & Reh, T. A. (2012). Production and transplantation of retinal cells from human and mouse embryonic stem cells. Methods in molecular biology (Clifton, NJ) (Vol. 884, pp. 229–246).  https://doi.org/10.1007/978-1-61779-848-1_16.
  18. 18.
    Okada, Y., Shimazaki, T., Sobue, G., & Okano, H. (2004). Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Developmental Biology, 275(1), 124–142.  https://doi.org/10.1016/j.ydbio.2004.07.038.CrossRefPubMedGoogle Scholar
  19. 19.
    Dickman, E. D., Thaller, C., & Smith, S. M. (1997). Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development, 124(16). Retrieved from http://dev.biologists.org/content/124/16/3111.long.
  20. 20.
    Zhong, X., Gutierrez, C., Xue, T., Hampton, C., Vergara, M. N., Cao, L.-H., … Canto-Soler, M. V. (2014). Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nature Communications, 5, 4047.  https://doi.org/10.1038/ncomms5047.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Hambright, D., Park, K.-Y., Brooks, M., McKay, R., Swaroop, A., & Nasonkin, I. O. (2012). Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Molecular Vision, 18, 920–936. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22539871.
  22. 22.
    Lamba, D. A., Gust, J., & Reh, T. A. (2009). Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell (Vol. 4).  https://doi.org/10.1016/j.stem.2008.10.015.
  23. 23.
    Decembrini, S., Koch, U., Radtke, F., Moulin, A., & Arsenijevic, Y. (2014). Derivation of traceable and transplantable photoreceptors from mouse embryonic stem cells. Stem Cell Reports, 2(6), 853–865.  https://doi.org/10.1016/j.stemcr.2014.04.010.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Taylor, A. W. (2016). Ocular immune privilege and transplantation. Frontiers in Immunology, 7, 37.  https://doi.org/10.3389/fimmu.2016.00037.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Masli, S., & Vega, J. L. (2010). Ocular immune privilege sites (pp. 449–458). Totowa: Humana Press.  https://doi.org/10.1007/978-1-60761-869-0_28.Google Scholar
  26. 26.
    Ishida, K., Panjwani, N., Cao, Z., & Streilein, J. W. (2003). Participation of pigment epithelium in ocular immune privilege. 3. Epithelia cultured from iris, ciliary body, and retina suppress T-cell activation by partially non-overlapping mechanisms. Ocular Immunology and Inflammation, 11(2), 91–105.  https://doi.org/10.1076/ocii.11.2.91.15914.CrossRefPubMedGoogle Scholar
  27. 27.
    Farber, D. B., Flannery, J. G., & Bowes-Rickman, C. (1994). The rd mouse story: seventy years of research on an animal model of inherited retinal degeneration. Progress in Retinal and Eye Research, 13(1), 31–64.  https://doi.org/10.1016/1350-9462(94)90004-3.CrossRefGoogle Scholar
  28. 28.
    West, E. L., Gonzalez-Cordero, A., Hippert, C., Osakada, F., Martinez-Barbera, J. P., Pearson, R. A., … Ali, R. R. (2012). Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells (Dayton, Ohio), 30(7), 1424–1435.  https://doi.org/10.1002/stem.1123.CrossRefGoogle Scholar
  29. 29.
    MacLaren, R. E., Pearson, R. A., MacNeil, A., Douglas, R. H., Salt, T. E., Akimoto, M., … Ali, R. R. (2006). Retinal repair by transplantation of photoreceptor precursors. Nature, 444(7116), 203–207.  https://doi.org/10.1038/nature05161.CrossRefPubMedGoogle Scholar
  30. 30.
    Seiler, M. J., & Aramant, R. B. (2012). Cell replacement and visual restoration by retinal sheet transplants. Progress in Retinal and Eye Research, 31(6), 661–687.  https://doi.org/10.1016/j.preteyeres.2012.06.003.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mandai, M., Fujii, M., Hashiguchi, T., Sunagawa, G. A., Ito, S., Sun, J., … Takahashi, M. (2017). iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Reports, 8(2), 489.  https://doi.org/10.1016/j.stemcr.2017.01.018.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gonzalez-Cordero, A., West, E. L., Pearson, R. A., Duran, Y., Carvalho, L. S., Chu, C. J., … Ali, R. R. (2013). Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nature Biotechnology, 31(8), 741–747.  https://doi.org/10.1038/nbt.2643.CrossRefPubMedGoogle Scholar
  33. 33.
    Tucker, B. A., Park, I.-H., Qi, S. D., Klassen, H. J., Jiang, C., Yao, J., … Young, M. J. (2011). Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS ONE, 6(4), e18992.  https://doi.org/10.1371/journal.pone.0018992.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Osakada, F., Ikeda, H., Mandai, M., Wataya, T., Watanabe, K., Yoshimura, N., … Takahashi, M. (2008). Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nature Biotechnology, 26(2), 215–224.  https://doi.org/10.1038/nbt1384.CrossRefPubMedGoogle Scholar
  35. 35.
    Hirami, Y., Osakada, F., Takahashi, K., Okita, K., Yamanaka, S., Ikeda, H., … Takahashi, M. (2009). Generation of retinal cells from mouse and human induced pluripotent stem cells. Neuroscience Letters, 458(3), 126–131.  https://doi.org/10.1016/j.neulet.2009.04.035.CrossRefPubMedGoogle Scholar
  36. 36.
    Kajiwara, M., Aoi, T., Okita, K., Takahashi, R., Inoue, H., Takayama, N., … Yamanaka, S. (2012). Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12538–12543.  https://doi.org/10.1073/pnas.1209979109.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Abyzov, A., Mariani, J., Palejev, D., Zhang, Y., Haney, M. S., Tomasini, L., … Vaccarino, F. M. (2012). Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature, 492(7429), 438–442.  https://doi.org/10.1038/nature11629.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hiler, D., Chen, X., Hazen, J., Kupriyanov, S., Carroll, P. A., Qu, C., … Dyer, M. A. (2015). Quantification of retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors. Cell Stem Cell, 17(1), 101–115.  https://doi.org/10.1016/j.stem.2015.05.015.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., … Sasai, Y. (2011). Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 472(7341), 51–56.  https://doi.org/10.1038/nature09941.CrossRefPubMedGoogle Scholar
  40. 40.
    Eiraku, M., & Sasai, Y. (2012). Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nature Protocols, 7(1), 69–79.  https://doi.org/10.1038/nprot.2011.429.CrossRefGoogle Scholar
  41. 41.
    Lidgerwood, G. E., Lim, S. Y., Crombie, D. E., Ali, R., Gill, K. P., Hernández, D., … Pébay, A. (2016). Defined medium conditions for the induction and expansion of human pluripotent stem cell-derived retinal pigment epithelium. Stem Cell Reviews and Reports, 12(2), 179–188.  https://doi.org/10.1007/s12015-015-9636-2.CrossRefPubMedGoogle Scholar
  42. 42.
    Meyer, J. S., Shearer, R. L., Capowski, E. E., Wright, L. S., Wallace, K. A., McMillan, E. L., … Gamm, D. M. (2009). Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proceedings of the National Academy of Sciences, 106(39), 16698–16703.  https://doi.org/10.1073/pnas.0905245106.CrossRefGoogle Scholar
  43. 43.
    Naujok, O., Diekmann, U., & Lenzen, S. (2014). The generation of definitive endoderm from human embryonic stem cells is initially independent from Activin A but requires canonical Wnt-signaling. Stem Cell Reviews and Reports, 10(4), 480–493.  https://doi.org/10.1007/s12015-014-9509-0.CrossRefPubMedGoogle Scholar
  44. 44.
    Jha, B. S., Rao, M., & Malik, N. (2015). Motor neuron differentiation from pluripotent stem cells and other intermediate proliferative precursors that can be discriminated by lineage specific reporters. Stem Cell Reviews and Reports, 11(1), 194–204.  https://doi.org/10.1007/s12015-014-9541-0.CrossRefPubMedGoogle Scholar
  45. 45.
    Chen, H. Y., Kaya, K. D., Dong, L., & Swaroop, A. (2016). Three-dimensional retinal organoids from mouse pluripotent stem cells mimic in vivo development with enhanced stratification and rod photoreceptor differentiation. Molecular Vision, 22, 1077–1094. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/27667917.
  46. 46.
    Kelava, I., & Lancaster, M. A. (2016). Stem cell models of human brain development. Cell Stem Cell, 18(6), 736–748.  https://doi.org/10.1016/j.stem.2016.05.022.CrossRefPubMedGoogle Scholar
  47. 47.
    Qian, X., Nguyen, H. N., Song, M. M., Hadiono, C., Ogden, S. C., Hammack, C., … Ming, G. (2016). Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell, 165(5), 1238–1254.  https://doi.org/10.1016/j.cell.2016.04.032.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Neural and Behavioral SciencesPennsylvania State University College of MedicineHersheyUSA

Personalised recommendations