Stem Cell Reviews and Reports

, Volume 13, Issue 5, pp 587–597 | Cite as

A New Chapter for Mesenchymal Stem Cells: Decellularized Extracellular Matrices

  • Yagiz AnasizEmail author
  • Riza Koksal Ozgul
  • Duygu Uckan-Cetinkaya


From orthopedic to neurological disorders, stem cells are used as platforms to understand disease mechanisms and considered as novel and promising treatment options, especially when the valid therapeutic approaches are unavailable or ineffective. There are different stem cell types in the literature, however the spindle-shaped, colony forming and multilineage-differentiating cells, also known as mesenchymal stem cells (MSC) are very popular, as MSC can be isolated from different tissues with minimal ethical concerns and without tumor formations, which make them easily accessible and widely used in vitro and in vivo studies. In the literature, MSC have been shown to have therapeutic effects and orchestrate the healing process via their mobilization, migration, differentiation capacities, immunomodulation properties and/or secretion of bioactive factors. Nowadays, MSC derived extracellular matrices (ECM), which are part of the secreted/produced bioactive molecules from MSC; draw attention of researchers due to their key roles in cell biology. Several groups have isolated ECM from in vitro cultured MSC using different methods of decellularization techniques for tissue-engineering approaches. According to current knowledge, decellularized ECM (dECM) influence growth, adhesion, differentiation, migration, apoptosis, proliferation, and phenotype of cells, covering almost all cellular events. In this comprehensive review we focused on MSC and the isolation methods and effects of MSC derived dECM (MSC-dECM).


Mesenchymal stem cell Extracellular matrix Decellularization Tissue engineering Regenerative medicine 



This article does not contain any studies with human participants or animals performed by any of the authors. Riza Koksal Ozgul acknowledges the financial supports of TUBITAK (Grant Number: 213S006 and 115S304) and Hacettepe University Scientific Research Coordination Unit (Project Number: THD-12181). Yagiz Anasiz acknowledges TUBITAK BIDEB-2211 for the National PhD Scholarship Program.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rubin, L. L., & Haston, K. M. (2011). Stem cell biology and drug discovery. BMC Biology, 9, 42.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Zhang, L., et al. (2014). Emerging approaches in predictive toxicology. Environmental and Molecular Mutagenesis, 55(9), 679–688.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Eggan, K. (2008). Using stem cells and reprogramming to understand disease. Regenerative Medicine, 3(6), 799–801.PubMedCrossRefGoogle Scholar
  4. 4.
    Mikkola, H. K., & Orkin, S. H. (2006). The journey of developing hematopoietic stem cells. Development, 133(19), 3733–3744.PubMedCrossRefGoogle Scholar
  5. 5.
    Tabar, V., & Studer, L. (2014). Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nature Reviews. Genetics, 15(2), 82–92.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Li, M. D., Atkins, H., & Bubela, T. (2014). The global landscape of stem cell clinical trials. Regenerative Medicine, 9(1), 27–39.PubMedCrossRefGoogle Scholar
  7. 7.
    Mendicino, M., et al. (2014). MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell, 14(2), 141–145.PubMedCrossRefGoogle Scholar
  8. 8.
    Wei, X., et al. (2013). Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacologica Sinica, 34(6), 747–754.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Pourgholaminejad, A., et al. (2016). The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells. Cytokine, 85, 51–60.PubMedCrossRefGoogle Scholar
  10. 10.
    van Poll, D., et al. (2008). Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology, 47(5), 1634–1643.PubMedCrossRefGoogle Scholar
  11. 11.
    Meyerrose, T., et al. (2010). Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Advanced Drug Delivery Reviews, 62(12), 1167–1174.PubMedCrossRefGoogle Scholar
  12. 12.
    Roche, S., et al. (2013). Comparative analysis of protein expression of three stem cell populations: models of cytokine delivery system in vivo. International Journal of Pharmaceutics, 440(1), 72–82.PubMedCrossRefGoogle Scholar
  13. 13.
    Tajbakhsh, S. (2009). Stem cell: What’s in a name? Google Scholar
  14. 14.
    Wonders, C. (2016). Glossary of stem cell-related terms. Cited 2016; Available from:
  15. 15.
    Alvarez, C. V., et al. (2012). Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells. Journal of Molecular Endocrinology, 49(2), R89–R111.PubMedCrossRefGoogle Scholar
  16. 16.
    de Wert, G., & Mummery, C. (2003). Human embryonic stem cells: research, ethics and policy. Human Reproduction, 18(4), 672–682.PubMedCrossRefGoogle Scholar
  17. 17.
    Hurlbut, W. B. (2006). Framing the future: embryonic stem cells, ethics and the emerging era of developmental biology. Pediatric Research, 59(4 Pt 2), 4R–12R.PubMedCrossRefGoogle Scholar
  18. 18.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedCrossRefGoogle Scholar
  19. 19.
    Gonzalez, F., Boue, S., & Izpisua Belmonte, J. C. (2011). Methods for making induced pluripotent stem cells: reprogramming a la carte. Nature Reviews. Genetics, 12(4), 231–242.PubMedCrossRefGoogle Scholar
  20. 20.
    Bilic, J., & Belmonte, J. C. I. (2012). Concise review: induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart? Stem Cells, 30(1), 33–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Ogaki, S., et al. (2015). A cost-effective system for differentiation of intestinal epithelium from human induced pluripotent stem cells. Science Reports, 5, 17297.CrossRefGoogle Scholar
  22. 22.
    Beers, J., et al. (2015). A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture. Science Reports, 5, 11319.CrossRefGoogle Scholar
  23. 23.
    Yaffe, M. P., Noggle, S. A., & Solomon, S. L. (2016). Raising the standards of stem cell line quality. Nature Cell Biology, 18(3), 236–237.PubMedCrossRefGoogle Scholar
  24. 24.
    Baghbaderani, B. A., et al. (2015). cGMP-manufactured human induced pluripotent stem cells are available for pre-clinical and clinical applications. Stem Cell Reports, 5(4), 647–659.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Trounson, A., & DeWitt, N. D. (2016). Pluripotent stem cells progressing to the clinic. Nature Reviews. Molecular Cell Biology, 17(3), 194–200.PubMedCrossRefGoogle Scholar
  26. 26.
    Plaks, V., Kong, N., & Werb, Z. (2015). The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell, 16(3), 225–238.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Najumudeen, A. K., et al. (2016). Cancer stem cell drugs target K-ras signaling in a stemness context. Oncogene, 35(40), 5248–5262.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chen, K., Huang, Y. H., & Chen, J. L. (2013). Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacologica Sinica, 34(6), 732–740.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Nassar, D., & Blanpain, C. (2016). Cancer stem cells: basic concepts and therapeutic implications. Annual Review of Pathology, 11, 47–76.PubMedCrossRefGoogle Scholar
  30. 30.
    S, S. F., et al. (2016). In vitro models of cancer stem cells and clinical applications. BMC Cancer, 16(Suppl 2), 738.Google Scholar
  31. 31.
    Jones, D. L., & Wagers, A. J. (2008). No place like home: anatomy and function of the stem cell niche. Nature Reviews Molecular Cell Biology, 9(1), 11–21.PubMedCrossRefGoogle Scholar
  32. 32.
    Montagnani, S., et al. (2016). Adult stem cells in tissue maintenance and regeneration. Stem Cells International, 2016, 7362879.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Li, L., & Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965), 542–545.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rumman, M., Dhawan, J., & Kassem, M. (2015). Concise review: quiescence in adult stem cells: biological significance and relevance to tissue regeneration. Stem Cells, 33(10), 2903–2912.PubMedCrossRefGoogle Scholar
  35. 35.
    Goichberg, P. (2016). Current understanding of the pathways involved in adult stem and progenitor cell migration for tissue homeostasis and repair. Stem Cell Reviews.Google Scholar
  36. 36.
    Cheung, T. H., & Rando, T. A. (2013). Molecular regulation of stem cell quiescence. Nature Reviews. Molecular Cell Biology, 14(6), 329–340.PubMedCrossRefGoogle Scholar
  37. 37.
    Knoepfler, P. S. (2009). Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells, 27(5), 1050–1056.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Herberts, C. A., Kwa, M. S., & Hermsen, H. P. (2011). Risk factors in the development of stem cell therapy. Journal of Translational Medicine, 9, 29.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Visvader, J. E., & Clevers, H. (2016). Tissue-specific designs of stem cell hierarchies. Nature Cell Biology, 18(4), 349–355.PubMedCrossRefGoogle Scholar
  40. 40.
    Blanpain, C., Horsley, V., & Fuchs, E. (2007). Epithelial stem cells: turning over new leaves. Cell, 128(3), 445–458.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Caplan, A. I. (2015). Are all adult stem cells the same? regenerative engineering and translational. Medicine, 1(1), 4–10.Google Scholar
  42. 42.
    Eaves, C. J. (2015). Hematopoietic stem cells: concepts, definitions, and the new reality. Blood, 125(17), 2605–2613.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bianco, P., Robey, P. G., & Simmons, P. J. (2008). Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell, 2(4), 313–319.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Minguell, J. J., Erices, A., & Conget, P. (2001). Mesenchymal stem cells. Experimental Biology and Medicine (Maywood), 226(6), 507–520.CrossRefGoogle Scholar
  45. 45.
    Caplan, A. I., & Correa, D. (2011). The MSC: an injury drugstore. Cell Stem Cell, 9(1), 11–15.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641–650.PubMedCrossRefGoogle Scholar
  47. 47.
    Fernandez, M., et al. (1997). Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transplantation, 20(4), 265–271.PubMedCrossRefGoogle Scholar
  48. 48.
    Pittenger, M. F., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.PubMedCrossRefGoogle Scholar
  49. 49.
    Gronthos, S., et al. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Campagnoli, C., et al. (2001). Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 98(8), 2396–2402.PubMedCrossRefGoogle Scholar
  51. 51.
    De Bari, C., et al. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis and Rheumatism, 44(8), 1928–1942.PubMedCrossRefGoogle Scholar
  52. 52.
    Toma, J. G., et al. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3(9), 778–784.PubMedCrossRefGoogle Scholar
  53. 53.
    Zuk, P. A., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7(2), 211–228.PubMedCrossRefGoogle Scholar
  54. 54.
    In ‘tAnker, P.S., et al (2003). Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 102(4), 1548–1549.CrossRefGoogle Scholar
  55. 55.
    In ‘t Anker, P. S., et al. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 22(7), 1338–1345.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang, H. S., et al. (2004). Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells, 22(7), 1330–1337.PubMedCrossRefGoogle Scholar
  57. 57.
    Kolaparthy, L. K., et al. (2015). Adipose tissue—adequate, accessible regenerative material. International Journal of Stem Cells, 8(2), 121–127.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Siegel, G., et al. (2013). Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Medicine, 11, 146.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Oberbauer, E., et al. (2015). Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regeneration (Lond), 4, 7.Google Scholar
  60. 60.
    Pendleton, C., et al. (2013). Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas. Plos One, 8(3).Google Scholar
  61. 61.
    Li, J., et al. (2011). Factors affecting mesenchymal stromal cells yield from bone marrow aspiration. Chinese Journal of Cancer Research, 23(1), 43–48.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Choudhery, M. S., et al. (2014). Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. Journal of Translational Medicine, 12, 8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Fossett, E. & Khan, W.S. (2012). Optimising human mesenchymal stem cell numbers for clinical application: a literature review. Stem Cells International, 2012, 465259.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Rosenbaum, A. J., Grande, D. A., & Dines, J. S. (2008). The use of mesenchymal stem cells in tissue engineering: a global assessment. Organogenesis, 4(1), 23–27.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Dominici, M., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8(4), 315–317.PubMedCrossRefGoogle Scholar
  66. 66.
    Ning, H., et al. (2011). Mesenchymal stem cell marker Stro-1 is a 75 kd endothelial antigen. Biochemical and Biophysical Research Communications, 413(2), 353–357.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Xu, J., et al. (2009). Multiple differentiation capacity of STRO-1+/CD146 + PDL mesenchymal progenitor cells. Stem Cells and Development, 18(3), 487–496.PubMedCrossRefGoogle Scholar
  68. 68.
    Alvarez, R., et al. (2015). Single CD271 marker isolates mesenchymal stem cells from human dental pulp. International Journal of Oral Science, 7(4), 205–212.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sanchez-Ramos, J., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology, 164(2), 247–256.PubMedCrossRefGoogle Scholar
  70. 70.
    Toma, C., et al. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93–98.PubMedCrossRefGoogle Scholar
  71. 71.
    Kicic, A., et al. (2003). Differentiation of marrow stromal cells into photoreceptors in the rat eye. Journal of Neuroscience, 23(21), 7742–7749.PubMedGoogle Scholar
  72. 72.
    Lee, K. D., et al. (2004). In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 40(6), 1275–1284.PubMedCrossRefGoogle Scholar
  73. 73.
    Oswald, J., et al. (2004). Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells, 22(3), 377–384.PubMedCrossRefGoogle Scholar
  74. 74.
    Arnhold, S., et al. (2006). Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats. Investigative Ophthalmology & Visual Science, 47(9), 4121–4129.CrossRefGoogle Scholar
  75. 75.
    Qian, H., et al. (2008). Bone marrow mesenchymal stem cells ameliorate rat acute renal failure by differentiation into renal tubular epithelial-like cells. International Journal of Molecular Medicine, 22(3), 325–332.PubMedGoogle Scholar
  76. 76.
    Keating, A. (2012). Mesenchymal stromal cells: new directions. Cell Stem Cell, 10(6), 709–716.PubMedCrossRefGoogle Scholar
  77. 77.
    Squillaro, T., Peluso, G., & Galderisi, U. (2016). Clinical trials with mesenchymal stem cells: an update. Cell Transplantation, 25(5), 829–848.PubMedCrossRefGoogle Scholar
  78. 78.
    El-Badri, N. S., Maheshwari, A., & Sanberg, P. R. (2004). Mesenchymal stem cells in autoimmune disease. Stem Cells and Development, 13(5), 463–472.PubMedCrossRefGoogle Scholar
  79. 79.
    Drela, K., et al. (2013). Human mesenchymal stem cells in the treatment of neurological diseases. Acta Neurobiologiae Experimentalis (Wars), 73(1), 38–56.Google Scholar
  80. 80.
    Razavi Tousi, S. M., et al. (2016). Improvement of heart failure by human amniotic mesenchymal stromal cell transplantation in rats. Journal Tehran Heart Center, 11(3), 123–138.Google Scholar
  81. 81.
    Olson, S. D., et al. (2012). Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington’s disease. Molecular Neurobiology, 45(1), 87–98.PubMedCrossRefGoogle Scholar
  82. 82.
    Mohammadi, M., et al. (2016). Mesenchymal stem cell: a new horizon in cancer gene therapy. Cancer Gene Therapy, 23(9), 285–286.PubMedCrossRefGoogle Scholar
  83. 83.
    Patel, D. M., Shah, J., & Srivastava, A. S. (2013). Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells International, 2013, 496218.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ren, G., et al. (2012). Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Translation Medicine, 1(1), 51–58.CrossRefGoogle Scholar
  85. 85.
    Spaeth, E. L., Kidd, S., & Marini, F. C. (2012). Tracking inflammation-induced mobilization of mesenchymal stem cells. Methods in Molecular Biology, 904, 173–190.PubMedGoogle Scholar
  86. 86.
    Nakagawa, H., et al. (2005). Human mesenchymal stem cells successfully improve skin-substitute wound healing. British Journal of Dermatology, 153(1), 29–36.PubMedCrossRefGoogle Scholar
  87. 87.
    Nagaya, N., et al. (2004). Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. American Journal of Physiology-Heart and Circulatory Physiology, 287(6), H2670–H2676.PubMedCrossRefGoogle Scholar
  88. 88.
    Al-Khaldi, A., et al. (2003). Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Annals of Thoracic Surgery, 75(1), 204–209.PubMedCrossRefGoogle Scholar
  89. 89.
    Sasaki, M., et al. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. Journal of Immunology, 180(4), 2581–2587.CrossRefGoogle Scholar
  90. 90.
    Ryan, J. M., et al. (2005). Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation, 2, 8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.PubMedCrossRefGoogle Scholar
  92. 92.
    Spaggiari, G. M., et al. (2009). MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood, 113(26), 6576–6583.PubMedCrossRefGoogle Scholar
  93. 93.
    Tang, Y. L., et al. (2005). Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Annals of Thoracic Surgery, 80(1), 229–237.PubMedCrossRefGoogle Scholar
  94. 94.
    Chen, L., et al. (2014). Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One, 9(4), e96161.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Chen, L., et al. (2015). Correction: conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One, 10(12), e0145565.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Baer, P. C. (2014). Adipose-derived mesenchymal stromal/stem cells: an update on their phenotype in vivo and in vitro. World. Journal of Stem Cells, 6(3), 256–265.CrossRefGoogle Scholar
  97. 97.
    Jin, H. J., et al. (2013). Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. International Journal of Molecular Sciences, 14(9), 17986–18001.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Jo, C. H., et al. (2014). Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells, 32(5), 1254–1266.PubMedCrossRefGoogle Scholar
  99. 99.
    Kebriaei, P., et al. (2009). Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biology of Blood and Marrow Transplantation, 15(7), 804–811.PubMedCrossRefGoogle Scholar
  100. 100.
    Trounson, A., & McDonald, C. (2015). Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell, 17(1), 11–22.PubMedCrossRefGoogle Scholar
  101. 101.
    Majd, H., et al. (2011). Dynamic expansion culture for mesenchymal stem cells. Methods in Molecular Biology, 698, 175–188.PubMedCrossRefGoogle Scholar
  102. 102.
    Saleh, F. A., et al. (2012). Three-dimensional in vitro culture techniques for mesenchymal stem cells. Methods in Molecular Biology, 916, 31–45.PubMedCrossRefGoogle Scholar
  103. 103.
    Cesarz, Z., & Tamama, K. (2016). Spheroid culture of mesenchymal stem cells. Stem Cells International, 2016, 9176357.PubMedCrossRefGoogle Scholar
  104. 104.
    Schirmaier, C., et al. (2014). Scale-up of adipose tissue-derived mesenchymal stem cell production in stirred single-use bioreactors under low-serum conditions. Engineering in Life Sciences, 14(3), 292–303.CrossRefGoogle Scholar
  105. 105.
    Diez, J.M., et al. (2015). Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools. Stem Cell Research & Therapy, 6.Google Scholar
  106. 106.
    Hagmann, S., et al. (2013). Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells. BMC Musculoskeletal Disorders, 14.Google Scholar
  107. 107.
    Meuleman, N., et al. (2006). Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium. European Journal of Haematology, 76(4), 309–316.PubMedCrossRefGoogle Scholar
  108. 108.
    Oikonomopoulos, A., et al. (2015). Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Science Reports, 5, 16570.CrossRefGoogle Scholar
  109. 109.
    Escobar, C. H. & Chaparro, O. (2016). Xeno-free extraction, culture, and cryopreservation of human adipose-derived mesenchymal stem cells. Stem Cells Translation Medicine, 5(3), 358–365.CrossRefGoogle Scholar
  110. 110.
    Kean, T. J., et al. (2013). MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells International, 2013, 732742.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Lucas, G. & Chase, M.C.V. (2013). Mesenchymal stem cell therapy. 1 ed. Stem cell biology and regenerative medicine., 2013: Humana Press. XII, 456.Google Scholar
  112. 112.
    Maidhof, R., et al. (2016). Timing of mesenchymal stem cell delivery impacts the fate and therapeutic potential in intervertebral disc repair. Journal of Orthopaedic Research.Google Scholar
  113. 113.
    You, D., et al. (2016). Bone marrow-derived mesenchymal stromal cell therapy in a rat model of cavernous nerve injury: Preclinical study for approval. Cytotherapy, 18(7), 870–880.PubMedCrossRefGoogle Scholar
  114. 114.
    Sheashaa, H., et al. (2016). Protective effect of adipose-derived mesenchymal stem cells against acute kidney injury induced by ischemia-reperfusion in Sprague-Dawley rats. Experimental Therapeutic Medicine, 11(5), 1573–1580.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Li, S., et al. (2016). Advances in the treatment of ischemic diseases by mesenchymal stem cells. Stem Cells International, 2016, 5896061.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Meamar, R., et al. (2016). The role of stem cell therapy in multiple sclerosis: an overview of the current status of the clinical studies. Advances Biomedical Research, 5, 46.CrossRefGoogle Scholar
  117. 117.
    Griffin, T. P., et al. (2016). The promise of mesenchymal stem cell therapy for diabetic kidney disease. Current Diabetes Reports, 16(5), 42.PubMedCrossRefGoogle Scholar
  118. 118.
    Madrigal, M., Rao, K. S., & Riordan, N. H. (2014). A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. Journal of Translational Medicine, 12.Google Scholar
  119. 119.
    Gnecchi, M., et al. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Angoulvant, D., et al. (2011). Mesenchymal stem cell conditioned media attenuates in vitro and ex vivo myocardial reperfusion injury. Journal of Heart and Lung Transplantation, 30(1), 95–102.PubMedCrossRefGoogle Scholar
  121. 121.
    Drago, D., et al. (2013). The stem cell secretome and its role in brain repair. Biochimie, 95(12), 2271–2285.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Adamowicz, J., Pokrywczynska, M., & Drewa, T. (2014). Conditioned medium derived from mesenchymal stem cells culture as a intravesical therapy for cystitis interstitials. Medical Hypotheses, 82(6), 670–673.PubMedCrossRefGoogle Scholar
  123. 123.
    Chang, M. C., et al. (2014). Conditioned medium derived from mesenchymal stem cells overexpressing HPV16 E6E7 dramatically improves ischemic limb. Journal of Molecular and Cellular Cardiology, 72, 339–349.PubMedCrossRefGoogle Scholar
  124. 124.
    Chua, A., et al. (2014). Hair follicle dermal sheath derived mesenchymal stem cells: in-vitro characterization and effects of its conditioned medium on cutaneous wound healing. Cytotherapy, 16(4), S86–S86.CrossRefGoogle Scholar
  125. 125.
    Gao, D. Y., et al. (2014). MSC attenuate diabetes-induced functional impairment in adipocytes via secretion of insulin-like growth factor-1. Biochemical and Biophysical Research Communications, 452(1), 99–105.PubMedCrossRefGoogle Scholar
  126. 126.
    Baglio, S. R., D. M. Pegtel, and Baldini, N.(2012). Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Frontiers in Physiology, 3.Google Scholar
  127. 127.
    Rani, S., et al. (2015). Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Molecular Therapy, 23(5), 812–823.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Skalnikova, H. K. (2013). Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie, 95(12), 2196–2211.CrossRefGoogle Scholar
  129. 129.
    Kalinina, N., et al. (2015). Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Research & Therapy, 6, 221.CrossRefGoogle Scholar
  130. 130.
    Kennelly, H., Mahon, B. P., & English, K. (2016). Human mesenchymal stromal cells exert HGF dependent cytoprotective effects in a human relevant pre-clinical model of COPD. Science Reports, 6, 38207.CrossRefGoogle Scholar
  131. 131.
    Kwon, H. M., et al. (2014). Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis. Vascular Pharmacology, 63(1), 19–28.PubMedCrossRefGoogle Scholar
  132. 132.
    van Buul, G. M., et al. (2012). Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explant culture. Osteoarthritis and Cartilage, 20(10), 1186–1196.PubMedCrossRefGoogle Scholar
  133. 133.
    Amable, P. R., et al. (2014). Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Research & Therapy, 5(2), 53.CrossRefGoogle Scholar
  134. 134.
    Sainio, A., & Jarvelainen, H. (2014). Extracellular matrix macromolecules: potential tools and targets in cancer gene therapy. Molecular Cell Therapy, 2, 14.CrossRefGoogle Scholar
  135. 135.
    Hynes, R. O. (2009). The extracellular matrix: not just pretty fibrils. Science, 326(5957), 1216–1219.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Chen, X. D., et al. (2007). Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. Journal of Bone and Mineral Research, 22(12), 1943–1956.PubMedCrossRefGoogle Scholar
  137. 137.
    Lindner, U., et al. (2010). Mesenchymal stem or stromal cells: toward a better understanding of their biology? Transfusion Medicine and Hemotherapy, 37(2), 75–83.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Teixeira, F. G., et al. (2016). Modulation of the mesenchymal stem cell secretome using computer-controlled bioreactors: impact on neuronal cell proliferation, survival and differentiation. Science Reports, 6, 27791.CrossRefGoogle Scholar
  139. 139.
    Konala, V. B., et al. (2016). The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy, 18(1), 13–24.PubMedCrossRefGoogle Scholar
  140. 140.
    Mehlhorn, A. T., et al. (2006). Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Engineering, 12(10), 2853–2862.PubMedCrossRefGoogle Scholar
  141. 141.
    Harvey, A., et al. (2013). Proteomic analysis of the extracellular matrix produced by mesenchymal stromal cells: implications for cell therapy mechanism. PLoS One, 8(11), e79283.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Kim, J., & Ma, T. (2013). Autocrine fibroblast growth factor 2-mediated interactions between human mesenchymal stem cells and the extracellular matrix under varying oxygen tension. Journal of Cellular Biochemistry, 114(3), 716–727.PubMedCrossRefGoogle Scholar
  143. 143.
    Xu, Y., et al. (2016). 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney. Journal of Cellular and Molecular Medicine, 20(7), 1203–1213.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Prewitz, M. C., et al. (2013). Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nature Methods, 10(8), 788–794.Google Scholar
  145. 145.
    Deutsch, E. R., & Guldberg, R. E. (2010). Stem cell-synthesized extracellular matrix for bone repair. Journal of Materials Chemistry, 20(40), 8942–8951.CrossRefGoogle Scholar
  146. 146.
    Watson, C.J., & Dark, J. H. (2012). Organ transplantation: historical perspective and current practice. British Journal of Anaesthetic, 108(Suppl 1), i29–i42.CrossRefGoogle Scholar
  147. 147.
    Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–926.PubMedCrossRefGoogle Scholar
  148. 148.
    Choi, Y. C., et al. (2012). Decellularized extracellular matrix derived from porcine adipose tissue as a xenogeneic biomaterial for tissue engineering. Tissue Engineering Part C. Methods, 18(11), 866–876.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Guo, L., et al. (2015). Preparation and characterization of a novel decellularized fibrocartilage “book” scaffold for use in tissue engineering. PLoS One, 10(12), e0144240.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Badylak, S. F., Taylor, D., & Uygun, K. (2011). Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annual Review of Biomedical Engineering, 13, 27–53.PubMedCrossRefGoogle Scholar
  151. 151.
    Akhyari, P., et al. (2011). The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Engineering Part C. Methods, 17(9), 915–926.PubMedCrossRefGoogle Scholar
  152. 152.
    Jensen, T., et al. (2012). A rapid lung de-cellularization protocol supports embryonic stem cell differentiation in vitro and following implantation. Tissue Engineering Part C. Methods, 18(8), 632–646.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Mazza, G., et al. (2015). Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Science Reports, 5, 13079.CrossRefGoogle Scholar
  154. 154.
    Batchelder, C. A., Martinez, M. L., & Tarantal, A. F. (2015). Natural scaffolds for renal differentiation of human embryonic stem cells for kidney tissue engineering. PLoS One, 10(12), e0143849.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Goh, S. K., et al. (2013). Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials, 34(28), 6760–6772.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Flynn, L. E. (2010). The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials, 31(17), 4715–4724.PubMedCrossRefGoogle Scholar
  157. 157.
    Devarathnam, J., et al. (2014). Optimization of protocols for decellularization of buffalo aorta. Journal of Biomaterials and Tissue Engineering, 4(10), 778–785.CrossRefGoogle Scholar
  158. 158.
    Gardin, C., et al. (2015). Decellularization and delipidation protocols of bovine bone and pericardium for bone grafting and guided bone regeneration procedures. PLoS One, 10(7), e0132344.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Sutherland, A. J., et al. (2015). Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering. PLoS One, 10(5), e0121966.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Syed, O., et al. (2014). Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomaterialia, 10(12), 5043–5054.PubMedCrossRefGoogle Scholar
  161. 161.
    Raghavan, S. S., et al. (2012). Human flexor tendon tissue engineering: decellularization of human flexor tendons reduces immunogenicity in vivo. Tissue Engineering Part A, 18(7–8), 796–805.PubMedCrossRefGoogle Scholar
  162. 162.
    Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27(19), 3675–3683.PubMedGoogle Scholar
  163. 163.
    Crapo, P. M., Gilbert, T. W., & Badylak, S. F. (2011). An overview of tissue and whole organ decellularization processes. Biomaterials, 32(12), 3233–3243.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Rakian, R., et al. (2015). Native extracellular matrix preserves mesenchymal stem cell “stemness” and differentiation potential under serum-free culture conditions. Stem Cell Research Therapy, 6, 235.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Zeiger, A. S., et al. (2012). Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior. PLoS One, 7(5), e37904.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Wei, F., et al. (2012). Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity. Journal of Cellular Physiology, 227(9), 3216–3224.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Prewitz, M. C., et al. (2015). Extracellular matrix deposition of bone marrow stroma enhanced by macromolecular crowding. Biomaterials, 73, 60–69.PubMedCrossRefGoogle Scholar
  168. 168.
    Choi, K. M., et al. (2008). Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. Journal of Bioscience and Bioengineering, 105(6), 586–594.PubMedCrossRefGoogle Scholar
  169. 169.
    Rao Pattabhi, S., Martinez, J. S., & Keller, T. C. 3rd (2014). Decellularized ECM effects on human mesenchymal stem cell stemness and differentiation. Differentiation. 88(4–5): p. 131–43.PubMedCrossRefGoogle Scholar
  170. 170.
    Zeitouni, S., et al. (2012). Human mesenchymal stem cell-derived matrices for enhanced osteoregeneration. Science Translational Medicine, 4(132).Google Scholar
  171. 171.
    Hoshiba, T., et al. (2010). Development of extracellular matrices mimicking stepwise adipogenesis of mesenchymal stem cells. Advanced Materials, 22(28), 3042–3047.PubMedCrossRefGoogle Scholar
  172. 172.
    Cigognini, D., et al. (2016). Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture—a step closer to physiologically relevant in vitro organogenesis. Science Reports, 6, 30746.CrossRefGoogle Scholar
  173. 173.
    Xing, Q., et al. (2015). Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation. Tissue Engineering Part C. Methods, 21(1), 77–87.PubMedCrossRefGoogle Scholar
  174. 174.
    Xing, Q., et al. (2015). Osteogenic differentiation evaluation of an engineered extracellular matrix based tissue sheet for potential periosteum replacement. ACS Applied Materials & Interfaces, 7(41), 23239–23247.CrossRefGoogle Scholar
  175. 175.
    Liu, X., et al. (2016). Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells. Materials Science Engineering C Materials for Biological Applications, 61, 437–448.PubMedCrossRefGoogle Scholar
  176. 176.
    Santiago, J. A., Pogemiller, R., & Ogle, B. M. (2009). Heterogeneous differentiation of human mesenchymal stem cells in response to extended culture in extracellular matrices. Tissue Engineering Part A, 15(12), 3911–3922.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Park, J. S., et al. (2011). The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials, 32(16), 3921–3930.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Lai, Y., et al. (2010). Reconstitution of marrow-derived extracellular matrix ex vivo: a robust culture system for expanding large-scale highly functional human mesenchymal stem cells. Stem Cells and Development, 19(7), 1095–1107.PubMedCrossRefGoogle Scholar
  179. 179.
    Sun, Y., et al. (2011). Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix. Faseb Journal, 25(5), 1474–1485.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Hoch, A. I., et al. (2016). Cell-secreted matrices perpetuate the bone-forming phenotype of differentiated mesenchymal stem cells. Biomaterials, 74, 178–187.PubMedCrossRefGoogle Scholar
  181. 181.
    Choi, D. H., et al. (2014). Multi-lineage differentiation of human mesenchymal stromal cells on the biophysical microenvironment of cell-derived matrix. Cell and Tissue Research, 357(3), 781–792.PubMedCrossRefGoogle Scholar
  182. 182.
    Burns, J. S., et al. (2011). Decellularized matrix from tumorigenic human mesenchymal stem cells promotes neovascularization with galectin-1 dependent endothelial interaction. PLoS One, 6(7), e21888.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Lai, W., et al. (2013). Reconstitution of bone-like matrix in osteogenically differentiated mesenchymal stem cell-collagen constructs: a three-dimensional in vitro model to study hematopoietic stem cell niche. Journal Tissue Engineering, 4, 2041731413508668.CrossRefGoogle Scholar
  184. 184.
    Kolf, C. M., et al. (2015). Nascent osteoblast matrix inhibits osteogenesis of human mesenchymal stem cells in vitro. Stem Cell Research Therapy, 6, 258.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Traphagen, S., & Yelick, P. C. (2009). Reclaiming a natural beauty: whole-organ engineering with natural extracellular materials. Regenerative Medicine, 4(5), 747–758.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Gonzalez-Andrades, M., et al. (2015). Effects of detergent-based protocols on decellularization of corneas with sclerocorneal limbus. evaluation of regional differences. Translation Visualization Science Technology, 4(2), 13.CrossRefGoogle Scholar
  187. 187.
    Gilbert, T. W., Freund, J. M., & Badylak, S. F. (2009). Quantification of DNA in biologic scaffold materials. The Journal of Surgical Research, 152(1), 135–139.PubMedCrossRefGoogle Scholar
  188. 188.
    Hidalgo-Bastida, L. A., & Cartmell, S. H. (2010). Mesenchymal stem cells, osteoblasts and extracellular matrix proteins: enhancing cell adhesion and differentiation for bone tissue engineering. Tissue Engineering Part B: Reviews, 16(4), 405–412.CrossRefGoogle Scholar
  189. 189.
    Scherzer, M. T., et al. (2015). Fibroblast-derived extracellular matrices: an alternative cell culture system that increases metastatic cellular properties. Plos One, 10(9).Google Scholar
  190. 190.
    Sonam, S., et al. (2016). Cell contractility arising from topography and shear flow determines human mesenchymal stem cell fate. Science Reports, 6, 20415.CrossRefGoogle Scholar
  191. 191.
    He, F., et al. (2014). Extracellular matrix modulates the biological effects of melatonin in mesenchymal stem cells. The Journal of Endocrinology, 223(2), 167–180.PubMedCrossRefGoogle Scholar
  192. 192.
    Hoshiba, T., et al. (2009). Development of stepwise osteogenesis-mimicking matrices for the regulation of mesenchymal stem cell functions. The Journal of Biological Chemistry, 284(45), 31164–31173.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Kular, J. K., Basu, S., & Sharma, R. I. (2014). The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. Journal Tissue Engineering, 5, 2041731414557112.CrossRefGoogle Scholar
  194. 194.
    Harvestine, J. N., et al. (2016). Extracellular matrix-coated composite scaffolds promote mesenchymal stem cell persistence and osteogenesis. Biomacromolecules, 17(11), 3524–3531.PubMedCrossRefGoogle Scholar
  195. 195.
    Thibault, R. A., et al. (2010). Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements. Tissue Engineering Part A, 16(2), 431–440.PubMedCrossRefGoogle Scholar
  196. 196.
    Melzer, C., Yang, Y., & Hass, R. (2016). Interaction of MSC with tumor cells. Cell Communication Signal, 14(1), 20.CrossRefGoogle Scholar
  197. 197.
    Bergfeld, S. A., & DeClerck, Y. A. (2010). Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer and Metastasis Reviews, 29(2), 249–261.PubMedCrossRefGoogle Scholar
  198. 198.
    Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Natural Medicines, 19(11), 1423–1437.CrossRefGoogle Scholar
  199. 199.
    Chantrain, C. F., et al. (2008). Bone marrow microenvironment and tumor progression. Cancer Microenvironment, 1(1), 23–35.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Lander, A. D., et al. (2012). What does the concept of the stem cell niche really mean today? BMC Biology, 10, 19.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Morrison, S. J., & Scadden, D. T. (2014). The bone marrow niche for haematopoietic stem cells. Nature, 505(7483), 327–334.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Lipsitz, Y. Y., Timmins, N. E., & Zandstra, P. W. (2016). Quality cell therapy manufacturing by design. Nature Biotechnology, 34(4), 393–400.PubMedCrossRefGoogle Scholar
  203. 203.
    Ullah, I., Subbarao, R. B., & Rho, G. J. (2015)Human mesenchymal stem cells—current trends and future prospective. Bioscience Reports, 35(2).Google Scholar
  204. 204.
    Frantz, C., Stewart, K. M., & Weaver, V. M. (2010). The extracellular matrix at a glance. Journal of Cell Science, 123(24), 4195–4200.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    DeQuach, J. A., et al. (2010). Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One, 5(9), e13039.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Hynes, R. O., & Naba, A. (2012). Overview of the matrisome–an inventory of extracellular matrix constituents and functions. Cold Spring Harbor Perspectives in Biology, 4(1), a004903.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Schafer, R., Spohn, G., & Baer, P. C. (2016). Mesenchymal stem/stromal cells in regenerative medicine: can preconditioning strategies improve therapeutic efficacy? Transfusion Medicine and Hemotherapy, 43(4), 256–267.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Xu, Y., et al. (2015). Preparation and characterization of bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 103(3), 670–678.PubMedCrossRefGoogle Scholar
  209. 209.
    Lin, H., et al. (2012). Influence of decellularized matrix derived from human mesenchymal stem cells on their proliferation, migration and multi-lineage differentiation potential. Biomaterials, 33(18), 4480–4489.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Stem Cell Sciences, Graduate School of Health SciencesHacettepe UniversityAnkaraTurkey
  2. 2.Stem Cell Research and Application Center (PEDI-STEM)Hacettepe UniversityAnkaraTurkey
  3. 3.Pediatric Metabolism Unit, Institute of Child HealthHacettepe UniversityAnkaraTurkey
  4. 4.Hematology Unit, Department of Child Health and Diseases, Faculty of MedicineHacettepe UniversityAnkaraTurkey

Personalised recommendations