Stem Cell Reviews and Reports

, Volume 13, Issue 3, pp 347–363 | Cite as

Anti-Cancer Drug Validation: the Contribution of Tissue Engineered Models

  • Mariana R. Carvalho
  • Daniela Lima
  • Rui L. Reis
  • Joaquim M. Oliveira
  • Vitor M. Correlo


Drug toxicity frequently goes concealed until clinical trials stage, which is the most challenging, dangerous and expensive stage of drug development. Both the cultures of cancer cells in traditional 2D assays and animal studies have limitations that cannot ever be unraveled by improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. Considering the NCI60, a panel of 60 cancer cell lines representative of 9 different cancer types: leukemia, lung, colorectal, central nervous system (CNS), melanoma, ovarian, renal, prostate and breast, we propose to review current “state of art” on the 9 cancer types specifically addressing the 3D tissue models that have been developed and used in drug discovery processes as an alternative to complement their study.


Cancer Tissue engineering Biomaterials 3D Drug discovery 


  1. 1.
    Calvert, H. (2014). Cancer Drug Design and Discovery. In S. Neidle (Ed.), Cancer Drug Design and Discovery (Second ed., pp. xi–xiii). San Diego: Academic Press.CrossRefGoogle Scholar
  2. 2.
    Alemany-Ribes, M., & Semino, C. E. (2014). Bioengineering 3D environments for cancer models. Advanced Drug Delivery Reviews, 79-80, 40–49.PubMedCrossRefGoogle Scholar
  3. 3.
    WHO. Essential drugs for cancer chemotherapy. (1994). WHO consultation. Bulletin of the World Health Organization, 72, 693–698.Google Scholar
  4. 4.
    Burger, A., & Fiebig, H.-H. (2004). Preclinical screening for new anticancer agents. In H. McLeod (Ed.), Figg W (pp. 29–44). Handbook of Anticancer Pharmacokinetics and Pharmacodynamics: Humana Press.Google Scholar
  5. 5.
    Burger, A. M., & Fiebig, H.-H. (2014). Preclinical screening for new anticancer agents. Handbook of Anticancer Pharmacokinetics and Pharmacodynamics: Springer, 23–38.Google Scholar
  6. 6.
    Nietzer, S., Dandekar, G., Walles, H., Wasik, M. (2012). Three dimensional tissue models for research in oncology: INTECH open access Publisher.Google Scholar
  7. 7.
    Hutchinson, L., & Kirk, R. (2011). High drug attrition rates--where are we going wrong? Nature Reviews. Clinical Oncology, 8, 189–190.PubMedCrossRefGoogle Scholar
  8. 8.
    Blatt, N. L., Mingaleeva, R. N., Solovieva, V. V., Khaiboullina, S. F., Lombardi, V. C., & Rizvanov, A. A. (2013). Application of cell and tissue culture systems for anticancer drug screening. World Applied Sciences Journal, 23, 315–325.Google Scholar
  9. 9.
    Shoemaker, R. H. (2006). The NCI60 human tumour cell line anticancer drug screen. Nature Reviews Cancer, 6, 813–823.PubMedCrossRefGoogle Scholar
  10. 10.
    Ross, D. T., Scherf, U., Eisen, M. B., et al. (2000). Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics, 24, 227–235.PubMedCrossRefGoogle Scholar
  11. 11.
    Van Staveren W, Solís DW, Hebrant A, Detours V, Dumont JE, Maenhaut C. (2009). Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells? Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1795, 92–103.Google Scholar
  12. 12.
    Ridky, T. W., Chow, J. M., Wong, D. J., & Khavari, P. A. (2010). Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia. Nature Medicine, 16, 1450–1455.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Feder-Mengus, C., Ghosh, S., Reschner, A., Martin, I., & Spagnoli, G. C. (2008). New dimensions in tumor immunology: what does 3D culture reveal? Trends in Molecular Medicine, 14, 333–340.PubMedCrossRefGoogle Scholar
  14. 14.
    Gurski, L. A., Jha, A. K., Zhang, C., Jia, X., & Farach-Carson, M. C. (2009). Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials, 30, 6076–6085.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Gorlach, A., Herter, P., Hentschel, H., Frosch, P. J., & Acker, H. (1994). Effects of nIFN beta and rIFN gamma on growth and morphology of two human melanoma cell lines: comparison between two- and three-dimensional culture. International Journal of Cancer:Journal International du Cancer, 56, 249–254.PubMedCrossRefGoogle Scholar
  16. 16.
    Chignola, R., Schenetti, A., Andrighetto, G., et al. (2000). Forecasting the growth of multicell tumour spheroids: implications for the dynamic growth of solid tumours. Cell Proliferation, 33, 219–229.PubMedCrossRefGoogle Scholar
  17. 17.
    Wozniak, M. A., Modzelewska, K., Kwong, L., & Keely, P. J. (2004). Focal adhesion regulation of cell behavior. Biochimica et Biophysica Acta, 1692, 103–119.PubMedCrossRefGoogle Scholar
  18. 18.
    Cheema, U., Brown, R. A., Alp, B., & MacRobert, A. J. (2008). Spatially defined oxygen gradients and vascular endothelial growth factor expression in an engineered 3D cell model. Cellular and Molecular Life Sciences: CMLS, 65, 177–186.PubMedCrossRefGoogle Scholar
  19. 19.
    Yamazaki, D., Kurisu, S., & Takenawa, T. (2009). Involvement of Rac and rho signaling in cancer cell motility in 3D substrates. Oncogene, 28, 1570–1583.PubMedCrossRefGoogle Scholar
  20. 20.
    David, L., Dulong, V., Le Cerf, D., Cazin, L., Lamacz, M., & Vannier, J. P. (2008). Hyaluronan hydrogel: an appropriate three-dimensional model for evaluation of anticancer drug sensitivity. Acta Biomaterialia, 4, 256–263.PubMedCrossRefGoogle Scholar
  21. 21.
    Horning, J. L., Sahoo, S. K., Vijayaraghavalu, S., et al. (2008). 3-D tumor model for in vitro evaluation of anticancer drugs. Molecular Pharmaceutics, 5, 849–862.PubMedCrossRefGoogle Scholar
  22. 22.
    Serebriiskii, I., Castello-Cros, R., Lamb, A., Golemis, E. A., & Cukierman, E. (2008). Fibroblast-derived 3D matrix differentially regulates the growth and drug-responsiveness of human cancer cells. Matrix biology : journal of the International Society for Matrix Biology, 27, 573–585.CrossRefGoogle Scholar
  23. 23.
    Wenzel, C., Riefke, B., Grundemann, S., et al. (2014). 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Experimental Cell Research, 323, 131–143.PubMedCrossRefGoogle Scholar
  24. 24.
    Ratner B HA, Schoen F, Lemons J. (2004). Biomaterials science in: Elsevier Academic Press, ed. 3rd edition ed. San Diego.Google Scholar
  25. 25.
    Rimann, M., & Graf-Hausner, U. (2012). Synthetic 3D multicellular systems for drug development. Current Opinion in Biotechnology, 23, 803–809.PubMedCrossRefGoogle Scholar
  26. 26.
    Carvalho, M. R., Lima, D., Reis, R. L., Correlo, V. M., & Oliveira, J. M. (2015). Evaluating biomaterial- and microfluidic-based 3D tumor models. Trends in Biotechnology, 33, 667–678.PubMedCrossRefGoogle Scholar
  27. 27.
    Elliott, N. T., & Yuan, F. (2011). A review of three-dimensional in vitro tissue models for drug discovery and transport studies. Journal of Pharmaceutical Sciences, 100, 59–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Peck, Y., & Wang, D. A. (2013). Three-dimensionally engineered biomimetic tissue models for in vitro drug evaluation: delivery, efficacy and toxicity. Expert Opinion on Drug Delivery, 10, 369–383.PubMedCrossRefGoogle Scholar
  29. 29.
    Tredan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 99, 1441–1454.PubMedCrossRefGoogle Scholar
  30. 30.
    Nyga, A., Cheema, U., & Loizidou, M. (2011). 3D tumour models: novel in vitro approaches to cancer studies. Journal of cell communication and signaling, 5, 239–248.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Fennema, E., Rivron, N., Rouwkema, J., van Blitterswijk, C., & de Boer, J. (2013). Spheroid culture as a tool for creating 3D complex tissues. Trends in Biotechnology, 31, 108–115.PubMedCrossRefGoogle Scholar
  32. 32.
    Chen, Y. A., King, A. D., Shih, H. C., et al. (2011). Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions. Lab on a Chip, 11, 3626–3633.PubMedCrossRefGoogle Scholar
  33. 33.
    Tung, Y. C., Hsiao, A. Y., Allen, S. G., Torisawa, Y. S., Ho, M., & Takayama, S. (2011). High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. The Analyst, 136, 473–478.PubMedCrossRefGoogle Scholar
  34. 34.
    Blehm, B. H., Jiang, N., Kotobuki, Y., & Tanner, K. (2015). Deconstructing the role of the ECM microenvironment on drug efficacy targeting MAPK signaling in a pre-clinical platform for cutaneous melanoma. Biomaterials, 56, 129–139.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Vorsmann, H., Groeber, F., Walles, H., et al. (2013). Development of a human three-dimensional organotypic skin-melanoma spheroid model for in vitro drug testing. Cell Death & Disease, 4, e719.CrossRefGoogle Scholar
  36. 36.
    Loessner, D., Stok, K. S., Lutolf, M. P., Hutmacher, D. W., Clements, J. A., & Rizzi, S. C. (2010). Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials, 31, 8494–8506.PubMedCrossRefGoogle Scholar
  37. 37.
    Loessner, D., Rizzi, S. C., Stok, K. S., et al. (2013). A bioengineered 3D ovarian cancer model for the assessment of peptidase-mediated enhancement of spheroid growth and intraperitoneal spread. Biomaterials, 34, 7389–7400.PubMedCrossRefGoogle Scholar
  38. 38.
    Raghavan, S., Ward, M. R., Rowley, K. R., et al. (2015). Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays. Gynecologic Oncology, 138, 181–189.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    DesRochers, T. M., Suter, L., Roth, A., & Kaplan, D. L. (2013). Bioengineered 3D human kidney tissue, a platform for the determination of nephrotoxicity. PloS One, 8, e59219.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Leeper, A. D., Farrell, J., Williams, L. J., et al. (2012). Determining tamoxifen sensitivity using primary breast cancer tissue in collagen-based three-dimensional culture. Biomaterials, 33, 907–915.PubMedCrossRefGoogle Scholar
  41. 41.
    Dhiman, H. K., Ray, A. R., & Panda, A. K. (2005). Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen. Biomaterials, 26, 979–986.PubMedCrossRefGoogle Scholar
  42. 42.
    Li, Q., Chen, C., Kapadia, A., et al. (2011). 3D models of epithelial-mesenchymal transition in breast cancer metastasis: high-throughput screening assay development, validation, and pilot screen. Journal of Biomolecular Screening, 16, 141–154.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang, Y. C., Chao, T. K., Chang, C. C., Yo, Y. T., Yu, M. H., & Lai, H. C. (2013). Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells. PloS One, 8, e74538.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Li, Q., Chow, A. B., & Mattingly, R. R. (2010). Three-dimensional overlay culture models of human breast cancer reveal a critical sensitivity to mitogen-activated protein kinase kinase inhibitors. The Journal of Pharmacology and Experimental Therapeutics, 332, 821–828.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lan, S. F., & Starly, B. (2011). Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities. Toxicology and Applied Pharmacology, 256, 62–72.PubMedCrossRefGoogle Scholar
  46. 46.
    de la Puente, P., Muz, B., Gilson, R. C., et al. (2015). 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma. Biomaterials, 73, 70–84.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Luca, A. C., Mersch, S., Deenen, R., et al. (2013). Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PloS One, 8, e59689.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Mohanty, C., Fayad, W., Olofsson, M. H., et al. (2013). Massive induction of apoptosis of multicellular tumor spheroids by a novel compound with a calmodulin inhibitor-like mechanism. Journal of Cancer Therapeutics and Research, 2.Google Scholar
  49. 49.
    Hirt, C., Papadimitropoulos, A., Muraro, M. G., et al. (2015). Bioreactor-engineered cancer tissue-like structures mimic phenotypes, gene expression profiles and drug resistance patterns observed "in vivo". Biomaterials, 62, 138–146.PubMedCrossRefGoogle Scholar
  50. 50.
    Weiswald, L. B., Richon, S., Massonnet, G., et al. (2013). A short-term colorectal cancer sphere culture as a relevant tool for human cancer biology investigation. British Journal of Cancer, 108, 1720–1731.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chen, Y., Gao, D., Liu, H., Lin, S., & Jiang, Y. (2015). Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Analytica Chimica Acta, 898, 85–92.PubMedCrossRefGoogle Scholar
  52. 52.
    Dolznig, H., Rupp, C., Puri, C., et al. (2011). Modeling colon adenocarcinomas in vitro a 3D co-culture system induces cancer-relevant pathways upon tumor cell and stromal fibroblast interaction. The American Journal of Pathology, 179, 487–501.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kim, T. E., Kim, C. G., Kim, J. S., et al. (2016). Three-dimensional culture and interaction of cancer cells and dendritic cells in an electrospun nano-submicron hybrid fibrous scaffold. International Journal of Nanomedicine, 11, 823–835.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Erguven, M., Yazihan, N., Aktas, E., et al. (2010). Carvedilol in glioma treatment alone and with imatinib in vitro. International Journal of Oncology, 36, 857–866.PubMedCrossRefGoogle Scholar
  55. 55.
    Qin, L., Wang, C. Z., Fan, H. J., et al. (2014). A dual-targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for glioma-targeting therapy. Oncology Letters, 8, 2000–2006.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Xu, Z., Gao, Y., Hao, Y., et al. (2013). Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials, 34, 4109–4117.PubMedCrossRefGoogle Scholar
  57. 57.
    Stratmann, A. T., Fecher, D., Wangorsch, G., et al. (2014). Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Molecular Oncology, 8, 351–365.PubMedCrossRefGoogle Scholar
  58. 58.
    Chambers, K. F., Mosaad, E. M., Russell, P. J., Clements, J. A., & Doran, M. R. (2015). Correction: 3D cultures of prostate cancer cells cultured in a novel high-throughput culture platform are more resistant to chemotherapeutics compared to cells cultured in monolayer. PloS One, 10, e0125641.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Evensen, N. A., Li, J., Yang, J., et al. (2013). Development of a high-throughput three-dimensional invasion assay for anti-cancer drug discovery. PloS One, 8, e82811.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Lui, P., Cashin, R., Machado, M., Hemels, M., Corey-Lisle, P. K., & Einarson, T. R. (2007). Treatments for metastatic melanoma: synthesis of evidence from randomized trials. Cancer Treatment Reviews, 33, 665–680.PubMedCrossRefGoogle Scholar
  61. 61.
    Kyrgidis, A., Valasidis, A., Bourlidou, E., & Andreadis, C. (2011). Better targeting melanoma: options beyond surgery and conventional chemotherapy. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 5, 147–159.CrossRefGoogle Scholar
  62. 62.
    Spagnolo, F., & Queirolo, P. (2012). Upcoming strategies for the treatment of metastatic melanoma. Archives of Dermatological Research, 304, 177–184.PubMedCrossRefGoogle Scholar
  63. 63.
    Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute, 82, 4–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Liotta, L. A., Kleinerman, J., & Saidel, G. M. (1974). Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Research, 34, 997–1004.PubMedGoogle Scholar
  65. 65.
    Groeber, F., Holeiter, M., Hampel, M., Hinderer, S., & Schenke-Layland, K. (2011). Skin tissue engineering--in vivo and in vitro applications. Advanced Drug Delivery Reviews, 63, 352–366.PubMedCrossRefGoogle Scholar
  66. 66.
    Mehta, G., Hsiao, A. Y., Ingram, M., Luker, G. D., & Takayama, S. (2012). Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. Journal of Controlled Release: Official Journal of the Controlled Release Society, 164, 192–204.CrossRefGoogle Scholar
  67. 67.
    Ramgolam, K., Lauriol, J., Lalou, C., et al. (2011). Melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with immunomodulator function. PloS One, 6, e18784.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61, 69–90.Google Scholar
  69. 69.
    Piccart, M., Lamb, H., & Vermorken, J. B. (2001). Current and future potential roles of the platinum drugs in the treatment of ovarian cancer. Annals of Oncology, 12, 1195–1203.PubMedCrossRefGoogle Scholar
  70. 70.
    Guppy, A. E., Nathan, P. D., & Rustin, G. J. (2005). Epithelial ovarian cancer: a review of current management. Clinical Oncology, 17, 399–411.PubMedCrossRefGoogle Scholar
  71. 71.
    Kenny, H. A., Dogan, S., Zillhardt, M., et al. (2009). Organotypic models of metastasis: a three-dimensional culture mimicking the human peritoneum and omentum for the study of the early steps of ovarian cancer metastasis. Cancer Treatment and Research, 149, 335–351.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Grun, B., Benjamin, E., Sinclair, J., et al. (2009). Three-dimensional in vitro cell biology models of ovarian and endometrial cancer. Cell Proliferation, 42, 219–228.PubMedCrossRefGoogle Scholar
  73. 73.
    Shield, K., Ackland, M. L., Ahmed, N., & Rice, G. E. (2009). Multicellular spheroids in ovarian cancer metastases: biology and pathology. Gynecologic Oncology, 113, 143–148.PubMedCrossRefGoogle Scholar
  74. 74.
    Cohen, H. T., & McGovern, F. J. (2005). Renal-cell carcinoma. New England Journal of Medicine, 353, 2477–2490.PubMedCrossRefGoogle Scholar
  75. 75.
    McLaughlin, J. K., Lipworth, L., Tarone, R. E. (2006). Epidemiologic aspects of renal cell carcinoma. Seminars in oncology; Elsevier. p. 527–33.Google Scholar
  76. 76.
    Harris, D. T. (1983). Hormonal therapy and chemotherapy of renal-cell carcinoma. Seminars in Oncology, 10, 422–430.PubMedGoogle Scholar
  77. 77.
    Yagoda, A., & Bander, N. H. (1989). Failure of cytotoxic chemotherapy, 1983-1988, and the emerging role of monoclonal antibodies for renal cancer. Urologia Internationalis, 44, 338–345.PubMedCrossRefGoogle Scholar
  78. 78.
    Yang, J. C., & Childs, R. (2006). Immunotherapy for renal cell cancer. Journal of Clinical Oncology, 24, 5576–5583.PubMedCrossRefGoogle Scholar
  79. 79.
    Wang, P.-C., & Takezawa, T. (2005). Reconstruction of renal glomerular tissue using collagen vitrigel scaffold. Journal of Bioscience and Bioengineering, 99, 529–540.PubMedCrossRefGoogle Scholar
  80. 80.
    Perin, L., Da Sacco, S., & De Filippo, R. E. (2011). Regenerative medicine of the kidney. Advanced Drug Delivery Reviews, 63, 379–387.PubMedCrossRefGoogle Scholar
  81. 81.
    Peloso, A., Katari, R., Patel, T., et al. (2013). Considerations on the development of a model of kidney bioengineering and regeneration in rats. Expert Review of Medical Devices, 10, 597–601.PubMedCrossRefGoogle Scholar
  82. 82.
    Yao, X., Panichpisal, K., Kurtzman, N., & Nugent, K. (2007). Cisplatin nephrotoxicity: a review. The American Journal of the Medical Sciences, 334, 115–124.PubMedCrossRefGoogle Scholar
  83. 83.
    Astashkina, A. I., Mann, B. K., Prestwich, G. D., & Grainger, D. W. (2012). A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials, 33, 4700–4711.PubMedCrossRefGoogle Scholar
  84. 84.
    Song, J. J., Guyette, J. P., Gilpin, S. E., Gonzalez, G., Vacanti, J. P., & Ott, H. C. (2013). Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nature Medicine, 19, 646–651.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bissell, M. J. (2007). Modelling molecular mechanisms of breast cancer and invasion: lessons from the normal gland. Biochemical Society Transactions, 35, 18–22.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lee, E., Parry, G., & Bissell, M. J. (1984). Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. The Journal of Cell Biology, 98, 146–155.PubMedCrossRefGoogle Scholar
  87. 87.
    Streuli, C. H., & Bissell, M. J. (1990). Expression of extracellular matrix components is regulated by substratum. The Journal of Cell Biology, 110, 1405–1415.PubMedCrossRefGoogle Scholar
  88. 88.
    Schmeichel, K. L., & Bissell, M. J. (2003). Modeling tissue-specific signaling and organ function in three dimensions. Journal of Cell Science, 116, 2377–2388.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R., & Bissell, M. J. (1992). Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 89, 9064–9068.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Szot, C. S., Buchanan, C. F., Freeman, J. W., & Rylander, M. N. (2011). 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials, 32, 7905–7912.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Li, Q., Mullins, S. R., Sloane, B. F., & Mattingly, R. R. (2008). p21-activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer. Neoplasia, 10, 314–329.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.PubMedCrossRefGoogle Scholar
  93. 93.
    Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.PubMedCrossRefGoogle Scholar
  94. 94.
    Clarke, M. F., & Fuller, M. (2006). Stem cells and cancer: two faces of eve. Cell, 124, 1111–1115.PubMedCrossRefGoogle Scholar
  95. 95.
    van Vliet, E. (2011). Current standing and future prospects for the technologies proposed to transform toxicity testing in the twenty-first century. ALTEX, 28, 17–44.PubMedCrossRefGoogle Scholar
  96. 96.
    Hodge, A. C., Fenster, A., Downey, D. B., & Ladak, H. M. (2006). Prostate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3D. Computer Methods and Programs in Biomedicine, 84, 99–113.PubMedCrossRefGoogle Scholar
  97. 97.
    Curtin, P., Youm, H., & Salih, E. (2012). Three-dimensional cancer-bone metastasis model using ex-vivo co-cultures of live calvarial bones and cancer cells. Biomaterials, 33, 1065–1078.PubMedCrossRefGoogle Scholar
  98. 98.
    Florczyk, S. J., Liu, G., Kievit, F. M., Lewis, A. M., Wu, J. D., & Zhang, M. (2012). 3D porous chitosan-alginate scaffolds: a new matrix for studying prostate cancer cell-lymphocyte interactions in vitro. Advanced Healthcare Materials, 1, 590–599.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Bakker, E., Qattan, M., Mutti, L., Demonacos, C., Krstic-Demonacos, M. (2015). The role of microenvironment and immunity in drug response in leukemia. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research.Google Scholar
  100. 100.
    Moses, B.S., Slone, W.L., Thomas, P., et al. (2015). Bone marrow microenvironment modulation of acute lymphoblastic leukemia phenotype. Experimental hematology.Google Scholar
  101. 101.
    Qureshi, A. K., & Hall, G. W. (2013). Leukaemias: a review. Paediatrics & Child Health, 23, 461–466.CrossRefGoogle Scholar
  102. 102.
    Bakker, E., Qattan, M., Mutti, L., Demonacos, C., Krstic-Demonacos, M. (2016). The role of microenvironment and immunity in drug response in leukemia. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1863, 414–426.Google Scholar
  103. 103.
    Sison, E.A.R., & Brown, P. (2011). The bone marrow microenvironment and leukemia: Biology and therapeutic targeting. Expert review of hematology, 4, 271–283Google Scholar
  104. 104.
    Iwamoto, S., Mihara, K., Downing, J. R., Pui, C.-H., & Campana, D. (2007). Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. Journal of Clinical Investigation, 117, 1049.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Usuludin, S. B., Cao, X., & Lim, M. (2012). Co-culture of stromal and erythroleukemia cells in a perfused hollow fiber bioreactor system as an in vitro bone marrow model for myeloid leukemia. Biotechnology and Bioengineering, 109, 1248–1258.PubMedCrossRefGoogle Scholar
  106. 106.
    Vaiselbuh, S. R., Edelman, M., Lipton, J. M., & Liu, J. M. (2010). Ectopic human mesenchymal stem cell-coated scaffolds in NOD/SCID mice: an in vivo model of the leukemia niche. Tissue engineering Part C, Methods, 16, 1523–1531.PubMedCrossRefGoogle Scholar
  107. 107.
    Blanco, T. M., Mantalaris, A., Bismarck, A., & Panoskaltsis, N. (2010). The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia. Biomaterials, 31, 2243–2251.PubMedCrossRefGoogle Scholar
  108. 108.
    Marko-Varga, G., Fehniger, T. E., Rezeli, M., Döme, B., Laurell, T., & Végvári, Á. (2011). Drug localization in different lung cancer phenotypes by MALDI mass spectrometry imaging. Journal of Proteomics, 74, 982–992.PubMedCrossRefGoogle Scholar
  109. 109.
    Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y., & Ingber, D. E. (2010). Reconstituting organ-level lung functions on a chip. Science, 328, 1662–1668.PubMedCrossRefGoogle Scholar
  110. 110.
    Fleming, M., Ravula, S., Tatishchev, S. F., & Wang, H. L. (2012). Colorectal carcinoma: pathologic aspects. Journal of gastrointestinal oncology, 3, 153–173.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Weiswald, L. B., Richon, S., Validire, P., et al. (2009). Newly characterised ex vivo colospheres as a three-dimensional colon cancer cell model of tumour aggressiveness. British Journal of Cancer, 101, 473–482.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hopkins, A. M., DeSimone, E., Chwalek, K., & Kaplan, D. L. (2015). 3D in vitro modeling of the central nervous system. Progress in Neurobiology, 125, 1–25.PubMedCrossRefGoogle Scholar
  113. 113.
    Shoffstall, A. J., Taylor, D. M., & Lavik, E. B. (2012). Engineering therapies in the CNS: what works and what can be translated. Neuroscience Letters, 519, 147–154.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Gladson, C. L. (1999). The extracellular matrix of gliomas: modulation of cell function. Journal of Neuropathology and Experimental Neurology, 58, 1029–1040.PubMedCrossRefGoogle Scholar
  115. 115.
    Ananthanarayanan, B., Kim, Y., & Kumar, S. (2011). Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials, 32, 7913–7923.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Fedrigo, C. A., Grivicich, I., Schunemann, D. P., et al. (2011). Radioresistance of human glioma spheroids and expression of HSP70, p53 and EGFr. Radiation Oncology, 6, 156.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Jin, S. G., Jeong, Y. I., Jung, S., Ryu, H. H., Jin, Y. H., & Kim, I. Y. (2009). The effect of hyaluronic acid on the invasiveness of malignant glioma cells : comparison of invasion potential at hyaluronic acid hydrogel and matrigel. Journal of Korean Neurosurgical Society, 46, 472–478.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Coquerel, B., Poyer, F., Torossian, F., et al. (2009). Elastin-derived peptides: matrikines critical for glioblastoma cell aggressiveness in a 3-D system. Glia, 57, 1716–1726.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mariana R. Carvalho
    • 1
    • 2
  • Daniela Lima
    • 1
    • 2
  • Rui L. Reis
    • 1
    • 2
  • Joaquim M. Oliveira
    • 1
    • 2
  • Vitor M. Correlo
    • 1
    • 2
  1. 1.3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoGuimarãesPortugal
  2. 2.ICVS/3B’s - PT Government Associate LaboratoryBraga/GuimarãesPortugal

Personalised recommendations