Stem Cell Reviews and Reports

, Volume 13, Issue 2, pp 151–169 | Cite as

Understanding Parkinson’s Disease through the Use of Cell Reprogramming

Article

Abstract

Recent progress in the field of somatic cell reprogramming offers exciting new possibilities for the study and treatment of Parkinson’s disease (PD). Reprogramming technology offers the ability to untangle the diverse contributing risk factors for PD, such as ageing, genetics and environmental toxins. In order to gain novel insights into such a complex disease, cell-based models of PD should represent, as closely as possible, aged human dopaminergic neurons of the substantia nigra. However, the generation of high yields of functionally mature, authentic ventral midbrain dopamine (vmDA) neurons has not been easy to achieve. Furthermore, ensuring cells represent aged rather than embryonic neurons has presented a significant challenge. To date, induced pluripotent stem (iPS) cells have received much attention for modelling PD. Nonetheless, direct reprogramming strategies (either to a neuronal or neural stem/progenitor fate) represent a valid alternative that are yet to be extensively explored. Direct reprogramming is faster and more efficient than iPS cell reprogramming, and appears to conserve age-related markers. At present, however, protocols aiming to derive authentic, mature vmDA neurons by direct reprogramming of adult human somatic cells are sorely lacking. This review will discuss the strategies that have been employed to generate vmDA neurons and their potential for the study and treatment of PD.

Keywords

Direct reprogramming Disease modelling Dopamine neurons Induced neural stem cells Induced neurons Induced pluripotent stem cells Parkinson’s disease Reprogramming 

References

  1. 1.
    Yan, Y., Yang, D., Zarnowska, E., et al. (2005). Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells, 23, 781–790.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Perrier, A. L., Tabar, V., Barberi, T., et al. (2004). Derivation of midbrain dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 12543–12548.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Koch, P., Opitz, T., Steinbeck, J. A., Ladewig, J., & Brüstle, O. (2009). A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proceedings of the National Academy of Sciences of the United States of America, 106, 3225–3230.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ye, W., Shimamura, K., Rubenstein, J. L. R., Hynes, M. A., & Rosenthal, A. (1998). FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell, 93, 755–766.PubMedCrossRefGoogle Scholar
  5. 5.
    Kawasaki, H., Mizuseki, K., Nishikawa, S., et al. (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell–derived inducing activity. Neuron, 28, 31–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee, S.-H., Lumelsky, N., Studer, L., Auerbach, J. M., & McKay, R. D. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotech, 18, 675–679.CrossRefGoogle Scholar
  7. 7.
    Barberi, T., Klivenyi, P., Calingasan, N. Y., et al. (2003). Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotech, 21, 1200–1207.CrossRefGoogle Scholar
  8. 8.
    Reubinoff, B., Itsykson, P., Turetsky, T., et al. (2001). Neural progenitors from human embryonic stem cells. Nature Biotechnology, 19, 1134–1140.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang, S.-C., Wernig, M., Duncan, I. D., Brustle, O., & Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotech, 19, 1129–1133.CrossRefGoogle Scholar
  10. 10.
    Pankratz, M., Li, X.-J., Lavaute, T., Lyons, E., Chen, X., & Zhang, S.-C. (2007). Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells, 25, 1511–1520.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Zeng, X., Cai, J., Chen, J., et al. (2004). Dopaminergic differentiation of human embryonic stem cells. Stem Cells, 22, 925–940.PubMedCrossRefGoogle Scholar
  12. 12.
    Park, C. H., Minn, Y. K., Lee, J. Y., et al. (2005). In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. Journal of Neurochemistry, 92, 1265–1276.PubMedCrossRefGoogle Scholar
  13. 13.
    Roy, N. S., Cleren, C., Singh, S. K., Yang, L., Beal, M. F., & Goldman, S. A. (2006). Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nature Medicine, 12, 1259–1268.PubMedCrossRefGoogle Scholar
  14. 14.
    Cho, M. S., Lee, Y. E., Kim, J. Y., et al. (2008). Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 3392–3397.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Swistowski, A., Peng, J., Liu, Q., et al. (2010). Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells, 28, 1893–1904.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotech, 27, 275–280.CrossRefGoogle Scholar
  17. 17.
    Zhou, J., Su, P., Li, D., Tsang, S., Duan, E., & Wang, F. (2010). High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells, 28, 1741–1750.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Li, W., Sun, W., Zhang, Y., et al. (2011). Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 108, 8299–8304.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Brederlau, A., Correia, A. S., Anisimov, S. V., et al. (2006). Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells, 24, 1433–1440.PubMedCrossRefGoogle Scholar
  20. 20.
    Yang, D., Zhang, Z.-J., Oldenburg, M., Ayala, M., & Zhang, S.-C. (2008). Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells, 26, 55–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Cooper, O., Hargus, G., Deleidi, M., et al. (2010). Differentiation of human ES and Parkinson's disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Molecular and Cellular Neurosciences, 45, 258–266.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Denham, M., Thompson, L. H., Leung, J., Pebay, A., Bjorklund, A., & Dottori, M. (2010). Gli1 is an inducing factor in generating floor plate progenitor cells from human embryonic stem cells. Stem Cells, 28, 1805–1815.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ono, Y., Nakatani, T., Sakamoto, Y., et al. (2007). Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development, 134, 3213–3225.PubMedCrossRefGoogle Scholar
  24. 24.
    Bonilla, S., Hall, A. C., Pinto, L., et al. (2008). Identification of midbrain floor plate radial glia-like cells as dopaminergic progenitors. Glia, 56, 809–820.PubMedCrossRefGoogle Scholar
  25. 25.
    Joksimovic, M., Yun, B. A., Kittappa, R., et al. (2009). Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nature Neuroscience, 12, 125–131.PubMedCrossRefGoogle Scholar
  26. 26.
    Fasano, C. A., Chambers, S. M., Lee, G., Tomishima, M. J., & Studer, L. (2010). Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell, 6, 336–347.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kriks, S., Shim, J.-W., Piao, J., et al. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature, 480, 547–551.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Kirkeby, A., Grealish, S., Wolf Daniel, A., et al. (2012). Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports, 1, 703–714.PubMedCrossRefGoogle Scholar
  29. 29.
    Xi, J., Liu, Y., Liu, H., Chen, H., Emborg, M. E., & Zhang, S.-C. (2012). Specification of midbrain dopamine neurons from primate pluripotent stem cells. Stem Cells, 30, 1655–1663.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Denham, M., Bye, C., Leung, J., Conley, B. J., Thompson, L. H., & Dottori, M. (2012). Glycogen synthase kinase 3beta and activin/nodal inhibition in human embryonic stem cells induces a pre-neuroepithelial state that is required for specification to a floor plate cell lineage. Stem Cells, 30, 2400–2411.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kirkeby, A., Nelander, J., & Parmar, M. (2012). Generating regionalized neuronal cells from pluripotency, a step-by-step protocol. Frontiers in Cellular Neuroscience, 6, 64.PubMedGoogle Scholar
  32. 32.
    Lancaster, M. A., Renner, M., Martin, C.-A., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373–379.PubMedCrossRefGoogle Scholar
  33. 33.
    Jo, J., Xiao, Y., Sun Alfred, X., et al. (2016). Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell, 19, 248–257.PubMedCrossRefGoogle Scholar
  34. 34.
    Sundberg, M., Bogetofte, H., Lawson, T., et al. (2013). Improved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells, 31, 1548–1562.PubMedCrossRefGoogle Scholar
  35. 35.
    Ryan, S. D., Dolatabadi, N., Chan, S. F., et al. (2013). Isogenic human iPSC Parkinson's model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription. Cell, 155, 1351–1364.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Woodard, C. M., Campos, B. A., Kuo, S. H., et al. (2014). iPSC-derived dopamine neurons reveal differences between monozygotic twins discordant for Parkinson's disease. Cell Reports, 9, 1173–1182.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Doi, D., Samata, B., Katsukawa, M., et al. (2014). Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Reports, 2, 337–350.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hallett, P. J., Deleidi, M., Astradsson, A., et al. (2015). Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell, 16, 269–274.Google Scholar
  39. 39.
    Wang, S., Zou, C., Fu, L., et al. (2015). Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson’s disease model. Cell Discov, 1, 15012.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Andersson, E., Tryggvason, U., Deng, Q., et al. (2006). Identification of intrinsic determinants of midbrain dopamine neurons. Cell, 124, 393–405.PubMedCrossRefGoogle Scholar
  41. 41.
    Friling, S., Andersson, E., Thompson, L. H., et al. (2009). Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 7613–7618.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sánchez-Danés, A., Consiglio, A., Richaud, Y., et al. (2012). Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of LMX1A in human embryonic stem cells and induced pluripotent stem cells. Human Gene Therapy, 23, 56–69.PubMedCrossRefGoogle Scholar
  43. 43.
    Martinat, C., Bacci, J.-J., Leete, T., et al. (2006). Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proceedings of the National Academy of Sciences of the United States of America, 103, 2874–2879.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Theka, I., Caiazzo, M., Dvoretskova, E., et al. (2013). Rapid generation of functional dopaminergic neurons from human induced pluripotent stem cells through a single-step procedure using cell lineage transcription factors. Stem Cells Transl Med, 2, 473–479.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Sagal, J., Zhan, X., Xu, J., et al. (2014). Proneural transcription factor Atoh1 drives highly efficient differentiation of human pluripotent stem cells into dopaminergic neurons. Stem Cells Transl Med, 3, 888–898.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Blau, H. M., Chiu, C. P., & Webster, C. (1983). Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell, 32, 1171–1180.PubMedCrossRefGoogle Scholar
  47. 47.
    Takagi, N., Yoshida, M. A., Sugawara, O., & Sasaki, M. (1983). Reversal of X-inactivation in female mouse somatic cells hybridized with murine teratocarcinoma stem cells in vitro. Cell, 34, 1053–1062.PubMedCrossRefGoogle Scholar
  48. 48.
    Davis, R. L., Weintraub, H., & Lassar, A. B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 51, 987–1000.PubMedCrossRefGoogle Scholar
  49. 49.
    Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Südhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463, 1035–1041.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Pang, Z. P., Yang, N., Vierbuchen, T., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476, 220–223.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Qiang, L., Fujita, R., Yamashita, T., et al. (2011). Directed conversion of Alzheimer's disease patient skin fibroblasts into functional neurons. Cell, 146, 359–371.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Chanda, S., Ang Cheen, E., Davila, J., et al. (2014). Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Reports, 3, 282–296.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ambasudhan, R., Talantova, M., Coleman, R., et al. (2011). Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell, 9, 113–118.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Yoo, A., Sun, A., Li, L., et al. (2011). MicroRNA-mediated conversion of human fibroblasts to neurons. Nature, 476, 228–231.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hu, W., Qiu, B., Guan, W., et al. (2015). Direct conversion of normal and Alzheimer's disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 17, 204–212.PubMedCrossRefGoogle Scholar
  56. 56.
    Li, X., Zuo, X., Jing, J., et al. (2015). Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell, 17, 195–203.PubMedCrossRefGoogle Scholar
  57. 57.
    Caiazzo, M., Dell'Anno, M. T., Dvoretskova, E., et al. (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476, 224–227.PubMedCrossRefGoogle Scholar
  58. 58.
    Jiang, H., Xu, Z., & Zhong, P., et al. (2015). Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons. Nat Commun 6.Google Scholar
  59. 59.
    Pfisterer, U., Kirkeby, A., Torper, O., et al. (2011). Direct conversion of human fibroblasts to dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 108, 10343–10348.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Torper, O., Ottosson Daniella, R., Pereira, M., et al. (2015). In vivo reprogramming of striatal NG2 glia into functional neurons that integrate into local host circuitry. Cell Reports, 12, 474–481.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Guo, Z., Zhang, L., Wu, Z., Chen, Y., Wang, F., & Chen, G. (2014). In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell, 14, 188–202.PubMedCrossRefGoogle Scholar
  62. 62.
    Kim, J., Efe, J. A., Zhu, S., et al. (2011). Direct reprogramming of mouse fibroblasts to neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 108, 7838–7843.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Thier, M., Wörsdörfer, P., Lakes Yenal, B., et al. (2012). Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell, 10, 473–479.PubMedCrossRefGoogle Scholar
  64. 64.
    Kumar, A., Declercq, J., Eggermont, K., Agirre, X., Prosper, F., & Verfaillie, C. (2012). Zic3 induces conversion of human fibroblasts to stable neural progenitor-like cells. Journal of Molecular Cell Biology, 4, 252–255.PubMedCrossRefGoogle Scholar
  65. 65.
    Matsui, T., Takano, M., Yoshida, K., et al. (2012). Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency. Stem Cells, 30, 1109–1119.PubMedCrossRefGoogle Scholar
  66. 66.
    Corti, S., Nizzardo, M., Simone, C., et al. (2012). Direct reprogramming of human astrocytes into neural stem cells and neurons. Experimental Cell Research, 318, 1528–1541.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Xi, G., Hu, P., Qu, C., Qiu, S., Tong, C., & Ying, Q.-L. (2013). Induced neural stem cells generated from rat fibroblasts. Genomics, Proteomics & Bioinformatics, 11, 312–319.CrossRefGoogle Scholar
  68. 68.
    Wang, L., Wang, L., Huang, W., et al. (2013). Generation of integration-free neural progenitor cells from cells in human urine. Nature Methods, 10, 84–89.PubMedCrossRefGoogle Scholar
  69. 69.
    Lu, J., Liu, H., Huang, C., et al. (2013). Generation of integration-free and region-specific neural progenitors from primate fibroblasts. Cell Reports, 3, 1580–1591.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Zhu, S., Ambasudhan, R., Sun, W., et al. (2014). Small molecules enable OCT4-mediated direct reprogramming into expandable human neural stem cells. Cell Research, 24, 126–129.PubMedCrossRefGoogle Scholar
  71. 71.
    Kim, H.-S., Kim, J., Jo, Y., Jeon, D., & Cho, Y. S. (2014). Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors. Stem Cell Research, 12, 60–68.PubMedCrossRefGoogle Scholar
  72. 72.
    Miura, T., Sugawara, T., Fukuda, A., et al. (2015). Generation of primitive neural stem cells from human fibroblasts using a defined set of factors. Biol Open, 4, 1595–1607.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lee, S.-T., Chu, K., Jung, K.-H., et al. (2011). Direct generation of neurosphere-like cells from human dermal fibroblasts. PloS One, 6, e21801.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lujan, E., Chanda, S., Ahlenius, H., Südhof, T. C., & Wernig, M. (2012). Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 109, 2527–2532.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Han, D. W., Tapia, N., Hermann, A., et al. (2012). Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell, 10, 465–472.PubMedCrossRefGoogle Scholar
  76. 76.
    Ring, K. L., Tong Leslie, M., Balestra Maureen, E., et al. (2012). Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell, 11, 100–109.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Maucksch, C., Firmin, E., Butler-Munro, C., Montgomery, J. M., Dottori, M., & Connor, B. (2012). Non-viral generation of neural precursor-like cells from adult human fibroblasts. J Stem Cells Regen Med, 8, 1–9.Google Scholar
  78. 78.
    Sheng, C., Zheng, Q., Wu, J., et al. (2012). Generation of dopaminergic neurons directly from mouse fibroblasts and fibroblast-derived neural progenitors. Cell Research, 22, 769–772.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sheng, C., Zheng, Q., Wu, J., et al. (2012). Direct reprogramming of sertoli cells into multipotent neural stem cells by defined factors. Cell Research, 22, 208–218.PubMedCrossRefGoogle Scholar
  80. 80.
    Tian, C., Ambroz, R., Sun, L., et al. (2012). Direct conversion of dermal fibroblasts into neural progenitor cells by a novel cocktail of defined factors. Current Molecular Medicine, 12, 126–137.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Tian, C., Liu, Q., Ma, K., et al. (2013). Characterization of induced neural progenitors from skin fibroblasts by a novel combination of defined factors. Scientific Reports, 3, 1345.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Tian, C., Li, Y., Huang, Y., et al. (2015). Selective generation of dopaminergic precursors from mouse fibroblasts by direct lineage conversion. Scientific Reports, 5, 12622.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Mirakhori, F., Zeynali, B., Rassouli, H., Salekdeh, G. H., & Baharvand, H. (2015). Direct conversion of human fibroblasts into dopaminergic neural progenitor-like cells using TAT-mediated protein transduction of recombinant factors. Biochemical and Biophysical Research Communications, 459, 655–661.PubMedCrossRefGoogle Scholar
  84. 84.
    Mirakhori, F., Zeynali, B., Rassouli, H., et al. (2015). Induction of neural progenitor-like cells from human fibroblasts via a genetic material-free approach. PloS One, 10, e0135479.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lim, M. S., Lee, S. Y., & Park, C. H. (2015). FGF8 is essential for functionality of induced neural precursor cell-derived dopaminergic neurons. Int J Stem Cells, 8, 228–234.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lim, M.-S., Chang, M.-Y., Kim, S.-M., et al. (2015). Generation of dopamine neurons from rodent fibroblasts through the expandable neural precursor cell stage. The Journal of Biological Chemistry, 290, 17401–17414.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Yu, K. R., Shin, J. H., Kim, J. J., Koog, M. G., Lee, J. Y., & Choi, S. W. (2015). Rapid and efficient direct conversion of human adult somatic cells into neural stem cells by HMGA2/let-7b. Cell Reports, 10, 441–452.CrossRefGoogle Scholar
  88. 88.
    Zou, Q., Yan, Q., Zhong, J., et al. (2014). Direct conversion of human fibroblasts into neuronal restricted progenitors. The Journal of Biological Chemistry, 289, 5250–5260.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Cheng, L., Hu, W., Qiu, B., et al. (2014). Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Research, 24, 665–679.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Zhang, M., Lin, Y. H., Sun, Y. J., et al. (2016). Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell, 18, 653–667.PubMedCrossRefGoogle Scholar
  91. 91.
    Zheng, J., Choi, K. A., Kang, P. J., et al. (2016). A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells. Biochemical and Biophysical Research Communications, 476, 42–48.PubMedCrossRefGoogle Scholar
  92. 92.
    Efe, J. A., Hilcove, S., Kim, J., et al. (2011). Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biology, 13, 215–222.PubMedCrossRefGoogle Scholar
  93. 93.
    Maza, I., Caspi, I., Zviran, A., et al. (2015). Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat Biotech, 33, 769–774.CrossRefGoogle Scholar
  94. 94.
    Bar-Nur, O., Verheul, C., Sommer, A. G., et al. (2015). Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nat Biotech, 33, 761–768.CrossRefGoogle Scholar
  95. 95.
    Weissbein, U., Ben-David, U., & Benvenisty, N. (2014). Virtual karyotyping reveals greater chromosomal stability in neural cells derived by transdifferentiation than those from stem cells. Cell Stem Cell, 15, 687–691.PubMedCrossRefGoogle Scholar
  96. 96.
    Maucksch, C., Jones, K., & Connor, B. (2013). Concise review: the involvement of SOX2 in direct reprogramming of induced neural stem/precursor cells. Stem Cells Transl Med, 2, 579–583.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Bernal, J. A. (2013). RNA-based tools for nuclear reprogramming and lineage-conversion: towards clinical applications. Journal of Cardiovascular Translational Research, 6, 956–968.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hou, P., Li, Y., Zhang, X., et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341, 651–654.PubMedCrossRefGoogle Scholar
  99. 99.
    Devine, M. J., Ryten, M., Vodicka, P., et al. (2011). Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nature Communications, 2, 440.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Byers, B., Cord, B., Nguyen, H. N., et al. (2011). SNCA triplication Parkinson's patient's iPSC-derived DA neurons accumulate alpha-synuclein and are susceptible to oxidative stress. PloS One, 6, e26159.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Soldner, F., Laganière, J., Cheng, A., et al. (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell, 146, 318–331.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Sanders, L., Laganière, J., Cooper, O., et al. (2013). LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: reversal by gene correction. Neurobiology of Disease, 62, 381–386.PubMedCrossRefGoogle Scholar
  103. 103.
    Liu, G. H., Qu, J., Suzuki, K., et al. (2012). Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature, 491, 603–607.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Shaltouki, A., Sivapatham, R., Pei, Y., et al. (2015). Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. Stem Cell Reports, 4, 847–859.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Nguyen Ha, N., Byers, B., Cord, B., et al. (2011). LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell, 8, 267–280.PubMedCrossRefGoogle Scholar
  106. 106.
    Sánchez-Danés, A., Richaud-Patin, Y., Carballo-Carbajal, I., et al. (2012). Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease. EMBO Molecular Medicine, 4, 380–395.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Reinhardt, P., Schmid, B., Burbulla, L. F., et al. (2013). Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell, 12, 354–367.PubMedCrossRefGoogle Scholar
  108. 108.
    Orenstein, S. J., Kuo, S.-H. H., Tasset, I., et al. (2013). Interplay of LRRK2 with chaperone-mediated autophagy. Nature Neuroscience, 16, 394–406.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Cooper, O., Seo, H., Andrabi, S., et al. (2012). Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Science Translational Medicine, 4, 141–190.CrossRefGoogle Scholar
  110. 110.
    Imaizumi, Y., Okada, Y., Akamatsu, W., et al. (2012). Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Molecular Brain, 5, 35.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Grenier, K., McLelland, G. L., & Fon, E. A. (2013). Parkin-and PINK1-dependent mitophagy in neurons: will the real pathway please stand up? Frontiers in Neurology, 4, 1–8.CrossRefGoogle Scholar
  112. 112.
    Seibler, P., Graziotto, J., Jeong, H., Simunovic, F., Klein, C., & Krainc, D. (2011). Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. The Journal of Neuroscience, 31, 5970–5976.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Rakovic, A., Shurkewitsch, K., Seibler, P., et al. (2013). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. The Journal of Biological Chemistry, 288, 2223–2237.PubMedCrossRefGoogle Scholar
  114. 114.
    Soldner, F., Hockemeyer, D., Beard, C., et al. (2009). Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136, 964–977.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Miller, J. D., Ganat, Y. M., Kishinevsky, S., et al. (2013). Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell, 13, 691–705.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Sulzer, D. (2007). Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends in Neurosciences, 30, 244–250.PubMedCrossRefGoogle Scholar
  117. 117.
    Collier, T. J., Kanaan, N. M., & Kordower, J. H. (2011). Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates. Nature Reviews. Neuroscience, 12, 359–366.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Barlow, B. K., Cory-Slechta, D. A., Richfield, E. K., & Thiruchelvam, M. (2007). The gestational environment and Parkinson's disease: evidence for neurodevelopmental origins of a neurodegenerative disorder. Reproductive Toxicology, 23, 457–470.PubMedCrossRefGoogle Scholar
  119. 119.
    Fernandez-Santiago, R., Carballo-Carbajal, I., Castellano, G., et al. (2015). Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients. EMBO Molecular Medicine, 7, 1529–1546.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Frobel, J., Hemeda, H., Lenz, M., et al. (2014). Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Reports, 3, 414–422.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Studer, L., Vera, E., & Cornacchia, D. (2015). Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell, 16, 591–600.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Bardy, C., van den Hurk, M., Eames, T., et al. (2015). Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proceedings of the National Academy of Sciences of the United States of America, 112, E2725–E2E34.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Zhang, Y., Pak, C., Han, Y., et al. (2013). Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron, 78, 785–798.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Yang, Y., Jiao, J., Gao, R., et al. (2015). Enhanced rejuvenation in induced pluripotent stem cell-derived neurons compared with directly converted neurons from an aged mouse. Stem Cells and Development, 24, 2767–2777.PubMedCrossRefGoogle Scholar
  125. 125.
    Mertens, J., Marchetto, M. C., Bardy, C., & Gage, F. H. (2016). Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nature Reviews. Neuroscience, 17, 424–437.PubMedCrossRefGoogle Scholar
  126. 126.
    Mertens, J., Paquola Apuã, C. M., Ku, M., et al. (2015). Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell, 17, 705–718.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical ScienceFMHS, University of AucklandAucklandNew Zealand

Personalised recommendations