Stem Cell Reviews and Reports

, Volume 13, Issue 2, pp 170–191 | Cite as

Possible Muscle Repair in the Human Cardiovascular System

  • Linda Sommese
  • Alberto Zullo
  • Concetta Schiano
  • Francesco P. Mancini
  • Claudio Napoli


The regenerative potential of tissues and organs could promote survival, extended lifespan and healthy life in multicellular organisms. Niches of adult stemness are widely distributed and lead to the anatomical and functional regeneration of the damaged organ. Conversely, muscular regeneration in mammals, and humans in particular, is very limited and not a single piece of muscle can fully regrow after a severe injury. Therefore, muscle repair after myocardial infarction is still a chimera. Recently, it has been recognized that epigenetics could play a role in tissue regrowth since it guarantees the maintenance of cellular identity in differentiated cells and, therefore, the stability of organs and tissues. The removal of these locks can shift a specific cell identity back to the stem-like one. Given the gradual loss of tissue renewal potential in the course of evolution, in the last few years many different attempts to retrieve such potential by means of cell therapy approaches have been performed in experimental models. Here we review pathways and mechanisms involved in the in vivo repair of cardiovascular muscle tissues in humans. Moreover, we address the ongoing research on mammalian cardiac muscle repair based on adult stem cell transplantation and pro-regenerative factor delivery. This latter issue, involving genetic manipulations of adult cells, paves the way for developing possible therapeutic strategies in the field of cardiovascular muscle repair.


Heart repair Vascular repair Cardiomyocytes Smooth muscle cells Stem cells Epigenetics 


Compliance with Ethical Standards

Conflict of Interest

The authors declare no potential conflicts of interest.


  1. 1.
    Sousounis, K., Baddour, J. A., & Tsonis, P. A. (2014). Aging and regeneration in vertebrates. Current Topics in Developmental Biology, 108, 217–246.PubMedCrossRefGoogle Scholar
  2. 2.
    Dor, Y., Brown, J., Martinez, O. I., & Melton, D. A. (2004). Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature, 429, 41–46.PubMedCrossRefGoogle Scholar
  3. 3.
    Nadal-Ginard, B., Ellison, G. M., & Torella, D. (2014). The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult. Stem Cell Research, 13, 615–630.PubMedCrossRefGoogle Scholar
  4. 4.
    Rai, M., Nongthomba, U., & Grounds, M. D. (2014). Skeletal muscle degeneration and regeneration in mice and flies. Current Topics in Developmental Biology, 108, 247–281.PubMedCrossRefGoogle Scholar
  5. 5.
    Quaini, F., Cigola, E., Lagrasta, C., et al. (1994). End-stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear antigen and nuclear mitotic division in ventricular myocytes. Circulation Research, 75, 1050–1063.PubMedCrossRefGoogle Scholar
  6. 6.
    Forbes, S. J., & Rosenthal, N. (2014). Preparing the ground for tissue regeneration: from mechanism to therapy. Nature Medicine, 8, 857–869.CrossRefGoogle Scholar
  7. 7.
    Porrello, E. R., Mahmoud, A. I., Simpson, E., et al. (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331, 1078–1080.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ahuja, P., Sdek, P., & MacLellan, W. R. (2007). Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiological Reviews, 87, 521–544.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sdek, P., Zhao, P., Wang, Y., et al. (2011). Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes. Journal of Cell Biology, 194, 407–423.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zebrowski, D. C., Vergarajauregui, S., Wu, C. C., et al. (2015). Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. eLife. doi: 10.7554/eLife.05563.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Hay, E. D., & Fischman, D. A. (1961). Origin of the blastema in regenerating limbs of the newt Triturus viridescens. An autoradiographic study using tritiated thymidine to follow cell proliferation and migration. Developmental Biology, 3, 26–59.PubMedCrossRefGoogle Scholar
  12. 12.
    Picascia, A., Grimaldi, V., Iannone, C., Soricelli, A., & Napoli, C. (2015). Innate and adaptive immune response in stroke: focus on epigenetic regulation. Journal of Neuroimmunology, 289, 111–120.PubMedCrossRefGoogle Scholar
  13. 13.
    Niethammer, P., Grabher, C., Look, A. T., & Mitchison, T. J. (2009). A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature, 459, 996–999.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology, 13, 159–175.PubMedCrossRefGoogle Scholar
  15. 15.
    Li, L., Yan, B., Shi, Y. Q., Zhang, W. Q., & Wen, Z. L. (2012). Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration. Journal of Biological Chemistry, 287, 25353–25360.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Swirski, F. K., & Nahrendorf, M. (2013). Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science, 339, 161–166.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Frangogiannis, N. G. (2015). Emerging roles for macrophages in cardiac injury: cytoprotection, repair, and regeneration. Journal of Clinical Investigation, 8, 2927–2930.CrossRefGoogle Scholar
  18. 18.
    Aurora, A. B., Porrello, E. R., Tan, W., et al. (2014). Macrophages are required for neonatal heart regeneration. Journal of Clinical Investigation, 124, 1382–1392.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Napoli, C., Maione, C., Schiano, C., Fiorito, C., & Ignarro, L. J. (2007). Bone marrow cell-mediated cardiovascular repair: potential of combined therapies. Trends in Molecular Medicine, 13, 278–286.PubMedCrossRefGoogle Scholar
  20. 20.
    Medici, D., Shore, E. M., Lounev, V. Y., Kaplan, F. S., Kalluri, R., & Olsen, B. R. (2010). Conversion of vascular endothelial cells into multipotent stem-like cells. Nature Medicine, 16, 1400–1406.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gaengel, K., Genove, G., Armulik, A., & Betsholtz, C. (2009). Endothelial-mural cell signaling in vascular development and angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 630–638.PubMedCrossRefGoogle Scholar
  22. 22.
    Ross, R., Raines, E. W., & Bowen-Pope, D. F. (1986). The biology of platelet-derived growth factor. Cell, 46, 155–169.PubMedCrossRefGoogle Scholar
  23. 23.
    Bennett, M. R., Sinha, S., & Owens, G. K. (2016). Vascular smooth muscle cells in atherosclerosis. Circulation Research, 118, 692–702.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Majesky, M. W., Dong, X. R., Regan, J. N., & Hoglund, V. J. (2011). Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circulation Research, 108, 365–377.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hinz, B., Phan, S., Thannickal, V., Galli, A., Bochaton-Piallat, M., & Gabbiani, G. (2007). The myofibroblast: one function, multiple origins. American Journal of Pathology, 170, 1807–1816.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Grimaldi, V., De Pascale, M. R., Zullo, A., et al. (2016). Evidence of epigenetic tags in cardiac fibrosis. Journal of Cardiology. doi: 10.1016/j.jjcc.2016.10.004.PubMedGoogle Scholar
  27. 27.
    Miano, J. (2003). Serum response factor: toggling between disparate programs of gene expression. Journal of Molecular and Cellular Cardiology, 35, 577–593.PubMedCrossRefGoogle Scholar
  28. 28.
    Pipes, G. C., Creemers, E. E., & Olson, E. N. (2006). The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes & Development, 20, 1545–1556.CrossRefGoogle Scholar
  29. 29.
    Kawai-Kowase, K., & Owens, G. K. (2007). Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 292, C59–C69.PubMedCrossRefGoogle Scholar
  30. 30.
    Hayashi, N., Nakamura, S., Nishida, W., & Sobue, K. (2006). Bone morphogenetic protein-induced Msx1 and Msx2 inhibit myocardin-dependent smooth muscle gene transcription. Molecular and Cellular Biology, 26, 9456–9470.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Adam, P., Regan, C., Hautmann, M., & Owens, G. (2000). Positive- and negative acting Kruppel-like transcription factors bind a transforming growth factor beta control element required for expression of the smooth muscle cell differentiation marker SM22alpha in vivo. Journal of Biological Chemistry, 275, 37798–37806.PubMedCrossRefGoogle Scholar
  32. 32.
    Liu, Z. P., Wang, Z., Yanagisawa, H., & Olson, E. (2005). Phenotypic modulation of smooth muscle cells through interaction of FoxO4 and myocardin. Developmental Biology, 9, 261–270.Google Scholar
  33. 33.
    Zhou, J., Hu, G., & Wang, X. (2010). Repression of smooth muscle differentiation by a novel high mobility group box-containing protein, HMG2L1. Journal of Biological Chemistry, 285, 23177–23185.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    McDonald, O., Wamhoff, B., Hoofnagle, M., & Owens, G. (2006). Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. Journal of Clinical Investigation, 116, 36–48.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Cao, D., Wang, Z., Zhang, C., et al. (2005). Modulation of smooth muscle gene expression by association of histone acetyltransferases and deacetylases with myocardin. Molecular and Cellular Biology, 25, 364–376.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lockman, K., Taylor, J., & Mack, C. (2008). The histone demethylase, Jmjd1a, interacts with the myocardin factors to regulate SMC differentiation marker gene expression. Circulation Research, 101, e115–e123.CrossRefGoogle Scholar
  37. 37.
    Zhou, J., Zhang, M., Fang, H., et al. (2009). The SWI/SNF chromatin remodeling complex regulates myocardin-induced smooth muscle-specific gene expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 921–928.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cordes, K., Sheehy, N., White, M., et al. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460, 705–710.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Boettger, T., Beetz, N., Kostin, S., et al. (2009). Acquisition of the contractile phenotype of arterial smooth muscle cells depends on the miR143/145 gene cluster. Journal of Clinical Investigation, 119, 2634–2647.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Davis, B., Hilyard, A., Nguyen, P., Lagna, G., & Hata, A. (2009). Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. Journal of Biological Chemistry, 284, 3728–3738.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Nguyen, A. T., Gomez, D., Bell, R. D., et al. (2013). Smooth muscle cell plasticity: fact or fiction? Circulation Research, 112, 17–22.PubMedCrossRefGoogle Scholar
  42. 42.
    Gittenberger-de Groot, A., DeRuiter, M., Bergwerff, M., & Poelmann, R. (1999). Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 1589–1594.PubMedCrossRefGoogle Scholar
  43. 43.
    Passman, J., Dong, X., Wu, S., et al. (2008). A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proceedings of the National Academy of Sciences U.S.A. 105, 9349–9354.Google Scholar
  44. 44.
    Sainz, J., Al Haj Zen, A., Caligiuri, G., et al. (2006). Isolation of “side population” progenitor cells from healthy arteries of adult mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 281–286.PubMedCrossRefGoogle Scholar
  45. 45.
    Sata, M., Saiura, A., Kunisato, A., et al. (2002). Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nature Medicine, 8, 403–409.PubMedCrossRefGoogle Scholar
  46. 46.
    Crisan, M., Yap, S., Casteilla, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.PubMedCrossRefGoogle Scholar
  47. 47.
    Tang, Z., Wang, A., Yuan, F., et al. (2012). Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nature Communications. doi: 10.1038/ncomms1867.Google Scholar
  48. 48.
    Gan, Q., Yoshida, T., Li, J., & Owens, G. (2007). Smooth muscle cells and myofibroblasts use distinct transcriptional mechanisms for smooth muscle α-actin expression. Circulation Research, 101, 883–892.PubMedCrossRefGoogle Scholar
  49. 49.
    Mayr, M., Zampetaki, A., Sidibe, A., et al. (2008). Proteomic and metabolomic analysis of smooth muscle cells derived from the arterial media and adventitial progenitors of apolipoprotein E-deficient mice. Circulation Research, 102, 1046–1056.PubMedCrossRefGoogle Scholar
  50. 50.
    Hu, Y., Zhang, Z., Torsney, E., et al. (2004). Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. Journal of Clinical Investigation, 113, 1258–1265.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chen, Y., Wong, M. M., Campagnolo, P., et al. (2013). Adventitial stem cells in vein grafts display multilineage potential that contributes to neointimal formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 1844–1851.PubMedCrossRefGoogle Scholar
  52. 52.
    Méndez-Ferrer, S., Michurina, T. V., Ferraro, F., et al. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466, 829–834.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Campagnolo, P., Cesselli, D., Al HajZen, A., et al. (2010). Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation, 121, 1735–1745.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Moretti, A., Caron, L., Nakano, A., et al. (2006). Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell, 127, 1151–1165.PubMedCrossRefGoogle Scholar
  55. 55.
    Sun, Y., Liang, X., Najafi, N., et al. (2007). Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Developmental Biology, 304, 286–296.PubMedCrossRefGoogle Scholar
  56. 56.
    Bu, L., Jiang, X., Martin-Puig, S., et al. (2009). Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature, 460, 113–117.PubMedCrossRefGoogle Scholar
  57. 57.
    Fuentes, T., & Kearns-Jonker, M. (2013). Endogenous cardiac stem cells for the treatment of heart failure. Stem Cells Cloning, 6, 1–12.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Mayfield, A. E., Tilokee, E. L., & Davis, D. R. (2014). Resident cardiac stem cells and their role in stem cell therapies for myocardial repair. Canadian Journal of Cardiology, 30, 1288–1298.PubMedCrossRefGoogle Scholar
  59. 59.
    Beltrami, A. P., Barlucchi, L., Torella, D., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.PubMedCrossRefGoogle Scholar
  60. 60.
    Hierlihy, A. M., Seale, P., Lobe, C. G., Rudnicki, M. A., & Megeney, L. A. (2002). The post-natal heart contains a myocardial stem cell population. FEBS Letters, 530, 239–243.PubMedCrossRefGoogle Scholar
  61. 61.
    Oh, H., Bradfute, S. B., Gallardo, T. D., et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences U.S.A. 100, 12313–12318.Google Scholar
  62. 62.
    Laugwitz, K. L., Moretti, A., Lam, J., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.PubMedCrossRefGoogle Scholar
  63. 63.
    Nagasawa, T., Tachibana, K., & Kishimoto, T. (1998). A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection. Seminars in Immunology, 10, 179–185.PubMedCrossRefGoogle Scholar
  64. 64.
    Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393, 595–599.PubMedCrossRefGoogle Scholar
  65. 65.
    Abbott, J. D., Huang, Y., Liu, D., Hickey, R., Krause, D. S., & Giordano, F. J. (2004). Stromal cell- derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 110, 3300–3305.PubMedCrossRefGoogle Scholar
  66. 66.
    Askari, A. T., Unzek, S., Popovic, Z. B., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362, 697–703.PubMedCrossRefGoogle Scholar
  67. 67.
    Armulik, A., Genove, G., & Betsholtz, C. (2011). Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Developmental Biology, 21, 193–215.Google Scholar
  68. 68.
    Chen, C. W., Montelatici, E., Crisan, M., et al. (2009). Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both? Cytokine & Growth Factor Reviews, 20, 429–434.CrossRefGoogle Scholar
  69. 69.
    Katare, R., Riu, F., Mitchell, K., et al. (2011). Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circulation Research, 109, 894–906.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chen, C. W., Okada, M., Proto, J. D., et al. (2013). Human pericytes for ischemic heart repair. Stem Cells, 31, 305–316.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bersell, K., Arab, S., Haring, B., & Kühn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138, 257–270.PubMedCrossRefGoogle Scholar
  72. 72.
    Cai, M. X., Shi, X. C., Chen, T., et al. (2016). Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life. Science, 149, 1–9.Google Scholar
  73. 73.
    Reuter, S., Soonpaa, M. H., Firulli, A. B., Chang, A. N., & Field, L. J. (2014). Recombinant neuregulin 1 does not activate cardiomyocyte DNA synthesis in normal or infarcted adult mice. PloS One. doi: 10.1371/journal.pone.0115871.Google Scholar
  74. 74.
    D’Uva, G., Aharonov, A., Lauriola, M., et al. (2015) ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nature Cell Biology, 17, 627–638.Google Scholar
  75. 75.
    Engel, F.B., Hsieh, P.C., Lee, R.T., & Keating, M.T. (2006). FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proceedings of the National Academy of Sciences U.S.A. 103, 15546–15551.Google Scholar
  76. 76.
    Mollova, M., Bersell, K., Walsh, S., et al. (2013). Cardiomyocyte proliferation contributes to heart growth in young humans. Proceedings of the National Academy of Sciences U.S.A. 110, 1446–1451.Google Scholar
  77. 77.
    Bergmann, O., Zdunek, S., Felker, A., et al. (2015). Dynamics of cell generation and turnover in the human heart. Cell, 161, 1566–1575.PubMedCrossRefGoogle Scholar
  78. 78.
    Anversa, P., & Kajstura, J. (1998). Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circulation Research, 83, 1–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Milasinovic, D., & Mohl, W. (2015). Contemporary perspective on endogenous myocardial regeneration. World Journal of Stem Cells, 7, 793–805.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Laflamme, M. A., Chen, K. Y., Naumova, A. V., et al. (2007). Cardiomyocytes derived from human embryonic stemcells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.PubMedCrossRefGoogle Scholar
  81. 81.
    Buja, L. M., & Vela, D. (2008). Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovascular Pathology, 17, 349–374.PubMedCrossRefGoogle Scholar
  82. 82.
    Senyo, S. E., Steinhauser, M. L., Pizzimenti, C. L., et al. (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature, 493, 433–436.PubMedCrossRefGoogle Scholar
  83. 83.
    Smart, N., Bollini, S., Dube, K. N., et al. (2011). De novo cardiomyocytes from within the activated adult heart after injury. Nature, 474, 640–644.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Limana, F., Zacheo, A., Mocini, D., et al. (2007). Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circulation Research, 101, 1255–1265.PubMedCrossRefGoogle Scholar
  85. 85.
    Winter, E. M., Grauss, R. W., Hogers, B., et al. (2007). Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation, 116, 917–927.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhou, B., Honor, L. B., He, H., et al. (2011). Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. Journal of Clinical Investigation, 121, 1894–1904.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kawakami, Y., Rodriguez Esteban, C., Raya, M., et al. (2006). Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes & Development, 20, 3232–3237.CrossRefGoogle Scholar
  88. 88.
    Singh, B. N., Doyle, M. J., Weaver, C. V., Koyano-Nakagawa, N., & Garry, D. J. (2012). Hedgehog and Wnt coordinate signaling in myogenic progenitors and regulate limb regeneration. Developmental Biology, 371, 23–34.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Chablais, F., & Jazwinska, A. (2010). IGF signaling between blastema and wound epidermis is required for fin regeneration. Development, 137, 871–879.PubMedCrossRefGoogle Scholar
  90. 90.
    Noseda, M., Peterkin, T., Simoes, F. C., Patient, R., & Schneider, M. D. (2011). Cardiopoietic factors: extracellular signals for cardiac lineage commitment. Circulation Research, 108, 129–152.PubMedCrossRefGoogle Scholar
  91. 91.
    Sahara, M., Santoro, F., & Chien, K. R. (2015). Programming and reprogramming a human heart cell. EMBO Journal, 34, 710–738.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Mahmoud, A. I., Kocabas, F., Muralidhar, S. A., et al. (2013). Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature, 497, 249–253.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Heallen, T., Morikawa, Y., Leach, J., Tao, G., Willerson, J. T., & Johnson, R. L. (2013). Hippo signaling impedes adult heart regeneration. Development, 140, 4683–4690.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Xin, M., Kim, Y., Sutherland, L. B., et al. (2013). Hippo pathway effector Yap promotes cardiac regeneration. Proceedings of the National Academy of Sciences U.S.A. 110, 13839–13844.Google Scholar
  95. 95.
    Lin, Z., von Gise, A., Zhou, P., et al. (2014). Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circulation Research, 115, 354–363.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Chaudhry, H. W., Dashoush, N. H., Tang, H., et al. (2004). Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. Journal of Biological Chemistry, 279, 35858–35866.PubMedCrossRefGoogle Scholar
  97. 97.
    Cheng, R. K., Asai, T., Tang, H., et al. (2007). Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure. Circulation Research, 10, 1741–1748.CrossRefGoogle Scholar
  98. 98.
    Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., & Borden, W. B. (2013). Heart disease and stroke statistics — 2013 update: a report from the American Heart Association. Circulation. doi: 10.1161/CIR.0b013e31828124ad.Google Scholar
  99. 99.
    Napoli, C., Grimaldi, V., De Pascale, M. R., Sommese, L., Infante, T., & Soricelli, A. (2016). Novel epigenetic-based therapies useful in cardiovascular medicine. World Journal of Cardiology, 8, 211–219.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Górnikiewicz, B., Ronowicz, A., Podolak, J., Madanecki, P., Stanisławska-Sachadyn, A., & Sachadyn, P. (2013). Epigenetic basis of regeneration: analysis of genomic DNA methylation profiles in the MRL/MpJ mouse. DNA Research, 20, 605–621.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Yakushiji, N., Suzuki, M., Satoh, A., et al. (2007). Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians. Developmental Biology, 312, 171–182.PubMedCrossRefGoogle Scholar
  102. 102.
    Schiano, C., Vietri, M. T., Grimaldi, V., Picascia, A., De Pascale, M. R., & Napoli, C. (2015). Epigenetic-related therapeutic challenges in cardiovascular disease. Trends in Pharmacological Sciences, 36, 226–235.PubMedCrossRefGoogle Scholar
  103. 103.
    Xu, C., Police, S., Rao, N., & Carpenter, M. K. (2002). Characterization and enrichment of cardio-myocytes derived from human embryonic stem cells. Circulation Research, 91, 501–508.PubMedCrossRefGoogle Scholar
  104. 104.
    Fukuda, K., & Yuasa, S. (2006). Stem cells as a source of regenerative cardiomyocytes. Circulation Research, 98, 1002–1013.PubMedCrossRefGoogle Scholar
  105. 105.
    Kawamura, T., Ono, K., Morimoto, T., et al. (2005). Acetylation of GATA-4 is involved in the differentiation of embryonic stem cells into cardiac myocytes. Journal of Biological Chemistry, 280, 19682–19688.PubMedCrossRefGoogle Scholar
  106. 106.
    Karamboulas, C., Swedani, A., Ward, C., et al. (2006). HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. Journal of Cell Science, 119, 4305–4314.PubMedCrossRefGoogle Scholar
  107. 107.
    Felician, G., Collesi, C., Lusic, M., et al. (2014). Epigenetic modification at notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circulation Research, 115, 636–649.PubMedCrossRefGoogle Scholar
  108. 108.
    Lionetti, V., & Ventura, C. (2013). Regenerative medicine approach to repair the failing heart. Vascular Pharmacology, 58, 159–163.PubMedCrossRefGoogle Scholar
  109. 109.
    Lennox, K. A., & Behlke, M. A. (2011). Chemical modification and design of anti-miRNA oligonucleotides. Gene Therapy, 18, 1111–1120.PubMedCrossRefGoogle Scholar
  110. 110.
    Bostjancic, E., Jerse, M., Glavac, D., & Zidar, N. (2015). miR-1, miR-133a/b, and miR-208a in human fetal hearts correlate to the apoptotic and proliferation markers. Experimental Biology and Medicine (Maywood, N.J.), 240, 211–219.CrossRefGoogle Scholar
  111. 111.
    Morrison, J. L., Zhang, S., Tellam, R. L., et al. (2015). Regulation of microRNA during cardiomyocyte maturation in sheep. BMC Genomics. doi: 10.1186/s12864-015-1693-z.Google Scholar
  112. 112.
    Fuller, A. M., & Qian, L. (2014). MiRiad roles for MicroRNAs in cardiac development and regeneration. Cell, 3, 724–750.CrossRefGoogle Scholar
  113. 113.
    Kalsotra, A., Wang, K., Li, P. F., & Cooper, T. A. (2010). MicroRNAs coordinate an alternative splicing network during mouse postnatal heart development. Genes & Development, 24, 653–658.CrossRefGoogle Scholar
  114. 114.
    Gama-Carvalho, M., Andrade, J., & Brás-Rosário, L. (2014). Regulation of cardiac cell fate by microRNAs: implications for heart regeneration. Cell, 3, 996–1026.CrossRefGoogle Scholar
  115. 115.
    Soonpaa, M. H., & Field, L. J. (1997). Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. American Journal of Physiology, 272, H220–H226.PubMedGoogle Scholar
  116. 116.
    Hodgkinson, C. P., Kang, M. H., Dal-Pra, S., Mirotsou, M., & Dzau, V. J. (2015). MicroRNAs and cardiac regeneration. Circulation Research, 116, 1700–1711.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Zhao, Y., Samal, E., & Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436, 214–220.PubMedCrossRefGoogle Scholar
  118. 118.
    Zhao, Y., Ransom, J. F., Li, A., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miR-NA-1-2. Cell, 129, 303–317.PubMedCrossRefGoogle Scholar
  119. 119.
    Porrello, E. R., Johnson, B. A., Aurora, A. B., et al. (2011). MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circulation Research, 109, 670–679.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Liu, N., Bezprozvannaya, S., Williams, A. H., et al. (2008). microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes & Development, 22, 3242–3254.CrossRefGoogle Scholar
  121. 121.
    Pandey, R. & Rafeeq, P. H. (2015). Ahmed MicroRNAs Inducing Proliferation of Quiescent Adult Cardiomyocytes. Cardiovascular Regenerative Medicine, doi: 10.14800/crm.519.
  122. 122.
    Zhang, J., Chang, J. J., Xu, F., et al. (2013). MicroRNA deregulation in right ventricular outflow tract myocardium in nonsyndromic tetralogy of fallot. Canadian Journal of Cardiology, 29, 1695–1703.PubMedCrossRefGoogle Scholar
  123. 123.
    Liang, D., Xu, X., Deng, F., et al. (2014). miRNA-940 reduction contributes to human tetralogy of fallot development. Journal of Cellular and Molecular Medicine, 18, 1830–1839.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Liang, D., Zhen, L., Yuan, T., et al. (2014). miR-10a regulates proliferation of human cardiomyocyte progenitor cells by targeting GATA6. PLoS One, doi:  10.1371/journal.pone.0103097
  125. 125.
    Valente, M., Nascimento, D. S., Cumano, A., & Pinto-do-O’P (2014). Sca-1+ cardiac progenitor cells and heart-making: a critical synopsis. Stem Cells and Development, 23, 2263–2273.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Cao, X., Wang, J., Wang, Z., et al. (2013). MicroRNA profiling during rat ventricular maturation: a role for miR-29a in regulating cardiomyocyte cell cycle re-entry. FEBS Letters, 587, 1548–1555.PubMedCrossRefGoogle Scholar
  127. 127.
    Zhang, Y., Matsushita, N., Eigler, T., & Marban, E. (2013). Targeted MicroRNA interference promotes postnatal cardiac cell cycle re-entry. Journal of Regenerative Medicine. doi: 10.4172/2325-9620.1000108.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Jayawardena, T. M., Finch, E. A., Zhang, L., et al. (2015). MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function. Circulation Research, 116, 418–424.PubMedCrossRefGoogle Scholar
  129. 129.
    Ivey, K. N., Muth, A., Arnold, J., et al. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell, 2, 219–229.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Jayawardena, T. M., Egemnazarov, B., Finch, E. A., et al. (2012). MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circulation Research, 110, 1465–1473.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Wilson, K. D., Hu, S., Venkatasubrahmanyam, S., et al. (2010). Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499. Circulation Cardiovascular. Genetics, 3, 426–435.Google Scholar
  132. 132.
    Glass, C., & Singla, D. K. (2011). MicroRNA-1 transfected embryonic stem cells en- hance cardiac myocyte differentiation and inhibit apoptosis by modulat- ing the PTEN/Akt pathway in the infarcted heart. American Journal of Physiology - Heart and Circulatory Physiology, 301, H2038–H2049.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Sluijter, J. P. G., van Mil, A., van Vliet, P., et al. (2010). MicroRNA-1 and -499 regulate differentiation and proliferation in human- derived cardiomyocyte progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 859–868.PubMedCrossRefGoogle Scholar
  134. 134.
    Sirish, P., López, J. E., Li, N., et al. (2012). MicroRNA profiling predicts a variance in the proliferative potential of cardiac progenitor cells derived from neonatal and adult murine hearts. Journal of Molecular and Cellular Cardiology, 52, 264–272.PubMedCrossRefGoogle Scholar
  135. 135.
    Gonzalez, A., Rota, M., Nurzynska, D., et al. (2008). Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan. Circulation Research, 102, 597–606.PubMedCrossRefGoogle Scholar
  136. 136.
    Hosoda, T., Zheng, H., Cabral-da-Silva, M., et al. (2011). Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation, 123, 1287–1296.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Huang, F., Li, M. L., Fang, Z. F., et al. (2013). Overexpression of MicroRNA-1 improves the efficacy of mesenchymal stem cell transplantation after myocardial infarction. Cardiology, 125, 18–30.PubMedCrossRefGoogle Scholar
  138. 138.
    Parsons, X. H. (2012). MicroRNA profiling reveals distinct mechanisms governing cardiac and neural lineage-specification of pluripotent human embryonic stem cells. Journal of Stem Cell Research & Therapy. doi: 10.4172/2157-7633.1000124.Google Scholar
  139. 139.
    Chen, J., Huang, Z. P., Seok, H. Y., et al. (2013). miR-17–92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circulation Research, 112, 1557–1566.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Gladka, M. M., & van Rooij, E. (2015). AntimiR-34a to enhance cardiac repair after ischemic injury. Circulation Research, 117, 395–397.PubMedCrossRefGoogle Scholar
  141. 141.
    Yang, Y., Cheng, H. W., Qui, Y., et al. (2015). MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circulation Research, 117, 450–459.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Jopling, C., Boue, S., & Izpisua Belmonte, J. C. (2011). Dedifferentiation, transdifferen- tiation and reprogramming: three routes to regeneration. Nature Reviews Molecular Cell Biology, 12, 79–89.PubMedCrossRefGoogle Scholar
  143. 143.
    Aguirre, A., Montserrat, N., Zacchigna, S., et al. (2014). In vivo activation of a conserved microRNA program induces mammalian heart regeneration. Cell Stem Cell, 15, 589–604.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Porrello, E. R., Mahmoud, A. I., Simpson, E., et al. (2013). Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proceedings of the National Academy of Sciences U.S.A. 110, 187–192.Google Scholar
  145. 145.
    Hullinger, T. G., Montgomery, R. L., Seto, A. G., et al. (2012). Inhibition of miR-15 protects against cardiac ischemic injury. Circulation Research, 110, 71–81.PubMedCrossRefGoogle Scholar
  146. 146.
    Montgomery, R. L., Hullinger, T. G., Semus, H. M., et al. (2011). Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation, 124, 1537–1547.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Boon, R. A., Iekushi, K., Lechner, S., et al. (2013). MicroRNA-34a regulates cardiac ageing and function. Nature, 495, 107–110.PubMedCrossRefGoogle Scholar
  148. 148.
    Ham O., Lee, S. Y., Lee, C. Y., et al. (2015). let-7b suppresses apoptosis and autophagy of human mesenchymal stem cells transplanted into ischemia/reperfusion injured heart 7by targeting caspase-3. Stem Cell Research & Therapy, doi  10.1186/s13287–015-0134-x.
  149. 149.
    Eulalio, A., Mano, M., Ferro, M. D., et al. (2012). Functional screening identifies miRNAs inducing cardiac regeneration. Nature, 492, 376–381.PubMedCrossRefGoogle Scholar
  150. 150.
    Liang, D., Li, J., Wu, Y., et al. (2015). miRNA-204 drives cardiomyocyte proliferation via targeting Jarid2. International Journal of Cardiology, 201, 38–48.PubMedCrossRefGoogle Scholar
  151. 151.
    Aurora, A. B., Mahmoud, A. I., Luo, X., et al. (2012). Micro- RNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. Journal of Clinical Investigation, 122, 1222–1232.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Tian, Y., Liu, Y., Wang, T., et al. (2015). A microRNA-hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Science Translational Medicine. doi: 10.1126/scitranslmed.3010841.PubMedGoogle Scholar
  153. 153.
    Clark, A., & Naya, F. J. (2015). MicroRNAs in the myocyte enhancer factor 2 (MEF2)-regulated Gtl2-Dio3 noncoding RNA locus promote cardiomyocyte proliferation by targeting the transcriptional coactivator cited2. Journal of Biological Chemistry, 290, 23162–23172.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Tao, L., Bei, Y., Zhou, Y., Xiao, J., & Li, X. (2015). Non-coding RNAs in cardiac regeneration. Oncotarget, 6, 42613–42622.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Ounzain, S., & Pedrazzini, T. (2015). The promise of enhancer-associated long noncoding RNAs in cardiac regeneration. Trends in Cardiovascular Medicine, 25, 592–602.PubMedCrossRefGoogle Scholar
  156. 156.
    Colombo, M., Raposo, G., & Théry, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 30, 255–289.PubMedCrossRefGoogle Scholar
  157. 157.
    Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S. K., & Krishnamurthy, P. (2015). Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117, 52–64.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Huang, L., Ma, W., Ma, Y., Feng, D., Chen, H., & Ca, B. (2015). Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? International Journal of Biological Sciences, 11, 238–245.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Yu, B., Gong, M., Wang, Y., et al. (2013). Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PloS One. doi: 10.1371/journal.pone.0073304.Google Scholar
  160. 160.
    Feng, Y., Huang, W., Wani, M., Yu, X., & Ashraf, M. (2014). Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PloS One. doi: 10.1371/journal.pone.0088685.Google Scholar
  161. 161.
    Grimaldi, V., De Pascale, M. R., Zullo, A., Soricelli, A., Infante, T., Mancini, F. P., & Napoli, C. (2016). Evidence of epigenetic tags in cardiac fibrosis. Journal of Cardiology. doi: 10.1016/j.jjcc.2016.10.004.PubMedGoogle Scholar
  162. 162.
    Grimaldi, V., Mancini, F. P., Casamassimi, A., et al. (2013). Potential benefits of cell therapy in coronary heart disease. Journal of Cardiology, 62, 267–276.PubMedCrossRefGoogle Scholar
  163. 163.
    Grimaldi, V., Schiano, C., Casamassimi, A., et al. (2016). Imaging techniques to evaluate cell therapy in peripheral artery disease: state of the art and clinical trials. Clinical Physiology and Functional Imaging, 36, 165–178.PubMedCrossRefGoogle Scholar
  164. 164.
    Makkar, R. R., Smith, R. R., Cheng, K., et al. (2012). Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet, 379, 895–904.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Bolli, R., Chugh, A. R., D’Amario, D., et al. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 378, 1847–1857.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Messina, E., De Angelis, L., Frati, G., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95, 911–921.PubMedCrossRefGoogle Scholar
  167. 167.
    Smith, R. R., Barile, L., Cho, H. C., et al. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115, 896–908.PubMedCrossRefGoogle Scholar
  168. 168.
    Davis, D. R., Zhang, Y., Smith, R. R., et al. (2009). Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PloS One. doi: 10.1371/journal.pone.0007195.Google Scholar
  169. 169.
    Mishra, R., Vijayan, K., Colletti, E. J., et al. (2011). Characterization and functionality of cardiac progenitor cells in congenital heart patients. Circulation, 123, 364–373.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Cappellari, O., Benedetti, S., Innocenzi, A., et al. (2013). Dll4 and PDGF-BB convert committed skeletal myoblasts to pericytes without erasing their myogenic memory. Developmental Cell, 24, 586–599.PubMedCrossRefGoogle Scholar
  171. 171.
    Boyle, A. J., Schulman, S. P., Hare, J. M., & Oettgen, P. (2006). Is stem cell therapy ready for patients? Stem cell therapy for cardiac repair. Ready for the next step. Circulation, 114, 339–352.PubMedGoogle Scholar
  172. 172.
    Cho, H. J., Lee, N., Lee, J. Y., et al. (2007). Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. Journal of Experimental Medicine, 204, 3257–3269.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Reinecke, H., Minami, E., Zhu, W. Z., & Laflamme, M. A. (2008). Cardiogenic differentiation and transdifferentiation of progenitor cells. Circulation Research, 103, 1058–1071.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Guan, K., & Hasenfuss, G. (2007). Do stem cells in the heart truly differentiate into cardiomyocytes? Journal of Molecular and Cellular Cardiology, 43, 377–387.PubMedCrossRefGoogle Scholar
  175. 175.
    Christoforou, N., & Gearhart, J. D. (2007). Stem cells and their potential in cell-based cardiac therapies. Progress in Cardiovascular Diseases, 49, 396–413.PubMedCrossRefGoogle Scholar
  176. 176.
    Poynter, J. A., Herrmann, J. L., Manukyan, M. C., et al. (2011). Intracoronary mesenchymal stem cells promote postischemic myocardial functional recovery, decrease inflammation, and reduce apoptosis via a signal transducer and activator of transcription 3 mechanism. Journal of the American College of Surgeons, 213, 253–260.PubMedCrossRefGoogle Scholar
  177. 177.
    Uemura, R., Xu, M., Ahmad, N., & Ashraf, M. (2006). Bone marrow stemc ells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circulation Research, 98, 1414–1421.PubMedCrossRefGoogle Scholar
  178. 178.
    Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage dif- ferentiating capacity. Proceedings of the National Academy of Sciences U.S.A. 106, 14022–14027.Google Scholar
  179. 179.
    Angoulvant, D., Ivanes, F., Ferrera, R., Matthews, P. G., Nataf, S., & Ovize, M. (2011). Mesenchymal stem cell conditioned media attenuates in vitro and ex vivomyocardial reperfusion injury. Journal of Heart and Lung Transplantation, 30, 95–102.PubMedCrossRefGoogle Scholar
  180. 180.
    Boomsma, R. A., & Geenen, D. L. (2012). Mesenchymal stem cells secretemultiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PloS One. doi: 10.1371/journal.pone.0035685.Google Scholar
  181. 181.
    Zeng, L., Hu, Q., Wang, X., et al. (2007). Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation, 115, 1866–1875.PubMedCrossRefGoogle Scholar
  182. 182.
    Shabbir, A., Zisa, D., Suzuki, G., & Lee, T. (2009). Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. American Journal of Physiology - Heart and Circulatory Physiology, 296, H1888–H1897.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Shake, J. G., Gruber, P. J., Baumgartner, W. A., et al. (2002). Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Annals of Thoracic. Surgery, 73, 1919–1925.Google Scholar
  184. 184.
    Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.PubMedCrossRefGoogle Scholar
  185. 185.
    Dixon, J. A., Gorman, R. C., Stroud, R. E., et al. (2009). Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction. Circulation, 120, S220–S229.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., & Robbins, R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 428, 668–673.PubMedCrossRefGoogle Scholar
  187. 187.
    Murry, C. E., Soonpaa, M. H., Reinecke, H., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 42, 664–668.CrossRefGoogle Scholar
  188. 188.
    Mirotsou, M., Zhang, Z., Deb, A., et al. (2007). Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proceedings of the National Academy of Sciences U.S.A. 104, 1643–1648.Google Scholar
  189. 189.
    Mirotsou, M., Jayawardena, T. M., Schmeckpeper, J., Gnecchi, M., & Dzau, V. J. (2011). Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. Journal of Molecular and Cellular Cardiology, 50, 280–289.PubMedCrossRefGoogle Scholar
  190. 190.
    Shintani, Y., Fukushima, S., Varela-Carver, A., et al. (2009). Donor cell-type specific paracrine effects of cell transplantation for post-infarction heart failure. Journal of Molecular and Cellular Cardiology, 47, 288–295.Google Scholar
  191. 191.
    Leor, J., Rozen, L., Zuloff-Shani, A., et al. (2006). Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation, 114, I94–I100.PubMedCrossRefGoogle Scholar
  192. 192.
    de Couto, G., Liu, W., Tseliou, E., et al. (2015). Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. Journal of Clinical Investigation, 125, 3147–3162.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Bolli, R., Tang, X. L., Sanganalmath, S. K., et al. (2013). Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy. Circulation, 128, 122–131.PubMedCrossRefGoogle Scholar
  194. 194.
    Johnston, P. V., Sasano, T., Mills, K., et al. (2009). Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation, 120, 1075–1083.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    van Berlo, J. H., Kanisicak, O., Maillet, M., et al. (2014). C-kit + cells minimally contribute cardiomyocytes to the heart. Nature, 509, 337–341.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Li, T. S., Cheng, K., Malliaras, K., et al. (2012). Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. Journal of the American College of Cardiology, 59, 942–953.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Malliaras, K., Li, T. S., Luthringer, D., et al. (2012). Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation, 125, 100–112.PubMedCrossRefGoogle Scholar
  198. 198.
    Hong, K. U., & Bolli, R. (2014). Cardiac stem cell therapy for cardiac repair. Current Treatment Options in Cardiovascular Medicine. doi: 10.1007/s11936-014-0324-3.PubMedPubMedCentralGoogle Scholar
  199. 199.
    Bai, X., Yan, Y., Coleman, M., et al. (2011). Tracking long-term survival of intramyocardially delivered human adipose tissue-derived stem cells using bioluminescence imaging. Molecular Imaging and Biology, 13, 633–645.PubMedCrossRefGoogle Scholar
  200. 200.
    Li, T. S., Cheng, K., Lee, S. T., et al. (2010). Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells, 28, 2088–2098.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Chimenti, I., Smith, R. R., Li, T. S., et al. (2010). Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circulation Research, 106, 971–980.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Malliaras, K., Makkar, R. R., Smith, R. R., et al. (2014). Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-derived aUtologous stem CElls to reverse ventricUlar dySfunction). Journal of the American College of Cardiology, 63, 110–122.PubMedCrossRefGoogle Scholar
  203. 203.
    Fernandes, S., Naumova, A. V., Zhu, W. Z., Laflamme, M. A., Gold, J., & Murry, C. E. (2010). Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. Journal of Molecular and Cellular Cardiology, 49, 941–949.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Hotkar, A. J., & Balinsky, W. (2012). Stem cells in the treatment of cardiovascular disease - an overview. Stem Cell Reviews and Reports, 8, 494–502.PubMedCrossRefGoogle Scholar
  205. 205.
    Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120, 408–416.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Priori, S. G., Napolitano, C., Di Pasquale, E., & Condorelli, G. (2013). Induced pluripotent stem cell-derived cardiomyocytes in studies of inherited arrhythmias. Journal of Clinical Investigation, 123, 84–91.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Yoshida, Y., & Yamanaka, S. (2011). iPS cells: a source of cardiac regeneration. Journal of Molecular and Cellular Cardiology, 50, 327–332.PubMedCrossRefGoogle Scholar
  208. 208.
    Dubois, N. C., Craft, A. M., Sharma, P., et al. (2011). SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived fromhuman pluripotent stem cells. Nature Biotechnology, 29, 1011–1018.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Tohyama, S., Hattori, F., Sano, M., et al. (2013). Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell, 12, 127–137.PubMedCrossRefGoogle Scholar
  210. 210.
    Lian, X., Hsiao, C., Wilson, G., et al. (2012). Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences U.S.A.109, E1848–E1857.Google Scholar
  211. 211.
    Chong, J. J., & Murry, C. E. (2014). Cardiac regeneration using pluripotent stem cells--progression to large animal models. Stem Cell Research, 13, 654–665.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Chong, J. J., Yang, X., Don, C. W., et al. (2014). Human embryonic- stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature, 510, 273–277.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Kehat, I., Kenyagin-Karsenti, D., Snir, M., et al. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. Journal of Clinical Investigation, 108, 407–414.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Zhang, J., Wilson, G. F., Soerens, A. G., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 4, e30–e41.CrossRefGoogle Scholar
  215. 215.
    Garbern, J. C., & Lee, R. T. (2013). Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell, 12, 689–698.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Chaturvedi, P., & Tyagi, S. C. (2014). Epigenetic mechanisms underlying cardiac degeneration and regeneration. International Journal of Cardiology, 173, 1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Riolobos, L., Hirata, R. K., Turtle, C. J., et al. (2013). HLA engineering of human pluripotent stemcells. Molecular Therapy, 2, 1232–1241.CrossRefGoogle Scholar
  218. 218.
    Doppler, S. A., Deutsch, M. A., Lange, R., & Krane, M. (2013). Cardiac regeneration: current therapies-future concepts. Journal of Thoracic Disease, 5, 683–697.PubMedPubMedCentralGoogle Scholar
  219. 219.
    Ieda, M., Fu, J. D., Delgado-Olguin, P., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142, 375–386.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Nam, Y. J., Song, K., Luo, X., et al. (2013). Reprogramming of human fibroblasts toward a cardiac fate. Proceedings of the National Academy of Sciences U.S.A 110, 5588–5593.Google Scholar
  221. 221.
    Bel, A., Planat-Bernard, V., Saito, A., et al. (2010). Composite cell sheets: a further step toward safe and effective myocardial regeneration by cardiac progenitors derived from embryonic stem cells. Circulation, 122, S118–S123.PubMedCrossRefGoogle Scholar
  222. 222.
    Blin, G., Nury, D., Stefanovic, S., et al. (2010). A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted non-human primates. Journal of Clinical Investigation, 120, 1125–1139.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Kawamura, M., Miyagawa, S., Miki, K., et al. (2012). Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation, 126, S29–S37.PubMedCrossRefGoogle Scholar
  224. 224.
    Fernandez, C. E., Yen, R. W., Perez, S. M., et al. (2016). Human vascular microphysiological system for in vitro drug screening. Scientific Reports. doi: 10.1038/srep21579.Google Scholar
  225. 225.
    Vunjak-Novakovic, G., Lui, K. O., Tandon, N., & Chien, K. R. (2011). Bioengineering heart muscle: a paradigm for regenerative medicine. Annual Review of Biomedical Engineering, 13, 245–267.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Ye, L., Zimmermann, W. H., Garry, D. J., & Zhang, J. (2013). Patching the heart: cardiac repair from within and outside. Circulation Research, 113, 922–932.PubMedCrossRefGoogle Scholar
  227. 227.
    Coulombe, K. L., Bajpai, V. K., Andreadis, S. T., & Murry, C. E. (2014). Heart regeneration with engineered myocardial tissue. Annual Review of Biomedical Engineering, 16, 1–28.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Gerbin, K. A., Yang, X., Murry, C. E., & Coulombe, K. E. (2015). Enhanced electrical integration of engineered human myocardium via intramyocardial versus epicardial delivery in infarcted rat hearts. PloS One. doi: 10.1371/journal.pone.0131446.PubMedPubMedCentralGoogle Scholar
  229. 229.
    Haraguchi, Y., Shimizu, T., Yamato, M., & Okano, T. (2011). Regenerative therapies using cell sheet-based tissue engineering for cardiac disease. Cardiology Research and Practice. doi: 10.4061/ 2011/845170.PubMedPubMedCentralGoogle Scholar
  230. 230.
    Hirt, M. N., Hansen, A., & Eschenhagen, T. (2014). Cardiac tissue engineering: state of the art. Circulation Research, 114, 354–367.PubMedCrossRefGoogle Scholar
  231. 231.
    Bian, W., Badie, N., Himel, H. D., & Bursac, N. (2014). Robust T-tubulation and maturation of cardiomyocytes using tissue-engineered epicardial mimetics. Biomaterials, 35, 3819–3828.PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Bian, W., Jackman, C. P., Bian, W., Jackman, C. P., & Bursac, N. (2014). Controlling the structural and functional anisotropy of engineered cardiac tissues. Biofabrication. doi: 10.1088/1758-5082/6/2/024109.PubMedCentralGoogle Scholar
  233. 233.
    Zimmermann, W. H., Fink, C., Kralisch, D., Remmers, U., Weil, J., & Eschenhagen, T. (2000). Three-dimensional engi- neered heart tissue from neonatal rat cardiac myocytes. Biotechnology and Bioengineering, 68, 106–114.PubMedCrossRefGoogle Scholar
  234. 234.
    Zimmermann, W. H., Melnychenko, I., Wasmeier, G., et al. (2006). Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Medicine, 12, 452–458.PubMedCrossRefGoogle Scholar
  235. 235.
    Stevens, K. R., Kreutziger, K. L., Dupras, S. K., et al. (2009). Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proceedings of the National Academy of Sciences U.S.A.106, 16568–16573.Google Scholar
  236. 236.
    Kreutziger, K. L., Muskheli, V., Johnson, P., Braun, K., Wight, T. N., & Murry, C. E. (2011). Developing vasculature and stroma in engineered human myocardium. Journal of Tissue Engineering Part A., 17, 1219–1228.PubMedCrossRefGoogle Scholar
  237. 237.
    Madden, L. R., Mortisen, D. J., Sussman, E. M., et al. (2010). Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proceedings of the National Academy of Sciences U.S.A. 107, 15211–15216.Google Scholar
  238. 238.
    Dvir, T., Kedem, A., Ruvinov, E., et al. (2009). Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proceedings of the National Academy of Sciences U.S.A.106, 14990–14995.Google Scholar
  239. 239.
    Bergmann, O., Bhardwaj, R. D., Bernard, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Hsieh, P. C., Segers, V. F., Davis, M. E., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 13, 970–974.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103, 1204–1219.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Beohar, N., Rapp, J., Pandya, S., & Losordo, D. W. (2010). Rebuilding the damaged heart: the potential of cytokines and growth factors in the treatment of ischemic heart disease. Journal of the American College of Cardiology, 56, 1287–1297.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Fabrizi, C., Angelini, F., Chimenti, I., et al. (2011). Thrombin and thrombin-derived peptides promote proliferation of cardiac progenitor cells in the form of cardiospheres without affecting their differentiation potential. Journal of Biological Regulators and Homeostatic Agents, 25, S43–S51.PubMedGoogle Scholar
  244. 244.
    Aghila Rani, K. G., & Kartha, C. C. (2010). Effects of epidermal growth factor on proliferation and migration of cardiosphere-derived cells expanded from adult human heart. Growth Factors, 28, 157–165.PubMedCrossRefGoogle Scholar
  245. 245.
    Lanier, M., Schade, D., Willems, E., et al. (2012). Wnt inhibition correlates with human embryonic stem cell cardiomyogenesis: a structure-activity relationship study based on inhibitors for the Wnt response. Journal of Medicinal Chemistry, 55, 697–708.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Wang, H., Hao, J., & Hong, C. C. (2011). Cardiac induction of embryonic stem cells by a small molecule inhibitor of Wnt/beta-catenin signaling. ACS Chemical Biology, 6, 192–197.PubMedCrossRefGoogle Scholar
  247. 247.
    Mohl, W., Mina, S., Milasinovic, D., Kasahara, H., Wei, S., & Maurer, G. (2008). Is activation of coronary venous cells the key to cardiac regeneration? Nature Clinical Practice. Cardiovascular Medicine, 5, 528–530.PubMedCrossRefGoogle Scholar
  248. 248.
    Mohl, W. (2007). Embryonic recall: myocardial regeneration beyond stem cell transplantation. Wiener Klinische Wochenschrift, 119, 333–336.PubMedCrossRefGoogle Scholar
  249. 249.
    Kuraitis, D., Zhang, P., Zhang, Y., et al. (2011). A stromal cell-derived factor-1 releasing matrix enhances the progenitor cell response and blood vessel growth in ischaemic skeletal muscle. European Cells & Materials, 22, 109–123.CrossRefGoogle Scholar
  250. 250.
    Murry, C. E., Reinecke, H., & Pabon, L. M. (2006). Regeneration gaps: observations on stem cells and cardiac repair. Journal of the American College of Cardiology, 47, 1777–1785.PubMedCrossRefGoogle Scholar
  251. 251.
    Xiang, F. L., Lu, X., Hammoud, L., et al. (2009). Cardiomyocyte- specific over-expression of human stem cell factor improves cardiac function and survival after myocardial infarction in mice. Circulation, 120, 1065–1074.PubMedCrossRefGoogle Scholar
  252. 252.
    Giacca, M., & Zacchigna, S. (2015). Harnessing the microRNA pathway for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 89, 68–74.PubMedCrossRefGoogle Scholar
  253. 253.
    Jopling, C., Sleep, E., Raya, M., Marti, M., Raya, A., & Izpisua Belmonte, J. C. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 464, 606–609.PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Kikuchi, K., Holdway, J. E., Werdich, A. A., et al. (2010). Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature, 464, 601–605.PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Yin, V. P., Lepilina, A., Smith, A., & Poss, K. D. (2012). Regulation of zebrafish heart regeneration by miR-133. Developmental Biology, 365, 319–327.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Liu, J., van Mil, A., Vrijsen, K., et al. (2011). MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1. Journal of Cellular and Molecular Medicine, 15, 1474–1482.PubMedCrossRefGoogle Scholar
  257. 257.
    Rane, S., He, M., Sayed, D., et al. (2009). Downregulation of miR-199a derepresses hypoxia-inducible factor-1 alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiacmyocytes. Circulation Research, 104, 879–886.PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Dong, S., Cheng, Y., Yang, J., et al. (2009). MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. Journal of Biological Chemistry, 284, 29514–29525.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Qian, L., Van Laake, L. W., Huang, Y., Liu, S., Wendland, M. F., & Srivastava, D. (2011). miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. Journal of Experimental Medicine, 208, 549–560.PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Ren, X. P., Wu, J., Wang, X., et al. (2009). MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation, 119, 2357–2366.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Linda Sommese
    • 1
  • Alberto Zullo
    • 2
    • 3
  • Concetta Schiano
    • 4
  • Francesco P. Mancini
    • 2
  • Claudio Napoli
    • 1
    • 4
  1. 1.Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant ImmunologyAzienda Ospedaliera Universitaria, Università degli Studi della Campania “Luigi Vanvitelli”NaplesItaly
  2. 2.Department of Sciences and TechnologiesUniversity of SannioBeneventoItaly
  3. 3.CEINGE Advanced Biotechnologies,
  4. 4.IRCCS Foundation SDNNaplesItaly

Personalised recommendations