Stem Cell Reviews and Reports

, Volume 13, Issue 1, pp 50–67 | Cite as

The Challenge in Using Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage

  • Zhao Huang
  • Owen Godkin
  • Gundula Schulze-Tanzil


Some decellularized musculoskeletal extracellular matrices (ECM)s derived from tissues such as bone, tendon and fibrocartilaginous meniscus have already been clinical use for tissue reconstruction. Repair of articular cartilage with its unique zonal ECM architecture and composition is still an unsolved problem, and the question is whether allogenic or xenogeneic decellularized cartilage ECM could serve as a biomimetic scaffold for this purpose.

Hence, this survey outlines the present state of preparing decellularized cartilage ECM-derived scaffolds or composites for reconstruction of different cartilage types and of reseeding it particularly with mesenchymal stromal cells (MSCs).

The preparation of natural decellularized cartilage ECM scaffolds hampers from the high density of the cartilage ECM and lacking interconnectivity of the rather small natural pores within it: the chondrocytes lacunae. Nevertheless, the reseeding of decellularized ECM scaffolds before implantation provided superior results compared with simply implanting cell-free constructs in several other tissues, but cartilage recellularization remains still challenging. Induced by cartilage ECM-derived scaffolds MSCs underwent chondrogenesis.

Major problems to be addressed for the application of cell-free cartilage were discussed such as to maintain ECM structure, natural chemistry, biomechanics and to achieve a homogenous and stable cell recolonization, promote chondrogenic and prevent terminal differentiation (hypertrophy) and induce the deposition of a novel functional ECM. Some promising approaches were proposed including further processing of the decellularized ECM before recellularization of the ECM with MSCs, co-culturing of MSCs with chondrocytes and establishing bioreactor culture e.g. with mechanostimulation, flow perfusion pressure and lowered oxygen tension.

Graphical Abstract

Synopsis of tissue engineering approaches based on cartilage-derived ECM


Cartilage repair Mesenchymal stromal cells Decellularization Devitalization Recellularization Chondrogenesis Extracellular cartilage matrix Articular cartilage Elastic cartilage Fibrocartilage 




Authors Contribution

GST and ZH wrote the manuscript and arranged tables and figs. OG revised the manuscript carefully.

Compliance with Ethical Standards


All authors received no funding for this work.

Conflict of Interest

All authors declare that there exists no potential conflict of interest.

Supplementary material

12015_2016_9699_MOESM1_ESM.doc (114 kb)
ESM 1 (DOC 113 kb)


  1. 1.
    Steinert, A. F., Ghivizzani, S. C., Rethwilm, A., et al. (2007). Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Research & Therapy, 9(3), 213.CrossRefGoogle Scholar
  2. 2.
    Asik, M., Ciftci, F., Sen, C., et al. (2008). The microfracture technique for the treatment of full-thickness articular cartilage lesions of the knee: midterm results. Arthroscopy, 24(11), 1214–1220.PubMedCrossRefGoogle Scholar
  3. 3.
    Bekkers, J. E., Inklaar, M., & Saris, D. B. (2009). Treatment selection in articular cartilage lesions of the knee: a systematic review. American Journal Sports Medicine, 37(Suppl 1), 148S–155S.CrossRefGoogle Scholar
  4. 4.
    Bugbee, W.D. and F.R. Convery, Osteochondral allograft transplantation (1999). Clin Sports Medicine, 18(1), 67–75.Google Scholar
  5. 5.
    Chu, C. R., Convery, F. R., Akeson, W. H., et al. (1999). Articular cartilage transplantation. Clinical results in the knee. Clinical Orthopaedics and Related Research, 360, 159–168.CrossRefGoogle Scholar
  6. 6.
    Brittberg, M., Lindahl, A., Nilsson, A., et al. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New England Journal of Medicine, 331(14), 889–895.PubMedCrossRefGoogle Scholar
  7. 7.
    Logerstedt, D. S., Snyder-Mackler, L., Ritter, R. C., et al. (2010). Knee pain and mobility impairments: meniscal and articular cartilage lesions. The Journal of Orthopaedic and Sports Physical Therapy, 40(6), A1–A35.CrossRefGoogle Scholar
  8. 8.
    Mandelbaum, B. R., Browne, J. E., Fu, F., et al. (1998). Articular cartilage lesions of the knee. American Journal of Sports Medicine, 26(6), 853–861.PubMedGoogle Scholar
  9. 9.
    Loeser, R. F. (2008). Molecular mechanisms of cartilage destruction in osteoarthritis. Journal of Musculoskeletal & Neuronal Interactions, 8(4), 303–306.Google Scholar
  10. 10.
    Pattappa, G., M. Peroglio, D. Sakai, et al., CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture (2014). European Cells & Materials, 27, 124–136; discussion 136.Google Scholar
  11. 11.
    Safran, M. R., Kim, H., Zaffagnini, S., & The use of scaffolds in the management of articular cartilage injury (2008). The Journal of the American Academy of Orthopaedic Surgeons, 16(6), 306–311.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang, J., Yang, Q., Cheng, N., et al. (2016). Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair. Material Science & Enginering C Material Biological Applications, 61, 705–711.CrossRefGoogle Scholar
  13. 13.
    Zimoch-Korzycka, A., Bobak, L., & Jarmoluk, A. (2016). Antimicrobial and antioxidant activity of chitosan/hydroxypropyl methylcellulose film-forming hydrosols hydrolyzed by cellulase. International Journal of Molecular Sciences, 17, 9.CrossRefGoogle Scholar
  14. 14.
    Wong, M. L., & Griffiths, L. G. (2014). Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomaterialia, 10(5), 1806–1816.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Mandal, B. B., & Kundu, S. C. (2009). Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials, 30(15), 2956–2965.PubMedCrossRefGoogle Scholar
  16. 16.
    Ko, C. S., Huang, J. P., Huang, C. W., & Chu, I. M. (2009). Type II collagen-chondroitin sulfate-hyaluronan scaffold cross-linked by genipin for cartilage tissue engineering. Journal of Bioscience and Bioengineering, 107(2), 177–182.PubMedCrossRefGoogle Scholar
  17. 17.
    Tuan, R. S., Chen, A. F., & Klatt, B. A. (2013). Cartilage regeneration. The Journal of the American Academy of Orthopaedic Surgeons, 21(5), 303–311.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lohan, A., Marzahn, U., El Sayed, K., et al. (2011). In vitro and in vivo neo-cartilage formation by heterotopic chondrocytes seeded on PGA scaffolds. Histochemistry and Cell Biology, 136(1), 57–69.PubMedCrossRefGoogle Scholar
  19. 19.
    Schwarz, S., Koerber, L., Elsaesser, A. F., et al. (2012). Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Engineering Part A, 18(21–22), 2195–2209.PubMedCrossRefGoogle Scholar
  20. 20.
    Cissell, D. D., Hu, J. C., Griffiths, L. G., & Athanasiou, K. A. (2014). Antigen removal for the production of biomechanically functional, xenogeneic tissue grafts. Journal of Biomechanics, 47(9), 1987–1996.PubMedCrossRefGoogle Scholar
  21. 21.
    Liao, J., Guo, X., Grande-Allen, K. J., et al. (2010). Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials, 31(34), 8911–8920.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Haleem, A. M., Singergy, A. A., Sabry, D., et al. (2010). The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage, 1(4), 253–261.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Fan, J., Varshney, R. R., Ren, L., et al. (2009). Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Engineering. Part B, Reviews, 15(1), 75–86.PubMedCrossRefGoogle Scholar
  24. 24.
    Steinwachs, M. R., Waibl, B., & Niemeyer, P. (2011). Use of human progenitor cells in the treatment of cartilage damage. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 54(7), 797–802.PubMedCrossRefGoogle Scholar
  25. 25.
    Steinwachs, M. R., Waibl, B., Wopperer, S., & Mumme, M. (2014). Matrix-associated chondroplasty: A novel platelet-rich plasma and concentrated nucleated bone marrow cell-enhanced cartilage restoration technique. Arthroscopy Techniques, 3(2), e279–e282.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hunziker, E. B., Quinn, T. M., & Hauselmann, H. J. (2002). Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage, 10(7), 564–572.PubMedCrossRefGoogle Scholar
  27. 27.
    Cole, A. G. (2011). A review of diversity in the evolution and development of cartilage: the search for the origin of the chondrocyte. European Cells & Materials, 21, 122–129.CrossRefGoogle Scholar
  28. 28.
    Han, L., Grodzinsky, A. J., & Ortiz, C. (2011). Nanomechanics of the cartilage extracellular matrix. Annual Review Material Research, 41, 133–168.CrossRefGoogle Scholar
  29. 29.
    Chung, C., & Burdick, J. A. (2008). Engineering cartilage tissue. Advance Drug Delivery Review, 60(2), 243–262.CrossRefGoogle Scholar
  30. 30.
    Yang, Q., Peng, J., Lu, S. B., et al. (2011). In vitro cartilage tissue engineering with cartilage extracellular matrix-derived porous scaffolds and bone marrow mesenchymal stem cells. Zhonghua Yi Xue Za Zhi, 91(17), 1161–1166.PubMedGoogle Scholar
  31. 31.
    Kojima, K., & Vacanti, C. A. (2014). Tissue engineering in the trachea. Anatomical Record (Hoboken), 297(1), 44–50.CrossRefGoogle Scholar
  32. 32.
    Grevemeyer, B., L. Bogdanovic, S. Canton, et al., Regenerative medicine approach to reconstruction of the equine upper airway (2014). Tissue Engineering Part A, 20(7–8), 1213–1221.Google Scholar
  33. 33.
    Ma, A., Jiang, L., Song, L., et al. (2013). Reconstruction of cartilage with clonal mesenchymal stem cell-acellular dermal matrix in cartilage defect model in nonhuman primates. Internatinal Immunopharmacology, 16(3), 399–408.CrossRefGoogle Scholar
  34. 34.
    Elder, B. D., Kim, D. H., & Athanasiou, K. A. (2010). Developing an articular cartilage decellularization process toward facet joint cartilage replacement. Neurosurgery, 66(4), 722–727 discussion 727.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Colnot, C., Zhang, X., & Knothe Tate, M. L. (2012). Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. Journal of Orthopaedic Research, 30(12), 1869–1878.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Matzenauer, C., Reckert, A., & Ritz-Timme, S. (2013). Estimation of age at death based on aspartic acid racemization in elastic cartilage of the epiglottis. International Journal of Legal Medicine, 128(6), 995–1000.PubMedCrossRefGoogle Scholar
  37. 37.
    Sterodimas, A., de Faria, J., Correa, W. E., & Pitanguy, I. (2009). Tissue engineering and auricular reconstruction: a review. Journal of Plastic, Reconstructive & Aesthetic Surgery, 62(4), 447–452.CrossRefGoogle Scholar
  38. 38.
    Mizuno, M., Kobayashi, S., Takebe, T., et al. (2014). Brief report: Reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage. Stem Cells, 32(3), 816–821.PubMedCrossRefGoogle Scholar
  39. 39.
    Goldberg-Bockhorn, E., Schwarz, S., Elsasser, A., et al. (2014). Physical characterization of decellularized cartilage matrix for reconstructive rhinosurgery. Laryngorhinootologie, 93(11), 756–763.PubMedCrossRefGoogle Scholar
  40. 40.
    Uppal, R. S., Sabbagh, W., Chana, J., & Gault, D. T. (2008). Donor-site morbidity after autologous costal cartilage harvest in ear reconstruction and approaches to reducing donor-site contour deformity. Plastic and Reconstructive Surgery, 121(6), 1949–1955.PubMedCrossRefGoogle Scholar
  41. 41.
    Utomo, L., Pleumeekers, M. M., Nimeskern, L., et al. (2015). Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction. Biomedical Materials, 10(1), 015010.PubMedCrossRefGoogle Scholar
  42. 42.
    Xu, H., Xu, B., Yang, Q., et al. (2013). Fabrication and analysis of a novel tissue engineered composite biphasic scaffold for annulus fibrosus and nucleus pulposus. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 27(4), 475–480.PubMedGoogle Scholar
  43. 43.
    Yuan, M., Yeung, C. W., Li, Y. Y., et al. ((2013). Effects of nucleus pulposus cell-derived acellular matrix on the differentiation of mesenchymal stem cells. Biomaterials, 34(16), 3948–3961.PubMedCrossRefGoogle Scholar
  44. 44.
    Shoukry, M., Li, J., & Pei, M. (2013). Reconstruction of an in vitro niche for the transition from intervertebral disc development to nucleus pulposus regeneration. Stem Cells and Development, 22(8), 1162–1176.PubMedCrossRefGoogle Scholar
  45. 45.
    Chan, L. K., Leung, V. Y., Tam, V., et al. (2013). Decellularized bovine intervertebral disc as a natural scaffold for xenogenic cell studies. Acta Biomaterialia, 9(2), 5262–5272.PubMedCrossRefGoogle Scholar
  46. 46.
    Mercuri, J. J., Gill, S. S., & Simionescu, D. T. (2011). Novel tissue-derived biomimetic scaffold for regenerating the human nucleus pulposus. Journal of Biomedical Materials Research. Part A, 96(2), 422–435.PubMedCrossRefGoogle Scholar
  47. 47.
    Wu, L. C., Chiang, C. J., Liu, Z. H., et al. (2014). Fabrication and properties of acellular porcine anulus fibrosus for tissue engineering in spine surgery. Journal of Orthopaedic Surgery and Research, 9, 118.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pattappa, G., Z. Li, M. Peroglio, et al., Diversity of intervertebral disc cells: phenotype and function (2012). Journal of Anatomy, 221(6), 480–496.Google Scholar
  49. 49.
    Fisher, M. B., Henning, E. A., Soegaard, N., et al. (2013). Organized nanofibrous scaffolds that mimic the macroscopic and microscopic architecture of the knee meniscus. Acta Biomaterialia, 9(1), 4496–4504.PubMedCrossRefGoogle Scholar
  50. 50.
    Stabile, K. J., Odom, D., Smith, T. L., et al. ((2010). An acellular, allograft-derived meniscus scaffold in an ovine model. Arthroscopy, 26(7), 936–948.PubMedCrossRefGoogle Scholar
  51. 51.
    Jiang, D., Zhao, L. H., Tian, M., et al. (2012). Meniscus transplantation using treated xenogeneic meniscal tissue: viability and chondroprotection study in rabbits. Arthroscopy, 28(8), 1147–1159.PubMedCrossRefGoogle Scholar
  52. 52.
    Chen, Y. C., Chen, R. N., Jhan, H. J., et al. (2015). Development and characterization of acellular extracellular matrix scaffolds from porcine menisci for use in cartilage tissue engineering. Tissue Engineering Part C Methods, 21(9), 971–986.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Stapleton, T. W., Ingram, J., Katta, J., et al. (2008). Development and characterization of an acellular porcine medial meniscus for use in tissue engineering. Tissue Engineering Part A, 14(4), 505–518.PubMedCrossRefGoogle Scholar
  54. 54.
    Stapleton, T. W., Ingram, J., Fisher, J., & Ingham, E. (2011). Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications. Tissue Engineering Part A, 17(1–2), 231–242.PubMedCrossRefGoogle Scholar
  55. 55.
    Rothrauff, B. B., & Tuan, R. S. (2014). Cellular therapy in bone-tendon interface regeneration. Organogenesis, 10(1), 13–28.PubMedCrossRefGoogle Scholar
  56. 56.
    Benjamin, M., & McGonagle, D. (2009). Entheses: Tendon and ligament attachment sites. Scandinavian Journal of Medicine & Science in Sports, 19(4), 520–527.CrossRefGoogle Scholar
  57. 57.
    Beaulieu, M. L., Carey, G. E., Schlecht, S. H., et al. (2015). Quantitative comparison of the microscopic anatomy of the human ACL femoral and tibial entheses. Journal of Orthopaedic Research, 33(12), 1811–1817.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Cooper, J. O., Bumgardner, J. D., Cole, J. A., et al. (2014). Co-cultured tissue-specific scaffolds for tendon/bone interface engineering. Journal of Tissue Engineering, 5, 2041731414542294.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rana, D., Zreiqat, H., Benkirane-Jessel, N., et al. (2015). Development of decellularized scaffolds for stem cell-driven tissue engineering. Journal of Tissue Engineering Regenerative Medicine. doi: 10.1002/term.2061.PubMedGoogle Scholar
  60. 60.
    Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27(19), 3675–3683.PubMedGoogle Scholar
  61. 61.
    Sutherland, A. J., Converse, G. L., Hopkins, R. A., Detamore, M. S., & The bioactivity of cartilage extracellular matrix in articular cartilage regeneration (2015). Advance Healthcare Materials, 4(1), 29–39.CrossRefGoogle Scholar
  62. 62.
    Gawlitta, D., Benders, K. E., Visser, J., et al. (2015). Decellularized cartilage-derived matrix as substrate for endochondral bone regeneration. Tissue of Engineering Part A, 21(3–4), 694–703.CrossRefGoogle Scholar
  63. 63.
    Kang, H., S. Lu, J. Peng, et al., In vivo construction of tissue-engineered cartilage using adipose-derived stem cells and bioreactor technology (2014). Cell and Tissue Banking. 16(1):123–133.Google Scholar
  64. 64.
    Bronstein, J. A., Woon, C. Y., Farnebo, S., et al. (2013). Physicochemical decellularization of composite flexor tendon-bone interface grafts. Plastic and Reconstructive Surgery, 132(1), 94–102.PubMedCrossRefGoogle Scholar
  65. 65.
    Zang, M., Zhang, Q., Chang, E. I., et al. (2012). Decellularized tracheal matrix scaffold for tissue engineering. Plastic and Reconstructive Surgery, 130(3), 532–540.PubMedCrossRefGoogle Scholar
  66. 66.
    Elder, B. D., Eleswarapu, S. V., & Athanasiou, K. A. (2009). Extraction techniques for the decellularization of tissue engineered articular cartilage constructs. Biomaterials, 30(22), 3749–3756.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Yang, Q., Peng, J., Guo, Q., et al. (2008). A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials, 29(15), 2378–2387.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhao, Y. H., Yang, Q., Xia, Q., et al. (2013). In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells. Chinese Medical Journal (Engl), 126(16), 3130–3137.Google Scholar
  69. 69.
    Kim, H. W., Knowles, J. C., & Kim, H. E. (2005). Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. Journal of Biomedical Materials Research. Part A, 72(2), 136–145.PubMedCrossRefGoogle Scholar
  70. 70.
    Lu, H., Hoshiba, T., Kawazoe, N., & Chen, G. (2011). Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials, 32(10), 2489–2499.PubMedCrossRefGoogle Scholar
  71. 71.
    Yang, Q., Peng, J., Lu, S. B., et al. (2011). Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chinese Medical Journal (Engl), 124(23), 3930–3938.Google Scholar
  72. 72.
    Huang, Z., Kohl, B., Kokozidou, M., et al. (2016). Establishment of a Cytocompatible Cell-Free Intervertebral Disc Matrix for Chondrogenesis with Human Bone Marrow-Derived Mesenchymal Stromal Cells. Cells Tissues Organs, 201(5), 354–365.PubMedCrossRefGoogle Scholar
  73. 73.
    Giancola, C., De Sena, C., Fessas, D., et al. (1997). DSC studies on bovine serum albumin denaturation. Effects of ionic strength and SDS concentration. International Journal of Biological Macromolecules, 20(3), 193–204.PubMedCrossRefGoogle Scholar
  74. 74.
    Kelley, D., & McClements, D. J. (2003). Interactions of bovine serum albumin with ionic surfactants in aqueous solutions. Food Hydrocolloids, 17(1), 73–85.CrossRefGoogle Scholar
  75. 75.
    Price, A. P., England, K. A., Matson, A. M., et al. (2010). Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Engineering. Part A, 16(8), 2581–2591.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kheir, E., Stapleton, T., Shaw, D., et al. (2011). Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. Journal of Biomedical Materials Research. Part A, 99(2), 283–294.PubMedCrossRefGoogle Scholar
  77. 77.
    Youngstrom, D. W., Barrett, J. G., Jose, R. R., & Kaplan, D. L. (2013). Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications. PLoS One, 8(5), e64151.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Mendoza-Novelo, B., Avila, E. E., Cauich-Rodriguez, J. V., et al. (2011). Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta Biomaterialia, 7(3), 1241–1248.PubMedCrossRefGoogle Scholar
  79. 79.
    Lumpkins, S. B., Pierre, N., & McFetridge, P. S. (2008). A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomaterialia, 4(4), 808–816.PubMedCrossRefGoogle Scholar
  80. 80.
    Ding, Y., Ruan, D., Luk, K. D., et al. (2014). The effect of gamma irradiation on the biological properties of intervertebral disc allografts: in vitro and in vivo studies in a beagle model. PLoS One, 9(6), e100304.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Gorbet, M. B., & Sefton, M. V. (2005). Endotoxin: the uninvited guest. Biomaterials, 26(34), 6811–6817.PubMedCrossRefGoogle Scholar
  82. 82.
    Conconi, M. T., De Coppi, P., Di Liddo, R., et al. (2005). Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transplant International, 18(6), 727–734.PubMedCrossRefGoogle Scholar
  83. 83.
    Dettin, M., Conconi, M. T., Gambaretto, R., et al. (2005). Effect of synthetic peptides on osteoblast adhesion. Biomaterials, 26(22), 4507–4515.PubMedCrossRefGoogle Scholar
  84. 84.
    Burra, P., Tomat, S., Conconi, M. T., et al. (2004). Acellular liver matrix improves the survival and functions of isolated rat hepatocytes cultured in vitro. International Journal of Molecular Medicine, 14(4), 511–515.PubMedGoogle Scholar
  85. 85.
    Song, J. J., & Ott, H. C. (2011). Organ engineering based on decellularized matrix scaffolds. Trends Molecular Medicine, 17(8), 424–432.CrossRefGoogle Scholar
  86. 86.
    Sutherland, A. J., Beck, E. C., Dennis, S. C., et al. (2015). Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering. PLoS One, 10(5), e0121966.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Yin, H., Wang, Y., Sun, Z., et al. (2016). Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomaterialia, 33, 96–109.PubMedCrossRefGoogle Scholar
  88. 88.
    Hutter, H., Vogel, B. E., Plenefisch, J. D., et al. (2000). Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science, 287(5455), 989–994.PubMedCrossRefGoogle Scholar
  89. 89.
    Sutherland, A. J., Converse, G. L., Hopkins, R. A., & Detamore, M. S. (2014). The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Advance Healthcare Materials, 4(1), 29-39. doi: 10.1002/adhm.201400165.
  90. 90.
    Hoshiba, T., Lu, H., Kawazoe, N., et al. (2013). Effects of extracellular matrix proteins in chondrocyte-derived matrices on chondrocyte functions. Biotechnology Progress, 29(5), 1331–1336.PubMedCrossRefGoogle Scholar
  91. 91.
    Xu, Y., Xu, G. Y., Tang, C., et al. (2015). Preparation and characterization of bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 103(3), 670–678.PubMedCrossRefGoogle Scholar
  92. 92.
    Pei, M., Li, J. T., Shoukry, M., & Zhang, Y. (2011). A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. European Cell & Materials, 22, 333–343 discussion 343.CrossRefGoogle Scholar
  93. 93.
    Zhou, Y., Zimber, M., Yuan, H., et al. (2016). Effects of human fibroblast-derived extracellular matrix on mesenchymal stem cells. Stem Cell Reviews., 12(5), 560–572.PubMedCrossRefGoogle Scholar
  94. 94.
    Wei, F., Qu, C., Song, T., et al. (2012). Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity. Journal of Cellular Physiology, 227(9), 3216–3224.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Rowland, C. R., Colucci, L. A., & Guilak, F. (2016). Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds. Biomaterials, 91, 57–72.PubMedCrossRefGoogle Scholar
  96. 96.
    Sadr, N., Pippenger, B. E., Scherberich, A., et al. (2012). Enhancing the biological performance of synthetic polymeric materials by decoration with engineered, decellularized extracellular matrix. Biomaterials, 33(20), 5085–5093.PubMedCrossRefGoogle Scholar
  97. 97.
    Johnson, C., Sheshadri, P., Ketchum, J. M., et al. (2016). In vitro characterization of design and compressive properties of 3D–biofabricated/decellularized hybrid grafts for tracheal tissue engineering. Journal of the Mechanical Behavior Biomedical Materials, 59, 572–585.CrossRefGoogle Scholar
  98. 98.
    Jia, S., T. Zhang, Z. Xiong, et al., In vivo evaluation of a novel oriented scaffold-bmsc construct for enhancing full-thickness articular cartilage repair in a rabbit model (2015). PLoS One, 10(12), e0145667.Google Scholar
  99. 99.
    Mercuri, J. J., Patnaik, S., Dion, G., et al. (2013). Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies. Tissue Engineering. Part A, 19(7–8), 952–966.PubMedCrossRefGoogle Scholar
  100. 100.
    Wu, J., Ding, Q., Dutta, A., et al. (2015). An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomaterialia, 16, 49–59.PubMedCrossRefGoogle Scholar
  101. 101.
    Agrawal, V., Brown, B. N., Beattie, A. J., et al. (2009). Evidence of innervation following extracellular matrix scaffold mediated remodeling of muscular tissues. Journal of Tissue Engineering and Regenerative Medicine, 3(8), 590–600.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal, 17(Suppl 4), 467–479.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Nakayama, K. H., Batchelder, C. A., Lee, C. I., & Tarantal, A. F. (2011). Renal tissue engineering with decellularized rhesus monkey kidneys: age-related differences. Tissue Engineering. Part A, 17(23–24), 2891–2901.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Lohan, A., Stoll, C., Albrecht, M., et al. (2013). Human hamstring tenocytes survive when seeded into a decellularized porcine Achilles tendon extracellular matrix. Connect Tissue Researc, 54(4–5), 305–312.Google Scholar
  105. 105.
    Schulze-Tanzil, G., Al-Sadi, O., Ertel, W., & Lohan, A. (2012). Decellularized tendon extracellular matrix—a valuable approach for tendon reconstruction? Cells, 1(4), 1010–1028.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Haykal, S., Zhou, Y., Marcus, P., et al. (2013). The effect of decellularization of tracheal allografts on leukocyte infiltration and of recellularization on regulatory T cell recruitment. Biomaterials, 34(23), 5821–5832.PubMedCrossRefGoogle Scholar
  107. 107.
    Lynch, K., & Pei, M. (2014). Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies. Organogenesis, 10(3), 289–298.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kretlow, J. D., Jin, Y. Q., Liu, W., et al. (2008). Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biology, 9, 60.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Maredziak, M., Marycz, K., Tomaszewski, K. A., et al. (2016). The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells. Stem Cells International, 2016, 2152435.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Zheng, L., Fan, H. S., Sun, J., et al. (2010). Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: an in vivo study. Journal of Biomedical Materials Research. Part A, 93(2), 783–792.PubMedGoogle Scholar
  111. 111.
    Bhardwaj, N., & Kundu, S. C. (2012). Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials, 33(10), 2848–2857.PubMedCrossRefGoogle Scholar
  112. 112.
    Eslaminejad, M. B., Mirzadeh, H., Mohamadi, Y., & Nickmahzar, A. (2007). Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 1(6), 417–424.PubMedCrossRefGoogle Scholar
  113. 113.
    Mauck, R. L., Yuan, X., & Tuan, R. S. (2006). Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage, 14(2), 179–189.PubMedCrossRefGoogle Scholar
  114. 114.
    Chung, C., & Burdick, J. A. (2009). Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Engineering Part A, 15(2), 243–254.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Han, Y., Wei, Y., Wang, S., & Song, Y. (2010). Cartilage regeneration using adipose-derived stem cells and the controlled-released hybrid microspheres. Joint Bone Spine, 77(1), 27–31.PubMedCrossRefGoogle Scholar
  116. 116.
    Fan, H., Hu, Y., Zhang, C., et al. (2006). Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials, 27(26), 4573–4580.PubMedCrossRefGoogle Scholar
  117. 117.
    Rackwitz, L., Djouad, F., Janjanin, S., et al. (2014). Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro. Osteoarthritis Cartilage, 22(8), 1148–1157.PubMedCrossRefGoogle Scholar
  118. 118.
    Chimal-Monroy, J., & Diaz de Leon, L. (1999). Expression of N-cadherin, N-CAM, fibronectin and tenascin is stimulated by TGF-beta1, beta2, beta3 and beta5 during the formation of precartilage condensations. International Journal of Developmental Biology, 43(1), 59–67.PubMedGoogle Scholar
  119. 119.
    Jian, H., Shen, X., Liu, I., et al. (2006). Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes & Development, 20(6), 666–674.CrossRefGoogle Scholar
  120. 120.
    O'Sullivan, J., D'Arcy, S., Barry, F. P., et al. (2011). Mesenchymal chondroprogenitor cell origin and therapeutic potential. Stem Cell Research & Theraphy, 2(1), 8.CrossRefGoogle Scholar
  121. 121.
    Murphy, M. B., Moncivais, K., & Caplan, A. I. (2013). Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Experimental & Molecular Medicine, 45, e54.CrossRefGoogle Scholar
  122. 122.
    Cameron, T. L., Belluoccio, D., Farlie, P. G., et al. (2009). Global comparative transcriptome analysis of cartilage formation in vivo. BMC Developmental Biology, 9, 20.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.PubMedCrossRefGoogle Scholar
  124. 124.
    Krampera, M., Pizzolo, G., Aprili, G., & Franchini, M. (2006). Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone, 39(4), 678–683.PubMedCrossRefGoogle Scholar
  125. 125.
    Arinzeh, T. L. (2005). Mesenchymal stem cells for bone repair: preclinical studies and potential orthopedic applications. Foot and Ankle Clinics, 10(4), 651–665 viii.PubMedCrossRefGoogle Scholar
  126. 126.
    Cornelissen, A. S., Maijenburg M. W., Nolte M. A., & Voermans C. (2015) Organ-specific migration of mesenchymal stromal cells: Who, when, where and why? Immunol Lett, 168(2), 159-169.Google Scholar
  127. 127.
    Bocker, W., Docheva, D., Prall, W. C., et al. (2008). IKK-2 is required for TNF-alpha-induced invasion and proliferation of human mesenchymal stem cells. Journal Molecular Medicine (Berl), 86(10), 1183–1192.CrossRefGoogle Scholar
  128. 128.
    Bobis, S., Jarocha, D., & Majka, M. (2006). Mesenchymal stem cells: characteristics and clinical applications. Folia Histochemica et Cytobiologica, 44(4), 215–230.PubMedGoogle Scholar
  129. 129.
    Ozawa, K., Sato, K., Oh, I., et al. (2008). Cell and gene therapy using mesenchymal stem cells (MSCs). Journal of Autoimmunity, 30(3), 121–127.PubMedCrossRefGoogle Scholar
  130. 130.
    Kotobuki, N., Katsube, Y., Katou, Y., et al. (2008). In vivo survival and osteogenic differentiation of allogeneic rat bone marrow mesenchymal stem cells (MSCs). Cell Transplantation, 17(6), 705–712.PubMedCrossRefGoogle Scholar
  131. 131.
    Cipriani, P., Di Benedetto, P., Liakouli, V., et al. (2013). Mesenchymal stem cells (MSCs) from scleroderma patients (SSc) preserve their immunomodulatory properties although senescent and normally induce T regulatory cells (Tregs) with a functional phenotype: implications for cellular-based therapy. Clinical and Experimental Immunology, 173(2), 195–206.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Fazekasova, H., Lechler, R., Langford, K., & Lombardi, G. (2011). Placenta-derived MSCs are partially immunogenic and less immunomodulatory than bone marrow-derived MSCs. Journal of Tissue Engineering and Regenerative Medicine, 5(9), 684–694.PubMedCrossRefGoogle Scholar
  133. 133.
    Glenn, J. D., & Whartenby, K. A. (2014). Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World Journal of Stem Cells, 6(5), 526–539.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Paebst, F., Piehler, D., Brehm, W., et al. (2014). Comparative immunophenotyping of equine multipotent mesenchymal stromal cells: an approach toward a standardized definition. Cytometry. Part A, 85(8), 678–687.CrossRefGoogle Scholar
  135. 135.
    Carrade, D. D., Affolter, V. K., Outerbridge, C. A., et al. (2011). Intradermal injections of equine allogeneic umbilical cord-derived mesenchymal stem cells are well tolerated and do not elicit immediate or delayed hypersensitivity reactions. Cytotherapy, 13(10), 1180–1192.PubMedCrossRefGoogle Scholar
  136. 136.
    Pigott, J. H., Ishihara, A., Wellman, M. L., et al. (2013). Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Veterinary Immunology Immunopathology, 156(1–2), 99–106.PubMedCrossRefGoogle Scholar
  137. 137.
    Chen, K., Wang, D., Du, W. T., et al. (2010). Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clinical Immunology, 135(3), 448–458.PubMedCrossRefGoogle Scholar
  138. 138.
    Jui, H. Y., Lin, C. H., Hsu, W. T., et al. (2012). Autologous mesenchymal stem cells prevent transplant arteriosclerosis by enhancing local expression of interleukin-10, interferon-gamma, and indoleamine 2,3-dioxygenase. Cell Transplantation, 21(5), 971–984.PubMedCrossRefGoogle Scholar
  139. 139.
    Yoo, K. H., Jang, I. K., Lee, M. W., et al. (2009). Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunology, 259(2), 150–156.CrossRefGoogle Scholar
  140. 140.
    Montespan, F., Deschaseaux, F., Sensebe, L., et al. (2014). Osteodifferentiated mesenchymal stem cells from bone marrow and adipose tissue express HLA-G and display immunomodulatory properties in HLA-mismatched settings: implications in bone repair therapy. Journal of Immunology Research, 2014, 230346.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Chung, D. J., Choi, C. B., Lee, S. H., et al. (2009). Intraarterially delivered human umbilical cord blood-derived mesenchymal stem cells in canine cerebral ischemia. Journal of Neuroscience Research, 87(16), 3554–3567.PubMedCrossRefGoogle Scholar
  142. 142.
    Dharmasaroja, P. (2009). Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke. Journal of Clinical Neuroscience, 16(1), 12–20.PubMedCrossRefGoogle Scholar
  143. 143.
    Noel, D., Djouad, F., Bouffi, C., et al. (2007). Multipotent mesenchymal stromal cells and immune tolerance. Leukemia & Lymphoma, 48(7), 1283–1289.CrossRefGoogle Scholar
  144. 144.
    Carrade, D. D., Lame, M. W., Kent, M. S., et al. (2012). Comparative analysis of the immunomodulatory properties of equine adult-derived mesenchymal stem cells(). Cell Medicine, 4(1), 1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Carrade Holt, D. D., Wood, J. A., Granick, J. L., et al. (2014). Equine mesenchymal stem cells inhibit T cell proliferation through different mechanisms depending on tissue source. Stem Cells and Development, 23(11), 1258–1265.PubMedCrossRefGoogle Scholar
  146. 146.
    Gore, A. V., Bible, L. E., Song, K., et al. (2015). Mesenchymal stem cells increase T-regulatory cells and improve healing following trauma and hemorrhagic shock. Journal of Trauma and Acute Care Surgery, 79(1), 48–52.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Duffy, M. M., Ritter, T., Ceredig, R., & Griffin, M. D. (2011). Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Research and Ther, 2(4), 34.CrossRefGoogle Scholar
  148. 148.
    Kang, J. W., Koo, H. C., Hwang, S. Y., et al. (2012). Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells. Journal of Veterinary Science, 13(1), 23–31.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Ryan, J. M., Barry, F. P., Murphy, J. M., & Mahon, B. P. (2005). Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation (Lond), 2, 8.CrossRefGoogle Scholar
  150. 150.
    Zhang, Y., Li, J., Davis, M. E., & Pei, M. (2015). Delineation of in vitro chondrogenesis of human synovial stem cells following preconditioning using decellularized matrix. Acta Biomaterialia, 20, 39–50.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Dickhut, A., Pelttari, K., Janicki, P., et al. (2009). Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. Journal of Cellular Physiology, 219(1), 219–226.PubMedCrossRefGoogle Scholar
  152. 152.
    Burk, J., I. Ribitsch, C. Gittel, et al., Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources (2013). Veterinary Journal, 195(1), 98–106.Google Scholar
  153. 153.
    Fan, J., Gong, Y., Ren, L., et al. (2010). In vitro engineered cartilage using synovium-derived mesenchymal stem cells with injectable gellan hydrogels. Acta Biomaterialia, 6(3), 1178–1185.PubMedCrossRefGoogle Scholar
  154. 154.
    Fan, J., Ren, L., Liang, R., et al. (2010). Chondrogenesis of synovium-derived mesenchymal stem cells in photopolymerizing hydrogel scaffolds. Journal of Biomaterials Science. Polymer Edition, 21(12), 1653–1667.PubMedCrossRefGoogle Scholar
  155. 155.
    Luo, L., Eswaramoorthy, R., Mulhall, K. J., & Kelly, D. J. (2015). Decellularization of porcine articular cartilage explants and their subsequent repopulation with human chondroprogenitor cells. Journal of Mechanical Behavior Biomedical Materials, 55, 21–31.CrossRefGoogle Scholar
  156. 156.
    Bautista, C. A., Park, H. J., Mazur, C. M., et al. (2016). Effects of chondroitinase abc-mediated proteoglycan digestion on decellularization and recellularization of articular cartilage. PLoS One, 11(7), e0158976.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Meretoja, V. V., Dahlin, R. L., Kasper, F. K., & Mikos, A. G. (2012). Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells. Biomaterials, 33(27), 6362–6369.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Farrell, E., Both, S. K., Odorfer, K. I., et al. (2011). In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskeletal Disorders, 12, 31.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Levorson, E. J., Hu, O., Mountziaris, P. M., et al. (2013). Cell-derived polymer/extracellular matrix composite scaffolds for cartilage regeneration, Part 2: construct devitalization and determination of chondroinductive capacity. Tissue Engineering. Part C, Methods, 20(4), 358–372.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Tsai, T. L., Nelson, B. C., Anderson, P. A., et al. (2014). Intervertebral disc and stem cells cocultured in biomimetic extracellular matrix stimulated by cyclic compression in perfusion bioreactor. Spine Journal., 14(9), 2127–2140.PubMedCrossRefGoogle Scholar
  161. 161.
    Holzwarth, C., Vaegler, M., Gieseke, F., et al. (2010). Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biology, 11, 11.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    D'Ippolito, G., Diabira, S., Howard, G. A., et al. (2006). Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone, 39(3), 513–522.PubMedCrossRefGoogle Scholar
  163. 163.
    Grayson, W. L., Zhao, F., Bunnell, B., & Ma, T. (2007). Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 358(3), 948–953.PubMedCrossRefGoogle Scholar
  164. 164.
    Fermor, B., Christensen, S. E., Youn, I., et al. (2007). Oxygen, nitric oxide and articular cartilage. European Cell Materials, 13, 56–65 discussion 65.CrossRefGoogle Scholar
  165. 165.
    Kanichai, M., Ferguson, D., Prendergast, P. J., & Campbell, V. A. (2008). Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha. Journal of Cellular Physiology, 216(3), 708–715.PubMedCrossRefGoogle Scholar
  166. 166.
    Loboda, A., Jozkowicz, A., & Dulak, J. (2010). HIF-1 and HIF-2 transcription factors--similar but not identical. Molecules and Cells, 29(5), 435–442.PubMedCrossRefGoogle Scholar
  167. 167.
    Adesida, A. B., Mulet-Sierra, A., & Jomha, N. M. (2012). Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Research & Theraphy, 3(2), 9.CrossRefGoogle Scholar
  168. 168.
    Duval, E., Bauge, C., Andriamanalijaona, R., et al. (2012). Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering. Biomaterials, 33(26), 6042–6051.PubMedCrossRefGoogle Scholar
  169. 169.
    Meretoja, V. V., Dahlin, R. L., Wright, S., et al. (2013). The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds. Biomaterials, 34(17), 4266–4273.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Xu, Y., Malladi, P., Chiou, M., et al. (2007). In vitro expansion of adipose-derived adult stromal cells in hypoxia enhances early chondrogenesis. Tissue Engineering, 13(12), 2981–2993.PubMedCrossRefGoogle Scholar
  171. 171.
    Ceradini, D. J., & Gurtner, G. C. (2005). Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends in Cardiovascular Medicine, 15(2), 57–63.PubMedCrossRefGoogle Scholar
  172. 172.
    Rafii, S., & Lyden, D. (2003). Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. National Medical, 9(6), 702–712.CrossRefGoogle Scholar
  173. 173.
    Hillebrandt, K., Polenz, D., Butter, A., et al. (2015). Procedure for decellularization of rat livers in an oscillating-pressure perfusion device. Journal of Visualized Experiments, 102, e53029.Google Scholar
  174. 174.
    Partington, L., Mordan, N. J., Mason, C., et al. (2013). Biochemical changes caused by decellularization may compromise mechanical integrity of tracheal scaffolds. Acta Biomaterialia, 9(2), 5251–5261.PubMedCrossRefGoogle Scholar
  175. 175.
    Shaari, C. M., Farber, D., Brandwein, M. S., et al. (1998). Characterizing the antigenic profile of the human trachea: implications for tracheal transplantation. Head & Neck, 20(6), 522–527.CrossRefGoogle Scholar
  176. 176.
    Ye, K., Felimban, R., Moulton, S. E., et al. (2013). Bioengineering of articular cartilage: past, present and future. Regenerative Medicine, 8(3), 333–349.PubMedCrossRefGoogle Scholar
  177. 177.
    Hammer, N., Huster, D., Boldt, A., et al. (2016). A preliminary technical study on sodium dodecyl sulfate-induced changes of the nano-structural and macro-mechanical properties in human iliotibial tract specimens. Journal of Mechanical Behavior Biomedical Materials, 61, 164–173.CrossRefGoogle Scholar
  178. 178.
    Urist, M. R. (1965). Bone: formation by autoinduction. Science, 150(3698), 893–899.PubMedCrossRefGoogle Scholar
  179. 179.
    Kajbafzadeh, A. M., Sabetkish, S., Sabetkish, N., et al. (2015). In-vivo trachea regeneration: fabrication of a tissue-engineered trachea in nude mice using the body as a natural bioreactor. Surgery Today, 45(8), 1040–1048.PubMedCrossRefGoogle Scholar
  180. 180.
    Elsaesser, A. F., Bermueller, C., Schwarz, S., et al. (2014). In vitro cytotoxicity and in vivo effects of a decellularized xenogeneic collagen scaffold in nasal cartilage repair. Tissue Engineering Part A, 20(11–12), 1668–1678.PubMedCrossRefGoogle Scholar
  181. 181.
    Batioglu-Karaaltin, A., Karaaltin, M. V., Ovali, E., et al. (2015). In vivo tissue-engineered allogenic trachea transplantation in rabbits: a preliminary report. Stem Cell Reviews, 11(2), 347–356.PubMedCrossRefGoogle Scholar
  182. 182.
    Macchiarini, P., Jungebluth, P., Go, T., et al. (2008). Clinical transplantation of a tissue-engineered airway. Lancet, 372(9655), 2023–2030.PubMedCrossRefGoogle Scholar
  183. 183.
    Gonfiotti, A., Jaus, M. O., Barale, D., et al. (2014). The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet, 383(9913), 238–244.PubMedCrossRefGoogle Scholar
  184. 184.
    Cheng, N. C., Estes, B. T., Awad, H. A., & Guilak, F. (2009). Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Engineering. Part A, 15(2), 231–241.PubMedCrossRefGoogle Scholar
  185. 185.
    Yang, B., Zhang, Y., Zhou, L., et al. (2010). Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Engineering. Part C, Methods, 16(5), 1201–1211.Google Scholar
  186. 186.
    Gong, Y. Y., Xue, J. X., Zhang, W. J., et al. (2011). A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials, 32(9), 2265–2273.Google Scholar
  187. 187.
    Azhim, A., Ono, T., Fukui, Y., et al. (2013). Preparation of decellularized meniscal scaffolds using sonication treatment for tissue engineering. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2013, 6953–6956.Google Scholar
  188. 188.
    Petersen, T. H., Calle, E. A., Colehour, M. B., & Niklason, L. E. (2012). Matrix composition and mechanics of decellularized lung scaffolds. Cells, Tissues, Organs, 195(3), 222–231.Google Scholar
  189. 189.
    Schwarz, S., Elsaesser, A. F., Koerber, L., et al. (2015). Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function. Journal of Tissue Engineering and Regenerative Medicine, 9(12), E239–E251.Google Scholar
  190. 190.
    Giraldo-Gomez, D. M., Leon-Mancilla, B., Del Prado-Audelo, M. L., et al. (2016). Trypsin as enhancement in cyclical tracheal decellularization: morphological and biophysical characterization. Materials Science & Engineering, C: Materials for Biological Applications, 59, 930–937.Google Scholar
  191. 191.
    Guo, L., Qu, J., Zheng, C., et al. (2015). Preparation and characterization of a novel decellularized fibrocartilage “book” scaffold for use in tissue engineering. PloS One, 10(12), e0144240.Google Scholar
  192. 192.
    Pinheiro, A., Cooley, A., Liao, J., et al. (2016). Comparison of natural crosslinking agents for the stabilization of xenogenic articular cartilage. Journal of Orthopaedic Research, 34(6), 1037–1046.Google Scholar
  193. 193.
    Kato, T., Miyaki, S., Ishitobi, H., et al. (2014). Exosomes from IL-1beta stimulated synovial fibroblasts induce osteoarthritic changes in particular chondrocytes. Arthritis Research & Therapy, 16(4), R163.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhao Huang
    • 1
    • 2
  • Owen Godkin
    • 3
  • Gundula Schulze-Tanzil
    • 1
  1. 1.Paracelsus Medical UniversityInstitute of Anatomy, Salzburg and NurembergNurembergGermany
  2. 2.Department of Orthopaedics, Trauma and Reconstructive SurgeryCharité Universitätsmedizin BerlinBerlinGermany
  3. 3.Department of OrthopaedicsCappagh National Orthopaedic HospitalFinglasIreland

Personalised recommendations