Skip to main content

Advertisement

Log in

Stem Cell-Derived Exosomes, Autophagy, Extracellular Matrix Turnover, and miRNAs in Cardiac Regeneration during Stem Cell Therapy

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Stem cell therapy (SCT) raises the hope for cardiac regeneration in ischemic hearts. However, underlying molecular mechanisms for repair of dead myocardium by SCT in the ischemic heart is poorly understood. Growing evidences suggest that cardiac matrix stiffness and differential expressions of miRNAs play a crucial role in stem cell survival and differentiation. However, their roles on transplanted stem cells, for myocardial repair of the ischemic heart, remain unclear. Transplanted stem cells may act in an autocrine and/or paracrine manner to regenerate the dead myocardium. Paracrine mediators such as stem cell-derived exosomes are emerging as a novel therapeutic strategy to overcome some of the limitations of SCT. These exosomes carry microRNAs (miRNAs) that may regulate stem cell differentiation into a specific lineage. MicroRNAs may also contribute to stiffness of surrounding matrix by regulating extracellular matrix (ECM) turnover. The survival of transplanted stem cell depends on its autophagic process that maintains cellular homeostasis. Therefore, exosomes, miRNAs, extracellular matrix turnover, and autophagy may have an integral role in improving the efficacy of SCT. This review elaborates the specific roles of these regulatory components on cardiac regeneration in the ischemic heart during SCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li, M., & Izpisua Belmonte, J. C. (2016). Mending a faltering heart. Circulation Research, 118(2), 344–351.

    Article  CAS  PubMed  Google Scholar 

  2. Narula, J., Haider, N., Virmani, R., et al. (1996). Apoptosis in myocytes in end-stage heart failure. The New England Journal of Medicine, 335(16), 1182–1189.

    Article  CAS  PubMed  Google Scholar 

  3. Sanganalmath, S. K., & Bolli, R. (2013). Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circulation Research, 113(6), 810–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anversa, P., Leri, A., Kajstura, J., et al. (2002). Myocyte growth and cardiac repair. Journal of Molecular and Cellular Cardiology, 34(2), 91–105.

    Article  CAS  PubMed  Google Scholar 

  5. Gilbert, P. M., Havenstrite, K. L., Magnusson, K. E., et al. (2010). Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science, 329(5995), 1078–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holst, J., Watson, S., Lord, M. S., et al. (2010). Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nature Biotechnology, 28(10), 1123–1128.

    Article  CAS  PubMed  Google Scholar 

  7. Lei, Y., Gojgini, S., Lam, J., et al. (2011). The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 32(1), 39–47.

    Article  CAS  PubMed  Google Scholar 

  8. Mishra, P. K., Chavali, V., Metreveli, N., et al. (2012). Ablation of MMP9 induces survival and differentiation of cardiac stem cells into cardiomyocytes in the heart of diabetics: a role of extracellular matrix. Canadian Journal of Physiology and Pharmacology, 90(3), 353–360.

    Article  CAS  PubMed  Google Scholar 

  9. Reilly, G. C., & Engler, A. J. (2010). Intrinsic extracellular matrix properties regulate stem cell differentiation. Journal of Biomechanics, 43(1), 55–62.

    Article  PubMed  Google Scholar 

  10. Shav, D., & Einav, S. (2010). The effect of mechanical loads in the differentiation of precursor cells into mature cells. Annals of the New York Academy of Sciences, 1188, 25–31.

    Article  PubMed  Google Scholar 

  11. Fingleton, B. (2007). Matrix metalloproteinases as valid clinical targets. Current Pharmaceutical Design, 13(3), 333–346.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, J., Gao, Y., Ma, M., et al. (2013). Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochemistry and Biophysics, 67(2), 537–546.

    Article  CAS  PubMed  Google Scholar 

  13. Chaturvedi, P., Kalani, A., Medina, I., et al. (2015). Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise. Journal of Cellular and Molecular Medicine, 19(9), 2153–2161.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mishra, P. K., Tyagi, N., Kumar, M., et al. (2009). MicroRNAs as a therapeutic target for cardiovascular diseases. Journal of Cellular and Molecular Medicine, 13(4), 778–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nouraee, N., & Mowla, S. J. (2015). miRNA therapeutics in cardiovascular diseases: promises and problems. Frontiers in Genetics, 6, 232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wronska, A., Kurkowska-Jastrzebska, I., & Santulli, G. (2015). Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiologica (Oxford, England), 213(1), 60–83.

    Article  CAS  Google Scholar 

  18. Maiese, K. (2015). MicroRNAs and SIRT1: a strategy for stem cell renewal and clinical development? Journal of Translational Science, 1(3), 55–57.

    PubMed  PubMed Central  Google Scholar 

  19. Morgado, A. L., Xavier, J. M., Dionisio, P. A., et al. (2015). MicroRNA-34a modulates neural stem cell differentiation by regulating expression of synaptic and autophagic proteins. Molecular Neurobiology, 51(3), 1168–1183.

    Article  CAS  PubMed  Google Scholar 

  20. Levine, B., & Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell, 132(1), 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Purvis, N., Bahn, A., & Katare, R. (2015). The role of MicroRNAs in cardiac stem cells. Stem Cells International, 2015, 194894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ratajczak, M. Z., Kucia, M., Jadczyk, T., et al. (2012). Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia, 26(6), 1166–1173.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, H., & Fan, G. C. (2011). Extracellular/circulating microRNAs and their potential role in cardiovascular disease. American Journal of Cardiovascular Disease, 1(2), 138–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnstone, R. M. (2005). Revisiting the road to the discovery of exosomes. Blood Cells, Molecules & Diseases, 34(3), 214–219.

    Article  CAS  Google Scholar 

  25. Lugini, L., Cecchetti, S., Huber, V., et al. (2012). Immune surveillance properties of human NK cell-derived exosomes. Journal of Immunology, 189(6), 2833–2842.

    Article  CAS  Google Scholar 

  26. Mishra, P. K., Singh, S. R., Joshua, I. G., et al. (2010). Stem cells as a therapeutic target for diabetes. Frontiers in Bioscience, 15, 461–477.

    Article  CAS  Google Scholar 

  27. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  28. Nichols, J., Zevnik, B., Anastassiadis, K., et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95(3), 379–391.

    Article  CAS  PubMed  Google Scholar 

  29. Niwa, H., Burdon, T., Chambers, I., et al. (1998). Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes & Development, 12(13), 2048–2060.

    Article  CAS  Google Scholar 

  30. Potten, C. S., Schofield, R., & Lajtha, L. G. (1979). A comparison of cell replacement in bone marrow, testis and three regions of surface epithelium. Biochimica et Biophysica Acta, 560(2), 281–299.

    CAS  PubMed  Google Scholar 

  31. Bernardi, S., Severini, G. M., Zauli, G., et al. (2012). Cell-based therapies for diabetic complications. Experimental Diabetes Research, 2012, 872504.

    Article  PubMed  Google Scholar 

  32. Leonardini, A., & Avogaro, A. (2013). Abnormalities of the cardiac stem and progenitor cell compartment in experimental and human diabetes. Archives of Physiology and Biochemistry, 119(4), 179–187.

    Article  CAS  PubMed  Google Scholar 

  33. Shen, Y. H., Hu, X., Zou, S., et al. (2012). Stem cells in thoracic aortic aneurysms and dissections: potential contributors to aortic repair. The Annals of Thoracic Surgery, 93(5), 1524–1533.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Williams, A. R., & Hare, J. M. (2011). Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation Research, 109(8), 923–940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anversa, P., Kajstura, J., Leri, A., et al. (2006). Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation, 113(11), 1451–1463.

    Article  PubMed  Google Scholar 

  36. Beltrami, A. P., Barlucchi, L., Torella, D., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.

    Article  CAS  PubMed  Google Scholar 

  37. Hierlihy, A. M., Seale, P., Lobe, C. G., et al. (2002). The post-natal heart contains a myocardial stem cell population. FEBS Letters, 530(1–3), 239–243.

    Article  CAS  PubMed  Google Scholar 

  38. Barile, L., Messina, E., Giacomello, A., et al. (2007). Endogenous cardiac stem cells. Progress in Cardiovascular Diseases, 50(1), 31–48.

    Article  CAS  PubMed  Google Scholar 

  39. Bearzi, C., Rota, M., Hosoda, T., et al. (2007). Human cardiac stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(35), 14068–14073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Perez-Moreno, M., Jamora, C., & Fuchs, E. (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell, 112(4), 535–548.

    Article  CAS  PubMed  Google Scholar 

  41. Urbanek, K., Cesselli, D., Rota, M., et al. (2006). Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9226–9231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gadue, P., Huber, T. L., Paddison, P. J., et al. (2006). Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103(45), 16806–16811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lindsley, R. C., Gill, J. G., Murphy, T. L., et al. (2008). Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell, 3(1), 55–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Foley, A. C., & Mercola, M. (2005). Heart induction by Wnt antagonists depends on the homeodomain transcription factor hex. Genes & Development, 19(3), 387–396.

    Article  CAS  Google Scholar 

  45. Foley, A. C., Korol, O., Timmer, A. M., et al. (2007). Multiple functions of Cerberus cooperate to induce heart downstream of nodal. Developmental Biology, 303(1), 57–65.

    Article  CAS  PubMed  Google Scholar 

  46. Schneider, V. A., & Mercola, M. (2001). Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes & Development, 15(3), 304–315.

    Article  CAS  Google Scholar 

  47. Naito, A. T., Shiojima, I., Akazawa, H., et al. (2006). Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 103(52), 19812–19817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ueno, S., Weidinger, G., Osugi, T., et al. (2007). Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(23), 9685–9690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qin, G., Ii, M., Silver, M., et al. (2006). Functional disruption of alpha4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization. The Journal of Experimental Medicine, 203(1), 153–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, V. C., Stull, R., Joo, D., et al. (2008). Notch signaling respecifies the hemangioblast to a cardiac fate. Nature Biotechnology, 26(10), 1169–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rajala, K., Pekkanen-Mattila, M., & Aalto-Setala, K. (2011). Cardiac differentiation of pluripotent stem cells. Stem Cells International, 2011, 383709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. He, Z., Li, H., Zuo, S., et al. (2011). Transduction of Wnt11 promotes mesenchymal stem cell transdifferentiation into cardiac phenotypes. Stem Cells and Development, 20(10), 1771–1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hiroi, Y., Kudoh, S., Monzen, K., et al. (2001). Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nature Genetics, 28(3), 276–280.

    Article  CAS  PubMed  Google Scholar 

  54. Peterkin, T., Gibson, A., & Patient, R. (2003). GATA-6 maintains BMP-4 and Nkx2 expression during cardiomyocyte precursor maturation. The EMBO Journal, 22(16), 4260–4273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Plageman Jr., T. F., & Yutzey, K. E. (2004). Differential expression and function of Tbx5 and Tbx20 in cardiac development. The Journal of Biological Chemistry, 279(18), 19026–19034.

    Article  CAS  PubMed  Google Scholar 

  56. Riley, P., Anson-Cartwright, L., & Cross, J. C. (1998). The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nature Genetics, 18(3), 271–275.

    Article  CAS  PubMed  Google Scholar 

  57. Watt, A. J., Battle, M. A., Li, J., et al. (2004). GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12573–12578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Marvin, M. J., Di, R. G., Gardiner, A., et al. (2001). Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes & Development, 15(3), 316–327.

    Article  CAS  Google Scholar 

  59. Mima, T., Ueno, H., Fischman, D. A., et al. (1995). Fibroblast growth factor receptor is required for in vivo cardiac myocyte proliferation at early embryonic stages of heart development. Proceedings of the National Academy of Sciences of the United States of America, 92(2), 467–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Winnier, G., Blessing, M., Labosky, P. A., et al. (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes & Development, 9(17), 2105–2116.

    Article  CAS  Google Scholar 

  61. Zhang, H., & Bradley, A. (1996). Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development, 122(10), 2977–2986.

    CAS  PubMed  Google Scholar 

  62. Rodolfo, C., Di, B. S., & Cecconi, F. (2016). Autophagy in stem and progenitor cells. Cellular and Molecular Life Sciences, 73(3), 475–496.

    Article  CAS  PubMed  Google Scholar 

  63. Vessoni, A. T., Muotri, A. R., & Okamoto, O. K. (2012). Autophagy in stem cell maintenance and differentiation. Stem Cells and Development, 21(4), 513–520.

    Article  CAS  PubMed  Google Scholar 

  64. Phadwal, K., Watson, A. S., & Simon, A. K. (2013). Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging. Cellular and Molecular Life Sciences, 70(1), 89–103.

    Article  CAS  PubMed  Google Scholar 

  65. Guan, J. L., Simon, A. K., Prescott, M., et al. (2013). Autophagy in stem cells. Autophagy, 9(6), 830–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Meng, Y., Ji, J., Tan, W., et al. (2016). Involvement of autophagy in the procedure of endoplasmic reticulum stress introduced apoptosis in bone marrow mesenchymal stem cells from nonobese diabetic mice. Cell Biochemistry and Function, 34(1), 25–33.

    Article  CAS  PubMed  Google Scholar 

  67. Jung, J., Choi, J. H., Lee, Y., et al. (2013). Human placenta-derived mesenchymal stem cells promote hepatic regeneration in CCl4 -injured rat liver model via increased autophagic mechanism. Stem Cells, 31(8), 1584–1596.

    Article  CAS  PubMed  Google Scholar 

  68. Han, Y. F., Sun, T. J., Han, Y. Q., et al. (2015). Clinical perspectives on mesenchymal stem cells promoting wound healing in diabetes mellitus patients by inducing autophagy. European Review for Medical and Pharmacological Sciences, 19(14), 2666–2670.

    PubMed  Google Scholar 

  69. Ieda, M., Fu, J. D., Delgado-Olguin, P., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142(3), 375–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nam, Y. J., Song, K., Luo, X., et al. (2013). Reprogramming of human fibroblasts toward a cardiac fate. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5588–5593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wada, R., Muraoka, N., Inagawa, K., et al. (2013). Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12667–12672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fu, J. D., Stone, N. R., Liu, L., et al. (2013). Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Reports, 1(3), 235–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kaunas, R., Nguyen, P., Usami, S., et al. (2005). Cooperative effects of rho and mechanical stretch on stress fiber organization. Proceedings of the National Academy of Sciences of the United States of America, 102(44), 15895–15900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kurpinski, K., Chu, J., Hashi, C., et al. (2006). Anisotropic mechanosensing by mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16095–16100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kurpinski, K., Park, J., Thakar, R. G., et al. (2006). Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain. Molecular & Cellular Biomechanics, 3(1), 21–34.

    Google Scholar 

  76. Park, J. S., Chu, J. S., Cheng, C., et al. (2004). Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnology and Bioengineering, 88(3), 359–368.

    Article  CAS  PubMed  Google Scholar 

  77. Kurpinski, K., Lam, H., Chu, J., et al. (2010). Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells, 28(4), 734–742.

    Article  CAS  PubMed  Google Scholar 

  78. Wang, D., Park, J. S., Chu, J. S., et al. (2004). Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. The Journal of Biological Chemistry, 279(42), 43725–43734.

    Article  CAS  PubMed  Google Scholar 

  79. Park, J. S., Chu, J. S., Tsou, A. D., et al. (2011). The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials, 32(16), 3921–3930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tyagi, S. C., & Hoit, B. D. (2002). Metalloproteinase in myocardial adaptation and maladaptation. Journal of Cardiovascular Pharmacology and Therapeutics, 7(4), 241–246.

    Article  CAS  PubMed  Google Scholar 

  81. Ali, M. A., & Schulz, R. (2009). Activation of MMP-2 as a key event in oxidative stress injury to the heart. Frontiers in Bioscience, 14, 699–716.

    CAS  Google Scholar 

  82. Mishra, P. K., Givvimani, S., Chavali, V., et al. (2013). Cardiac matrix: a clue for future therapy. Biochimica et Biophysica Acta, 1832(12), 2271–2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Morancho, A., Ma, F., Barcelo, V., et al. (2015). Impaired vascular remodeling after endothelial progenitor cell transplantation in MMP9-deficient mice suffering cortical cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 35(10), 1547–1551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Guo, J., Jie, W., Shen, Z., et al. (2014). SCF increases cardiac stem cell migration through PI3K/AKT and MMP2/9 signaling. International Journal of Molecular Medicine, 34(1), 112–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pottier, N., Cauffiez, C., Perrais, M., et al. (2014). FibromiRs: translating molecular discoveries into new anti-fibrotic drugs. Trends in Pharmacological Sciences, 35(3), 119–126.

    Article  CAS  PubMed  Google Scholar 

  86. Tyagi, A. C., Sen, U., & Mishra, P. K. (2011). Synergy of microRNA and stem cell: a novel therapeutic approach for diabetes mellitus and cardiovascular diseases. Current Diabetes Reviews, 7(6), 367–376.

    Article  CAS  PubMed  Google Scholar 

  87. Callis, T. E., Deng, Z., Chen, J. F., et al. (2008). Muscling through the microRNA world. Experimental Biology and Medicine (Maywood), 233(2), 131–138.

    Article  CAS  Google Scholar 

  88. van, R. E., Sutherland, L. B., Thatcher, J. E., et al. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13027–13032.

    Article  Google Scholar 

  89. Lee, Y., Yang, X., Huang, Y., et al. (2010). Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis. PLoS Computational Biology, 6(4), e1000730.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Ucar, A., Vafaizadeh, V., Jarry, H., et al. (2010). miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nature Genetics, 42(12), 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  91. Bronisz, A., Godlewski, J., Wallace, J. A., et al. (2012). Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nature Cell Biology, 14(2), 159–167.

    Article  CAS  Google Scholar 

  92. Nan, Y., Han, L., Zhang, A., et al. (2010). MiRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Research, 1359, 14–21.

    Article  CAS  PubMed  Google Scholar 

  93. Yan, W., Zhang, W., Sun, L., et al. (2011). Identification of MMP-9 specific microRNA expression profile as potential targets of anti-invasion therapy in glioblastoma multiforme. Brain Research, 1411, 108–115.

    Article  CAS  PubMed  Google Scholar 

  94. Huang, X. H., Chen, J. S., Wang, Q., et al. (2011). miR-338-3p suppresses invasion of liver cancer cell by targeting smoothened. The Journal of Pathology, 225(3), 463–472.

    Article  CAS  PubMed  Google Scholar 

  95. Moriyama, T., Ohuchida, K., Mizumoto, K., et al. (2009). MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Molecular Cancer Therapeutics, 8(5), 1067–1074.

    Article  CAS  PubMed  Google Scholar 

  96. Rossi, M., Pitari, M. R., Amodio, N., et al. (2013). miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J. Cellular Physiology, 228(7), 1506–1515.

    Article  CAS  Google Scholar 

  97. Tavazoie, S. F., Alarcon, C., Oskarsson, T., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang, F., Yin, Y., Wang, F., et al. (2010). miR-17-5p promotes migration of human hepatocellular carcinoma cells through the p38 mitogen-activated protein kinase-heat shock protein 27 pathway. Hepatology, 51(5), 1614–1623.

    Article  CAS  PubMed  Google Scholar 

  99. Felli, N., Felicetti, F., Lustri, A. M., et al. (2013). miR-126&126* restored expressions play a tumor suppressor role by directly regulating ADAM9 and MMP7 in melanoma. Plos One, 8(2), e56824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kano, M., Seki, N., Kikkawa, N., et al. (2010). miR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. INT. J. Cancer, 127(12), 2804–2814.

    CAS  Google Scholar 

  101. Liu, X., Yu, J., Jiang, L., et al. (2009). MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics & Proteomics, 6(3), 131–139.

    CAS  Google Scholar 

  102. Stanczyk, J., Ospelt, C., Karouzakis, E., et al. (2011). Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis and Rheumatism, 63(2), 373–381.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jones, S. W., Watkins, G., Le, G. N., et al. (2009). The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis and Cartilage, 17(4), 464–472.

    Article  CAS  PubMed  Google Scholar 

  104. Henson, B. J., Bhattacharjee, S., O'Dee, D. M., et al. (2009). Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes, Chromosomes & Cancer, 48(7), 569–582.

    Article  CAS  Google Scholar 

  105. Akhtar, N., Rasheed, Z., Ramamurthy, S., et al. (2010). MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis and Rheumatism, 62(5), 1361–1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tardif, G., Hum, D., Pelletier, J. P., et al. (2009). Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskeletal Disorders, 10, 148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Xu, N., Zhang, L., Meisgen, F., et al. (2012). MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. The Journal of Biological Chemistry, 287(35), 29899–29908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Osaki, M., Takeshita, F., Sugimoto, Y., et al. (2011). MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Molecular Therapy, 19(6), 1123–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Grimson, A., Farh, K. K., Johnston, W. K., et al. (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Molecular Cell, 27(1), 91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fornari, F., Milazzo, M., Chieco, P., et al. (2012). In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. The Journal of Pathology, 227(3), 275–285.

    Article  CAS  PubMed  Google Scholar 

  111. Gennarino, V. A., Sardiello, M., Avellino, R., et al. (2009). MicroRNA target prediction by expression analysis of host genes. Genome Research, 19(3), 481–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chuang, T. D., Panda, H., Luo, X., et al. (2012). miR-200c is aberrantly expressed in leiomyomas in an ethnic-dependent manner and targets ZEBs, VEGFA, TIMP2, and FBLN5. Endocrine-Related Cancer, 19(4), 541–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, B., Hsu, S. H., Majumder, S., et al. (2010). TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene, 29(12), 1787–1797.

    Article  CAS  PubMed  Google Scholar 

  114. Limana, F., Esposito, G., D'Arcangelo, D., et al. (2011). HMGB1 attenuates cardiac remodelling in the failing heart via enhanced cardiac regeneration and miR-206-mediated inhibition of TIMP-3. PloS One, 6(6), e19845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chi, S. W., Zang, J. B., Mele, A., et al. (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 460(7254), 479–486.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Yu, J. Y., Chung, K. H., Deo, M., et al. (2008). MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Experimental Cell Research, 314(14), 2618–2633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lu, Y., Roy, S., Nuovo, G., et al. (2011). Anti-microRNA-222 (anti-miR-222) and -181B suppress growth of tamoxifen-resistant xenografts in mouse by targeting TIMP3 protein and modulating mitogenic signal. The Journal of Biological Chemistry, 286(49), 42292–42302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang, A., Liu, Y., Shen, Y., et al. (2011). miR-21 modulates cell apoptosis by targeting multiple genes in renal cell carcinoma. Urology, 78(2), 474–479.

    Article  Google Scholar 

  119. Baek, D., Villen, J., Shin, C., et al. (2008). The impact of microRNAs on protein output. Nature, 455(7209), 64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang, C., Zhang, J., Hao, J., et al. (2012). High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. Journal of Translational Medicine, 10, 119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yu, D., Zhou, H., Xun, Q., et al. (2012). microRNA-103 regulates the growth and invasion of endometrial cancer cells through the downregulation of tissue inhibitor of metalloproteinase 3. Oncology Letters, 3(6), 1221–1226.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Helwak, A., Kudla, G., Dudnakova, T., et al. (2013). Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell, 153(3), 654–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Luna, C., Li, G., Qiu, J., et al. (2011). MicroRNA-24 regulates the processing of latent TGFbeta1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. Journal of Cellular Physiology, 226(5), 1407–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Martin, J., Jenkins, R. H., Bennagi, R., et al. (2011). Post-transcriptional regulation of transforming growth factor Beta-1 by microRNA-744. PloS One, 6(10), e25044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tili, E., Michaille, J. J., Alder, H., et al. (2010). Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFbeta signaling pathway in SW480 cells. Biochemical Pharmacology, 80(12), 2057–2065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu, Z. Y., Zhang, G. L., Wang, M. M., et al. (2011). MicroRNA-663 targets TGFB1 and regulates lung cancer proliferation. Asian Pacific Journal of Cancer Prevention, 12(11), 2819–2823.

    PubMed  Google Scholar 

  127. Gabriely, G., Wurdinger, T., Kesari, S., et al. (2008). MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Molecular and Cellular Biology, 28(17), 5369–5380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tsai, W. C., Hsu, S. D., Hsu, C. S., et al. (2012). MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. The Journal of Clinical Investigation, 122(8), 2884–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lv, X. B., Jiao, Y., Qing, Y., et al. (2011). miR-124 suppresses multiple steps of breast cancer metastasis by targeting a cohort of pro-metastatic genes in vitro. CHIN J. Cancer, 30(12), 821–830.

    Google Scholar 

  130. Ernst, A., Campos, B., Meier, J., et al. (2010). De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene, 29(23), 3411–3422.

    Article  CAS  PubMed  Google Scholar 

  131. Sander, S., Bullinger, L., Klapproth, K., et al. (2008). MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood, 112(10), 4202–4212.

    Article  CAS  PubMed  Google Scholar 

  132. Xie, H., Zhao, Y., Caramuta, S., et al. (2012). miR-205 expression promotes cell proliferation and migration of human cervical cancer cells. Plos One, 7(10), e46990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee, H. K., Bier, A., Cazacu, S., et al. (2013). MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor. PloS One, 8(2), e54652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tsukamoto, Y., Nakada, C., Noguchi, T., et al. (2010). MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Research, 70(6), 2339–2349.

    Article  CAS  PubMed  Google Scholar 

  135. Pichiorri, F., Suh, S. S., Ladetto, M., et al. (2008). MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 12885–12890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Takaya, T., Ono, K., Kawamura, T., et al. (2009). MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circulation Journal, 73(8), 1492–1497.

    Article  CAS  PubMed  Google Scholar 

  137. Ivey, K. N., Muth, A., Arnold, J., et al. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell, 2(3), 219–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kuppusamy, K. T., Sperber, H., & Ruohola-Baker, H. (2013). MicroRNA regulation and role in stem cell maintenance, cardiac differentiation and hypertrophy. Current Molecular Medicine, 13(5), 757–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Seeger, F. H., Zeiher, A. M., & Dimmeler, S. (2013). MicroRNAs in stem cell function and regenerative therapy of the heart. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(8), 1739–1746.

    Article  CAS  PubMed  Google Scholar 

  140. Kane, N. M., Thrasher, A. J., Angelini, G. D., et al. (2014). Concise review: MicroRNAs as modulators of stem cells and angiogenesis. Stem Cells, 32(5), 1059–1066.

    Article  CAS  PubMed  Google Scholar 

  141. Wilson, K. D., Hu, S., Venkatasubrahmanyam, S., et al. (2010). Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499. Circulation. Cardiovascular Genetics, 3(5), 426–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bras-Rosario, L., Matsuda, A., Pinheiro, A. I., et al. (2013). Expression profile of microRNAs regulating proliferation and differentiation in mouse adult cardiac stem cells. PloS One, 8(5), e63041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Luna, C., Li, G., Qiu, J., et al. (2011). Cross-talk between miR-29 and transforming growth factor-betas in trabecular meshwork cells. Investigative Ophthalmology & Visual Science, 52(6), 3567–3572.

    Article  CAS  Google Scholar 

  144. Jayawardena, T. M., Egemnazarov, B., Finch, E. A., et al. (2012). MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circulation Research, 110(11), 1465–1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Abdelwahid, E., Siminiak, T., Guarita-Souza, L. C., et al. (2011). Stem cell therapy in heart diseases: a review of selected new perspectives, practical considerations and clinical applications. Current Cardiology Reviews, 7(3), 201–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453(7193), 322–329.

    Article  CAS  PubMed  Google Scholar 

  147. Wu, X., Ding, S., Ding, Q., et al. (2004). Small molecules that induce cardiomyogenesis in embryonic stem cells. Journal of the American Chemical Society, 126(6), 1590–1591.

    Article  CAS  PubMed  Google Scholar 

  148. Zhang, J., Wilson, G. F., Soerens, A. G., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104(4), e30–e41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Strauer, B. E., Brehm, M., Zeus, T., et al. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15), 1913–1918.

    Article  PubMed  Google Scholar 

  150. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Transplanted adult bone marrow cells repair myocardial infarcts in mice. Annals of the New York Academy of Sciences, 938, 221–229.

    Article  CAS  PubMed  Google Scholar 

  151. Schuleri, K. H., Feigenbaum, G. S., Centola, M., et al. (2009). Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. European Heart Journal, 30(22), 2722–2732.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Jackson, K. A., Majka, S. M., Wang, H., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. The Journal of Clinical Investigation, 107(11), 1395–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gomez-Mauricio, R. G., Acarregui, A., Sanchez-Margallo, F. M., et al. (2013). A preliminary approach to the repair of myocardial infarction using adipose tissue-derived stem cells encapsulated in magnetic resonance-labelled alginate microspheres in a porcine model. European Journal of Pharmaceutics and Biopharmaceutics, 84(1), 29–39.

    Article  CAS  PubMed  Google Scholar 

  154. Badorff, C., Brandes, R. P., Popp, R., et al. (2003). Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation, 107(7), 1024–1032.

    Article  PubMed  Google Scholar 

  155. Rupp, S., Badorff, C., Koyanagi, M., et al. (2004). Statin therapy in patients with coronary artery disease improves the impaired endothelial progenitor cell differentiation into cardiomyogenic cells. Basic Research in Cardiology, 99(1), 61–68.

    Article  CAS  PubMed  Google Scholar 

  156. Tang, X. L., Rokosh, G., Sanganalmath, S. K., et al. (2010). Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation, 121(2), 293–305.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Gnecchi, M., He, H., Noiseux, N., et al. (2006). Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. The FASEB Journal, 20(6), 661–669.

    Article  CAS  PubMed  Google Scholar 

  158. Haider, H. K., Jiang, S., Idris, N. M., et al. (2008). IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circulation Research, 103(11), 1300–1308.

    Article  CAS  PubMed  Google Scholar 

  159. Sahoo, S., Klychko, E., Thorne, T., et al. (2011). Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circulation Research, 109(7), 724–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Han, C., Sun, X., Liu, L., et al. (2016). Exosomes and their therapeutic potentials of stem cells. Stem Cells International, 2016, 7653489.

    PubMed  Google Scholar 

  161. Stoorvogel, W., Strous, G. J., Geuze, H. J., et al. (1991). Late endosomes derive from early endosomes by maturation. Cell, 65(3), 417–427.

    Article  CAS  PubMed  Google Scholar 

  162. Kishore, R., & Khan, M. (2016). More than tiny sacks: stem cell exosomes as cell-free modality for cardiac repair. Circulation Research, 118(2), 330–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Pan, B. T., & Johnstone, R. M. (1983). Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell, 33(3), 967–978.

    Article  CAS  PubMed  Google Scholar 

  164. Lai, R. C., Arslan, F., Lee, M. M., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214–222.

    Article  CAS  PubMed  Google Scholar 

  165. Vrijsen, K. R., Sluijter, J. P., Schuchardt, M. W., et al. (2010). Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. Journal of Cellular and Molecular Medicine, 14(5), 1064–1070.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Raposo, G., Nijman, H. W., Stoorvogel, W., et al. (1996). B lymphocytes secrete antigen-presenting vesicles. The Journal of Experimental Medicine, 183(3), 1161–1172.

    Article  CAS  PubMed  Google Scholar 

  167. Peters, P. J., Geuze, H. J., van der Donk, H. A., et al. (1989). Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. European Journal of Immunology, 19(8), 1469–1475.

    Article  CAS  PubMed  Google Scholar 

  168. Zitvogel, L., Regnault, A., Lozier, A., et al. (1998). Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Medicine, 4(5), 594–600.

    Article  CAS  PubMed  Google Scholar 

  169. Heijnen, H. F., Schiel, A. E., Fijnheer, R., et al. (1999). Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood, 94(11), 3791–3799.

    CAS  PubMed  Google Scholar 

  170. Fevrier, B., Vilette, D., Archer, F., et al. (2004). Cells release prions in association with exosomes. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9683–9688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dignat-George, F., & Boulanger, C. M. (2011). The many faces of endothelial microparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(1), 27–33.

    Article  CAS  PubMed  Google Scholar 

  172. Wolfers, J., Lozier, A., Raposo, G., et al. (2001). Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Medicine, 7(3), 297–303.

    Article  CAS  PubMed  Google Scholar 

  173. Simons, M., & Raposo, G. (2009). Exosomes--vesicular carriers for intercellular communication. Current Opinion in Cell Biology, 21(4), 575–581.

    Article  CAS  PubMed  Google Scholar 

  174. Mittelbrunn, M., Gutierrez-Vazquez, C., Villarroya-Beltri, C., et al. (2011). Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature Communications, 2, 282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Dai, S., Wan, T., Wang, B., et al. (2005). More efficient induction of HLA-A*0201-restricted and carcinoembryonic antigen (CEA)-specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells. Clinical Cancer Research, 11(20), 7554–7563.

    Article  CAS  PubMed  Google Scholar 

  176. Korkut, C., Ataman, B., Ramachandran, P., et al. (2009). Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell, 139(2), 393–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Soderberg, A., Barral, A. M., Soderstrom, M., et al. (2007). Redox-signaling transmitted in trans to neighboring cells by melanoma-derived TNF-containing exosomes. Free Radical Biology & Medicine, 43(1), 90–99.

    Article  CAS  Google Scholar 

  178. Chistiakov, D.A., Orekhov, A.N., Bobryshev, Y.V. (2016). Cardiac extracellular vesicles in normal and infarcted heart. International Journal of Molecular Sciences, 17(1), 63–81.

  179. Garcia, N. A., Moncayo-Arlandi, J., Sepulveda, P., et al. (2015). Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovascular Research, 109(3), 397–408.

    Article  PubMed  Google Scholar 

  180. Khan, M., Nickoloff, E., Abramova, T., et al. (2015). Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117(1), 52–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chen, L., Wang, Y., Pan, Y., et al. (2013). Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochemical and Biophysical Research Communications, 431(3), 566–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gray, W. D., French, K. M., Ghosh-Choudhary, S., et al. (2015). Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circulation Research, 116(2), 255–263.

    Article  CAS  PubMed  Google Scholar 

  183. Ibrahim, A. G., Cheng, K., & Marban, E. (2014). Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2(5), 606–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wang, J., Huang, W., Xu, R., et al. (2012). MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. Journal of Cellular and Molecular Medicine, 16(9), 2150–2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Gurha, P., Abreu-Goodger, C., Wang, T., et al. (2012). Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction. Circulation, 125(22), 2751–2761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lyu, L., Wang, H., Li, B., et al. (2015). A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 89(Pt B), 268–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wang, X., Huang, W., Liu, G., et al. (2014). Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. Journal of Molecular and Cellular Cardiology, 74, 139–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Behfar, A., Crespo-Diaz, R., Terzic, A., et al. (2014). Cell therapy for cardiac repair--lessons from clinical trials. Nature Reviews. Cardiology, 11(4), 232–246.

    Article  PubMed  Google Scholar 

  189. van Berlo, J. H., Kanisicak, O., Maillet, M., et al. (2014). C-kit + cells minimally contribute cardiomyocytes to the heart. Nature, 509(7500), 337–341.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Sultana, N., Zhang, L., Yan, J., et al. (2015). Resident c-kit(+) cells in the heart are not cardiac stem cells. Nature Communications, 6, 8701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ilic, D., Devito, L., Miere, C., & Codognotto, S. (2015). Human embryonic and induced pluripotent stem cells in clinical trials. British Medical Bulletin, 116, 19–27.

    PubMed  Google Scholar 

  192. Tarui, S., Ishigami, S., Ousaka, D., et al. (2015). Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: three-year follow-up of the Transcoronary infusion of cardiac progenitor cells in patients with single-ventricle physiology (TICAP) trial. The Journal of Thoracic and Cardiovascular Surgery, 150(5), 1198–1207, 1208.

    Article  PubMed  Google Scholar 

  193. Poulin, M.F., Deka, A., Mohamedali, B., et al. (2016). Clinical benefits of stem cells for chronic symptomatic systolic heart failure a systematic review of the existing data and ongoing trials. Cell Transplantation. doi:10.3727/096368916X692087.

  194. Banovic, M., Loncar, Z., Behfar, A., et al. (2015). Endpoints in stem cell trials in ischemic heart failure. Stem Cell Research & Therapy, 6, 159.

    Article  CAS  Google Scholar 

  195. Oh, H., Ito, H., Sano, S. (2016) Challenges to success in heart failure: cardiac cell therapies in patients with heart diseases. Journal of Cardiology, 68(5), 361–367.

  196. Micheu, M. M., Scafa-Udriste, A., & DorobanTu, M. (2016). Bringing cardiac stem cell therapy from bench to bedside: lessons from the past and future perspectives. Romanian Journal of Morphology and Embryology, 57(2), 367–372.

    PubMed  Google Scholar 

  197. Bruyneel, A.A., Sehgal, A., Malandraki-Miller, S., et al. (2016) Stem cell therapy for the heart: blind alley or magic bullet? Journal of Cardiovascular Translational Research. PMID 27542008, doi:10.1007/s12265-016-9708-y.

  198. Ong, S. G., Lee, W. H., Huang, M., et al. (2014). Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation, 130(11 Suppl 1), S60–S69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Mackie, A. R., Klyachko, E., Thorne, T., et al. (2012). Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circulation Research, 111(3), 312–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Akyurekli, C., Le, Y., Richardson, R. B., et al. (2015). A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Reviews, 11(1), 150–160.

    Article  CAS  PubMed  Google Scholar 

  201. Singla, D. K. (2016). Stem cells and exosomes in cardiac repair. Current Opinion in Pharmacology, 27, 19–23.

    Article  CAS  PubMed  Google Scholar 

  202. Spinetti, G., Fortunato, O., Caporali, A., et al. (2013). MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circulation Research, 112(2), 335–346.

    Article  CAS  PubMed  Google Scholar 

  203. Janssen, H. L., Reesink, H. W., Lawitz, E. J., et al. (2013). Treatment of HCV infection by targeting microRNA. The New England Journal of Medicine, 368(18), 1685–1694.

    Article  CAS  PubMed  Google Scholar 

  204. Das, S., & Halushka, M. K. (2015). Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovascular Pathology, 24(4), 199–206.

    Article  CAS  PubMed  Google Scholar 

  205. Lin, Z., & Pu, W. T. (2014). Strategies for cardiac regeneration and repair. Science Translational Medicine, 6(239), 239rv1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health grants: HL-113281 and HL-116205 to Paras Kumar Mishra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paras Kumar Mishra.

Ethics declarations

Conflict of Interest

Authors confirm that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prathipati, P., Nandi, S.S. & Mishra, P.K. Stem Cell-Derived Exosomes, Autophagy, Extracellular Matrix Turnover, and miRNAs in Cardiac Regeneration during Stem Cell Therapy. Stem Cell Rev and Rep 13, 79–91 (2017). https://doi.org/10.1007/s12015-016-9696-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9696-y

Keywords

Navigation