Stem Cell Reviews and Reports

, Volume 13, Issue 1, pp 79–91 | Cite as

Stem Cell-Derived Exosomes, Autophagy, Extracellular Matrix Turnover, and miRNAs in Cardiac Regeneration during Stem Cell Therapy

  • Priyanka Prathipati
  • Shyam Sundar Nandi
  • Paras Kumar Mishra


Stem cell therapy (SCT) raises the hope for cardiac regeneration in ischemic hearts. However, underlying molecular mechanisms for repair of dead myocardium by SCT in the ischemic heart is poorly understood. Growing evidences suggest that cardiac matrix stiffness and differential expressions of miRNAs play a crucial role in stem cell survival and differentiation. However, their roles on transplanted stem cells, for myocardial repair of the ischemic heart, remain unclear. Transplanted stem cells may act in an autocrine and/or paracrine manner to regenerate the dead myocardium. Paracrine mediators such as stem cell-derived exosomes are emerging as a novel therapeutic strategy to overcome some of the limitations of SCT. These exosomes carry microRNAs (miRNAs) that may regulate stem cell differentiation into a specific lineage. MicroRNAs may also contribute to stiffness of surrounding matrix by regulating extracellular matrix (ECM) turnover. The survival of transplanted stem cell depends on its autophagic process that maintains cellular homeostasis. Therefore, exosomes, miRNAs, extracellular matrix turnover, and autophagy may have an integral role in improving the efficacy of SCT. This review elaborates the specific roles of these regulatory components on cardiac regeneration in the ischemic heart during SCT.


Exosomes microRNA Extracellular matrix Trans-differentiation MMP9 Autophagy 



This work was supported in part by the National Institutes of Health grants: HL-113281 and HL-116205 to Paras Kumar Mishra.

Compliance with Ethical Standards

Conflict of Interest

Authors confirm that there are no conflicts of interest.


  1. 1.
    Li, M., & Izpisua Belmonte, J. C. (2016). Mending a faltering heart. Circulation Research, 118(2), 344–351.PubMedCrossRefGoogle Scholar
  2. 2.
    Narula, J., Haider, N., Virmani, R., et al. (1996). Apoptosis in myocytes in end-stage heart failure. The New England Journal of Medicine, 335(16), 1182–1189.PubMedCrossRefGoogle Scholar
  3. 3.
    Sanganalmath, S. K., & Bolli, R. (2013). Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circulation Research, 113(6), 810–834.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Anversa, P., Leri, A., Kajstura, J., et al. (2002). Myocyte growth and cardiac repair. Journal of Molecular and Cellular Cardiology, 34(2), 91–105.PubMedCrossRefGoogle Scholar
  5. 5.
    Gilbert, P. M., Havenstrite, K. L., Magnusson, K. E., et al. (2010). Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science, 329(5995), 1078–1081.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Holst, J., Watson, S., Lord, M. S., et al. (2010). Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nature Biotechnology, 28(10), 1123–1128.PubMedCrossRefGoogle Scholar
  7. 7.
    Lei, Y., Gojgini, S., Lam, J., et al. (2011). The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 32(1), 39–47.PubMedCrossRefGoogle Scholar
  8. 8.
    Mishra, P. K., Chavali, V., Metreveli, N., et al. (2012). Ablation of MMP9 induces survival and differentiation of cardiac stem cells into cardiomyocytes in the heart of diabetics: a role of extracellular matrix. Canadian Journal of Physiology and Pharmacology, 90(3), 353–360.PubMedCrossRefGoogle Scholar
  9. 9.
    Reilly, G. C., & Engler, A. J. (2010). Intrinsic extracellular matrix properties regulate stem cell differentiation. Journal of Biomechanics, 43(1), 55–62.PubMedCrossRefGoogle Scholar
  10. 10.
    Shav, D., & Einav, S. (2010). The effect of mechanical loads in the differentiation of precursor cells into mature cells. Annals of the New York Academy of Sciences, 1188, 25–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Fingleton, B. (2007). Matrix metalloproteinases as valid clinical targets. Current Pharmaceutical Design, 13(3), 333–346.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang, J., Gao, Y., Ma, M., et al. (2013). Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochemistry and Biophysics, 67(2), 537–546.PubMedCrossRefGoogle Scholar
  13. 13.
    Chaturvedi, P., Kalani, A., Medina, I., et al. (2015). Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise. Journal of Cellular and Molecular Medicine, 19(9), 2153–2161.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215–233.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Mishra, P. K., Tyagi, N., Kumar, M., et al. (2009). MicroRNAs as a therapeutic target for cardiovascular diseases. Journal of Cellular and Molecular Medicine, 13(4), 778–789.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Nouraee, N., & Mowla, S. J. (2015). miRNA therapeutics in cardiovascular diseases: promises and problems. Frontiers in Genetics, 6, 232.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wronska, A., Kurkowska-Jastrzebska, I., & Santulli, G. (2015). Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiologica (Oxford, England), 213(1), 60–83.CrossRefGoogle Scholar
  18. 18.
    Maiese, K. (2015). MicroRNAs and SIRT1: a strategy for stem cell renewal and clinical development? Journal of Translational Science, 1(3), 55–57.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Morgado, A. L., Xavier, J. M., Dionisio, P. A., et al. (2015). MicroRNA-34a modulates neural stem cell differentiation by regulating expression of synaptic and autophagic proteins. Molecular Neurobiology, 51(3), 1168–1183.PubMedCrossRefGoogle Scholar
  20. 20.
    Levine, B., & Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell, 132(1), 27–42.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Purvis, N., Bahn, A., & Katare, R. (2015). The role of MicroRNAs in cardiac stem cells. Stem Cells International, 2015, 194894.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ratajczak, M. Z., Kucia, M., Jadczyk, T., et al. (2012). Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia, 26(6), 1166–1173.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhu, H., & Fan, G. C. (2011). Extracellular/circulating microRNAs and their potential role in cardiovascular disease. American Journal of Cardiovascular Disease, 1(2), 138–149.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Johnstone, R. M. (2005). Revisiting the road to the discovery of exosomes. Blood Cells, Molecules & Diseases, 34(3), 214–219.CrossRefGoogle Scholar
  25. 25.
    Lugini, L., Cecchetti, S., Huber, V., et al. (2012). Immune surveillance properties of human NK cell-derived exosomes. Journal of Immunology, 189(6), 2833–2842.CrossRefGoogle Scholar
  26. 26.
    Mishra, P. K., Singh, S. R., Joshua, I. G., et al. (2010). Stem cells as a therapeutic target for diabetes. Frontiers in Bioscience, 15, 461–477.CrossRefGoogle Scholar
  27. 27.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.PubMedCrossRefGoogle Scholar
  28. 28.
    Nichols, J., Zevnik, B., Anastassiadis, K., et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95(3), 379–391.PubMedCrossRefGoogle Scholar
  29. 29.
    Niwa, H., Burdon, T., Chambers, I., et al. (1998). Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes & Development, 12(13), 2048–2060.CrossRefGoogle Scholar
  30. 30.
    Potten, C. S., Schofield, R., & Lajtha, L. G. (1979). A comparison of cell replacement in bone marrow, testis and three regions of surface epithelium. Biochimica et Biophysica Acta, 560(2), 281–299.PubMedGoogle Scholar
  31. 31.
    Bernardi, S., Severini, G. M., Zauli, G., et al. (2012). Cell-based therapies for diabetic complications. Experimental Diabetes Research, 2012, 872504.PubMedCrossRefGoogle Scholar
  32. 32.
    Leonardini, A., & Avogaro, A. (2013). Abnormalities of the cardiac stem and progenitor cell compartment in experimental and human diabetes. Archives of Physiology and Biochemistry, 119(4), 179–187.PubMedCrossRefGoogle Scholar
  33. 33.
    Shen, Y. H., Hu, X., Zou, S., et al. (2012). Stem cells in thoracic aortic aneurysms and dissections: potential contributors to aortic repair. The Annals of Thoracic Surgery, 93(5), 1524–1533.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Williams, A. R., & Hare, J. M. (2011). Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation Research, 109(8), 923–940.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Anversa, P., Kajstura, J., Leri, A., et al. (2006). Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation, 113(11), 1451–1463.PubMedCrossRefGoogle Scholar
  36. 36.
    Beltrami, A. P., Barlucchi, L., Torella, D., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.PubMedCrossRefGoogle Scholar
  37. 37.
    Hierlihy, A. M., Seale, P., Lobe, C. G., et al. (2002). The post-natal heart contains a myocardial stem cell population. FEBS Letters, 530(1–3), 239–243.PubMedCrossRefGoogle Scholar
  38. 38.
    Barile, L., Messina, E., Giacomello, A., et al. (2007). Endogenous cardiac stem cells. Progress in Cardiovascular Diseases, 50(1), 31–48.PubMedCrossRefGoogle Scholar
  39. 39.
    Bearzi, C., Rota, M., Hosoda, T., et al. (2007). Human cardiac stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(35), 14068–14073.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Perez-Moreno, M., Jamora, C., & Fuchs, E. (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell, 112(4), 535–548.PubMedCrossRefGoogle Scholar
  41. 41.
    Urbanek, K., Cesselli, D., Rota, M., et al. (2006). Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9226–9231.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gadue, P., Huber, T. L., Paddison, P. J., et al. (2006). Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103(45), 16806–16811.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lindsley, R. C., Gill, J. G., Murphy, T. L., et al. (2008). Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell, 3(1), 55–68.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Foley, A. C., & Mercola, M. (2005). Heart induction by Wnt antagonists depends on the homeodomain transcription factor hex. Genes & Development, 19(3), 387–396.CrossRefGoogle Scholar
  45. 45.
    Foley, A. C., Korol, O., Timmer, A. M., et al. (2007). Multiple functions of Cerberus cooperate to induce heart downstream of nodal. Developmental Biology, 303(1), 57–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Schneider, V. A., & Mercola, M. (2001). Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes & Development, 15(3), 304–315.CrossRefGoogle Scholar
  47. 47.
    Naito, A. T., Shiojima, I., Akazawa, H., et al. (2006). Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 103(52), 19812–19817.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ueno, S., Weidinger, G., Osugi, T., et al. (2007). Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(23), 9685–9690.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Qin, G., Ii, M., Silver, M., et al. (2006). Functional disruption of alpha4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization. The Journal of Experimental Medicine, 203(1), 153–163.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Chen, V. C., Stull, R., Joo, D., et al. (2008). Notch signaling respecifies the hemangioblast to a cardiac fate. Nature Biotechnology, 26(10), 1169–1178.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Rajala, K., Pekkanen-Mattila, M., & Aalto-Setala, K. (2011). Cardiac differentiation of pluripotent stem cells. Stem Cells International, 2011, 383709.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    He, Z., Li, H., Zuo, S., et al. (2011). Transduction of Wnt11 promotes mesenchymal stem cell transdifferentiation into cardiac phenotypes. Stem Cells and Development, 20(10), 1771–1778.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hiroi, Y., Kudoh, S., Monzen, K., et al. (2001). Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nature Genetics, 28(3), 276–280.PubMedCrossRefGoogle Scholar
  54. 54.
    Peterkin, T., Gibson, A., & Patient, R. (2003). GATA-6 maintains BMP-4 and Nkx2 expression during cardiomyocyte precursor maturation. The EMBO Journal, 22(16), 4260–4273.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Plageman Jr., T. F., & Yutzey, K. E. (2004). Differential expression and function of Tbx5 and Tbx20 in cardiac development. The Journal of Biological Chemistry, 279(18), 19026–19034.PubMedCrossRefGoogle Scholar
  56. 56.
    Riley, P., Anson-Cartwright, L., & Cross, J. C. (1998). The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nature Genetics, 18(3), 271–275.PubMedCrossRefGoogle Scholar
  57. 57.
    Watt, A. J., Battle, M. A., Li, J., et al. (2004). GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12573–12578.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Marvin, M. J., Di, R. G., Gardiner, A., et al. (2001). Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes & Development, 15(3), 316–327.CrossRefGoogle Scholar
  59. 59.
    Mima, T., Ueno, H., Fischman, D. A., et al. (1995). Fibroblast growth factor receptor is required for in vivo cardiac myocyte proliferation at early embryonic stages of heart development. Proceedings of the National Academy of Sciences of the United States of America, 92(2), 467–471.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Winnier, G., Blessing, M., Labosky, P. A., et al. (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes & Development, 9(17), 2105–2116.CrossRefGoogle Scholar
  61. 61.
    Zhang, H., & Bradley, A. (1996). Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development, 122(10), 2977–2986.PubMedGoogle Scholar
  62. 62.
    Rodolfo, C., Di, B. S., & Cecconi, F. (2016). Autophagy in stem and progenitor cells. Cellular and Molecular Life Sciences, 73(3), 475–496.PubMedCrossRefGoogle Scholar
  63. 63.
    Vessoni, A. T., Muotri, A. R., & Okamoto, O. K. (2012). Autophagy in stem cell maintenance and differentiation. Stem Cells and Development, 21(4), 513–520.PubMedCrossRefGoogle Scholar
  64. 64.
    Phadwal, K., Watson, A. S., & Simon, A. K. (2013). Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging. Cellular and Molecular Life Sciences, 70(1), 89–103.PubMedCrossRefGoogle Scholar
  65. 65.
    Guan, J. L., Simon, A. K., Prescott, M., et al. (2013). Autophagy in stem cells. Autophagy, 9(6), 830–849.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Meng, Y., Ji, J., Tan, W., et al. (2016). Involvement of autophagy in the procedure of endoplasmic reticulum stress introduced apoptosis in bone marrow mesenchymal stem cells from nonobese diabetic mice. Cell Biochemistry and Function, 34(1), 25–33.PubMedCrossRefGoogle Scholar
  67. 67.
    Jung, J., Choi, J. H., Lee, Y., et al. (2013). Human placenta-derived mesenchymal stem cells promote hepatic regeneration in CCl4 -injured rat liver model via increased autophagic mechanism. Stem Cells, 31(8), 1584–1596.PubMedCrossRefGoogle Scholar
  68. 68.
    Han, Y. F., Sun, T. J., Han, Y. Q., et al. (2015). Clinical perspectives on mesenchymal stem cells promoting wound healing in diabetes mellitus patients by inducing autophagy. European Review for Medical and Pharmacological Sciences, 19(14), 2666–2670.PubMedGoogle Scholar
  69. 69.
    Ieda, M., Fu, J. D., Delgado-Olguin, P., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142(3), 375–386.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Nam, Y. J., Song, K., Luo, X., et al. (2013). Reprogramming of human fibroblasts toward a cardiac fate. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5588–5593.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Wada, R., Muraoka, N., Inagawa, K., et al. (2013). Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12667–12672.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Fu, J. D., Stone, N. R., Liu, L., et al. (2013). Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Reports, 1(3), 235–247.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kaunas, R., Nguyen, P., Usami, S., et al. (2005). Cooperative effects of rho and mechanical stretch on stress fiber organization. Proceedings of the National Academy of Sciences of the United States of America, 102(44), 15895–15900.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kurpinski, K., Chu, J., Hashi, C., et al. (2006). Anisotropic mechanosensing by mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16095–16100.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kurpinski, K., Park, J., Thakar, R. G., et al. (2006). Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain. Molecular & Cellular Biomechanics, 3(1), 21–34.Google Scholar
  76. 76.
    Park, J. S., Chu, J. S., Cheng, C., et al. (2004). Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnology and Bioengineering, 88(3), 359–368.PubMedCrossRefGoogle Scholar
  77. 77.
    Kurpinski, K., Lam, H., Chu, J., et al. (2010). Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells, 28(4), 734–742.PubMedCrossRefGoogle Scholar
  78. 78.
    Wang, D., Park, J. S., Chu, J. S., et al. (2004). Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. The Journal of Biological Chemistry, 279(42), 43725–43734.PubMedCrossRefGoogle Scholar
  79. 79.
    Park, J. S., Chu, J. S., Tsou, A. D., et al. (2011). The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials, 32(16), 3921–3930.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Tyagi, S. C., & Hoit, B. D. (2002). Metalloproteinase in myocardial adaptation and maladaptation. Journal of Cardiovascular Pharmacology and Therapeutics, 7(4), 241–246.PubMedCrossRefGoogle Scholar
  81. 81.
    Ali, M. A., & Schulz, R. (2009). Activation of MMP-2 as a key event in oxidative stress injury to the heart. Frontiers in Bioscience, 14, 699–716.Google Scholar
  82. 82.
    Mishra, P. K., Givvimani, S., Chavali, V., et al. (2013). Cardiac matrix: a clue for future therapy. Biochimica et Biophysica Acta, 1832(12), 2271–2276.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Morancho, A., Ma, F., Barcelo, V., et al. (2015). Impaired vascular remodeling after endothelial progenitor cell transplantation in MMP9-deficient mice suffering cortical cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 35(10), 1547–1551.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Guo, J., Jie, W., Shen, Z., et al. (2014). SCF increases cardiac stem cell migration through PI3K/AKT and MMP2/9 signaling. International Journal of Molecular Medicine, 34(1), 112–118.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Pottier, N., Cauffiez, C., Perrais, M., et al. (2014). FibromiRs: translating molecular discoveries into new anti-fibrotic drugs. Trends in Pharmacological Sciences, 35(3), 119–126.PubMedCrossRefGoogle Scholar
  86. 86.
    Tyagi, A. C., Sen, U., & Mishra, P. K. (2011). Synergy of microRNA and stem cell: a novel therapeutic approach for diabetes mellitus and cardiovascular diseases. Current Diabetes Reviews, 7(6), 367–376.PubMedCrossRefGoogle Scholar
  87. 87.
    Callis, T. E., Deng, Z., Chen, J. F., et al. (2008). Muscling through the microRNA world. Experimental Biology and Medicine (Maywood), 233(2), 131–138.CrossRefGoogle Scholar
  88. 88.
    van, R. E., Sutherland, L. B., Thatcher, J. E., et al. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13027–13032.CrossRefGoogle Scholar
  89. 89.
    Lee, Y., Yang, X., Huang, Y., et al. (2010). Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis. PLoS Computational Biology, 6(4), e1000730.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ucar, A., Vafaizadeh, V., Jarry, H., et al. (2010). miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nature Genetics, 42(12), 1101–1108.PubMedCrossRefGoogle Scholar
  91. 91.
    Bronisz, A., Godlewski, J., Wallace, J. A., et al. (2012). Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nature Cell Biology, 14(2), 159–167.CrossRefGoogle Scholar
  92. 92.
    Nan, Y., Han, L., Zhang, A., et al. (2010). MiRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Research, 1359, 14–21.PubMedCrossRefGoogle Scholar
  93. 93.
    Yan, W., Zhang, W., Sun, L., et al. (2011). Identification of MMP-9 specific microRNA expression profile as potential targets of anti-invasion therapy in glioblastoma multiforme. Brain Research, 1411, 108–115.PubMedCrossRefGoogle Scholar
  94. 94.
    Huang, X. H., Chen, J. S., Wang, Q., et al. (2011). miR-338-3p suppresses invasion of liver cancer cell by targeting smoothened. The Journal of Pathology, 225(3), 463–472.PubMedCrossRefGoogle Scholar
  95. 95.
    Moriyama, T., Ohuchida, K., Mizumoto, K., et al. (2009). MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Molecular Cancer Therapeutics, 8(5), 1067–1074.PubMedCrossRefGoogle Scholar
  96. 96.
    Rossi, M., Pitari, M. R., Amodio, N., et al. (2013). miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J. Cellular Physiology, 228(7), 1506–1515.CrossRefGoogle Scholar
  97. 97.
    Tavazoie, S. F., Alarcon, C., Oskarsson, T., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yang, F., Yin, Y., Wang, F., et al. (2010). miR-17-5p promotes migration of human hepatocellular carcinoma cells through the p38 mitogen-activated protein kinase-heat shock protein 27 pathway. Hepatology, 51(5), 1614–1623.PubMedCrossRefGoogle Scholar
  99. 99.
    Felli, N., Felicetti, F., Lustri, A. M., et al. (2013). miR-126&126* restored expressions play a tumor suppressor role by directly regulating ADAM9 and MMP7 in melanoma. Plos One, 8(2), e56824.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kano, M., Seki, N., Kikkawa, N., et al. (2010). miR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. INT. J. Cancer, 127(12), 2804–2814.Google Scholar
  101. 101.
    Liu, X., Yu, J., Jiang, L., et al. (2009). MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics & Proteomics, 6(3), 131–139.Google Scholar
  102. 102.
    Stanczyk, J., Ospelt, C., Karouzakis, E., et al. (2011). Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis and Rheumatism, 63(2), 373–381.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Jones, S. W., Watkins, G., Le, G. N., et al. (2009). The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis and Cartilage, 17(4), 464–472.PubMedCrossRefGoogle Scholar
  104. 104.
    Henson, B. J., Bhattacharjee, S., O'Dee, D. M., et al. (2009). Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes, Chromosomes & Cancer, 48(7), 569–582.CrossRefGoogle Scholar
  105. 105.
    Akhtar, N., Rasheed, Z., Ramamurthy, S., et al. (2010). MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis and Rheumatism, 62(5), 1361–1371.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Tardif, G., Hum, D., Pelletier, J. P., et al. (2009). Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskeletal Disorders, 10, 148.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Xu, N., Zhang, L., Meisgen, F., et al. (2012). MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. The Journal of Biological Chemistry, 287(35), 29899–29908.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Osaki, M., Takeshita, F., Sugimoto, Y., et al. (2011). MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Molecular Therapy, 19(6), 1123–1130.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Grimson, A., Farh, K. K., Johnston, W. K., et al. (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Molecular Cell, 27(1), 91–105.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Fornari, F., Milazzo, M., Chieco, P., et al. (2012). In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. The Journal of Pathology, 227(3), 275–285.PubMedCrossRefGoogle Scholar
  111. 111.
    Gennarino, V. A., Sardiello, M., Avellino, R., et al. (2009). MicroRNA target prediction by expression analysis of host genes. Genome Research, 19(3), 481–490.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Chuang, T. D., Panda, H., Luo, X., et al. (2012). miR-200c is aberrantly expressed in leiomyomas in an ethnic-dependent manner and targets ZEBs, VEGFA, TIMP2, and FBLN5. Endocrine-Related Cancer, 19(4), 541–556.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Wang, B., Hsu, S. H., Majumder, S., et al. (2010). TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene, 29(12), 1787–1797.PubMedCrossRefGoogle Scholar
  114. 114.
    Limana, F., Esposito, G., D'Arcangelo, D., et al. (2011). HMGB1 attenuates cardiac remodelling in the failing heart via enhanced cardiac regeneration and miR-206-mediated inhibition of TIMP-3. PloS One, 6(6), e19845.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Chi, S. W., Zang, J. B., Mele, A., et al. (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 460(7254), 479–486.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Yu, J. Y., Chung, K. H., Deo, M., et al. (2008). MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Experimental Cell Research, 314(14), 2618–2633.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Lu, Y., Roy, S., Nuovo, G., et al. (2011). Anti-microRNA-222 (anti-miR-222) and -181B suppress growth of tamoxifen-resistant xenografts in mouse by targeting TIMP3 protein and modulating mitogenic signal. The Journal of Biological Chemistry, 286(49), 42292–42302.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Zhang, A., Liu, Y., Shen, Y., et al. (2011). miR-21 modulates cell apoptosis by targeting multiple genes in renal cell carcinoma. Urology, 78(2), 474–479.CrossRefGoogle Scholar
  119. 119.
    Baek, D., Villen, J., Shin, C., et al. (2008). The impact of microRNAs on protein output. Nature, 455(7209), 64–71.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Zhang, C., Zhang, J., Hao, J., et al. (2012). High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. Journal of Translational Medicine, 10, 119.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Yu, D., Zhou, H., Xun, Q., et al. (2012). microRNA-103 regulates the growth and invasion of endometrial cancer cells through the downregulation of tissue inhibitor of metalloproteinase 3. Oncology Letters, 3(6), 1221–1226.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Helwak, A., Kudla, G., Dudnakova, T., et al. (2013). Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell, 153(3), 654–665.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Luna, C., Li, G., Qiu, J., et al. (2011). MicroRNA-24 regulates the processing of latent TGFbeta1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. Journal of Cellular Physiology, 226(5), 1407–1414.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Martin, J., Jenkins, R. H., Bennagi, R., et al. (2011). Post-transcriptional regulation of transforming growth factor Beta-1 by microRNA-744. PloS One, 6(10), e25044.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Tili, E., Michaille, J. J., Alder, H., et al. (2010). Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFbeta signaling pathway in SW480 cells. Biochemical Pharmacology, 80(12), 2057–2065.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Liu, Z. Y., Zhang, G. L., Wang, M. M., et al. (2011). MicroRNA-663 targets TGFB1 and regulates lung cancer proliferation. Asian Pacific Journal of Cancer Prevention, 12(11), 2819–2823.PubMedGoogle Scholar
  127. 127.
    Gabriely, G., Wurdinger, T., Kesari, S., et al. (2008). MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Molecular and Cellular Biology, 28(17), 5369–5380.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Tsai, W. C., Hsu, S. D., Hsu, C. S., et al. (2012). MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. The Journal of Clinical Investigation, 122(8), 2884–2897.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Lv, X. B., Jiao, Y., Qing, Y., et al. (2011). miR-124 suppresses multiple steps of breast cancer metastasis by targeting a cohort of pro-metastatic genes in vitro. CHIN J. Cancer, 30(12), 821–830.Google Scholar
  130. 130.
    Ernst, A., Campos, B., Meier, J., et al. (2010). De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene, 29(23), 3411–3422.PubMedCrossRefGoogle Scholar
  131. 131.
    Sander, S., Bullinger, L., Klapproth, K., et al. (2008). MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood, 112(10), 4202–4212.PubMedCrossRefGoogle Scholar
  132. 132.
    Xie, H., Zhao, Y., Caramuta, S., et al. (2012). miR-205 expression promotes cell proliferation and migration of human cervical cancer cells. Plos One, 7(10), e46990.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Lee, H. K., Bier, A., Cazacu, S., et al. (2013). MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor. PloS One, 8(2), e54652.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Tsukamoto, Y., Nakada, C., Noguchi, T., et al. (2010). MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Research, 70(6), 2339–2349.PubMedCrossRefGoogle Scholar
  135. 135.
    Pichiorri, F., Suh, S. S., Ladetto, M., et al. (2008). MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 12885–12890.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Takaya, T., Ono, K., Kawamura, T., et al. (2009). MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circulation Journal, 73(8), 1492–1497.PubMedCrossRefGoogle Scholar
  137. 137.
    Ivey, K. N., Muth, A., Arnold, J., et al. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell, 2(3), 219–229.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Kuppusamy, K. T., Sperber, H., & Ruohola-Baker, H. (2013). MicroRNA regulation and role in stem cell maintenance, cardiac differentiation and hypertrophy. Current Molecular Medicine, 13(5), 757–764.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Seeger, F. H., Zeiher, A. M., & Dimmeler, S. (2013). MicroRNAs in stem cell function and regenerative therapy of the heart. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(8), 1739–1746.PubMedCrossRefGoogle Scholar
  140. 140.
    Kane, N. M., Thrasher, A. J., Angelini, G. D., et al. (2014). Concise review: MicroRNAs as modulators of stem cells and angiogenesis. Stem Cells, 32(5), 1059–1066.PubMedCrossRefGoogle Scholar
  141. 141.
    Wilson, K. D., Hu, S., Venkatasubrahmanyam, S., et al. (2010). Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499. Circulation. Cardiovascular Genetics, 3(5), 426–435.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Bras-Rosario, L., Matsuda, A., Pinheiro, A. I., et al. (2013). Expression profile of microRNAs regulating proliferation and differentiation in mouse adult cardiac stem cells. PloS One, 8(5), e63041.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Luna, C., Li, G., Qiu, J., et al. (2011). Cross-talk between miR-29 and transforming growth factor-betas in trabecular meshwork cells. Investigative Ophthalmology & Visual Science, 52(6), 3567–3572.CrossRefGoogle Scholar
  144. 144.
    Jayawardena, T. M., Egemnazarov, B., Finch, E. A., et al. (2012). MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circulation Research, 110(11), 1465–1473.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Abdelwahid, E., Siminiak, T., Guarita-Souza, L. C., et al. (2011). Stem cell therapy in heart diseases: a review of selected new perspectives, practical considerations and clinical applications. Current Cardiology Reviews, 7(3), 201–212.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453(7193), 322–329.PubMedCrossRefGoogle Scholar
  147. 147.
    Wu, X., Ding, S., Ding, Q., et al. (2004). Small molecules that induce cardiomyogenesis in embryonic stem cells. Journal of the American Chemical Society, 126(6), 1590–1591.PubMedCrossRefGoogle Scholar
  148. 148.
    Zhang, J., Wilson, G. F., Soerens, A. G., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104(4), e30–e41.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Strauer, B. E., Brehm, M., Zeus, T., et al. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15), 1913–1918.PubMedCrossRefGoogle Scholar
  150. 150.
    Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Transplanted adult bone marrow cells repair myocardial infarcts in mice. Annals of the New York Academy of Sciences, 938, 221–229.PubMedCrossRefGoogle Scholar
  151. 151.
    Schuleri, K. H., Feigenbaum, G. S., Centola, M., et al. (2009). Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. European Heart Journal, 30(22), 2722–2732.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Jackson, K. A., Majka, S. M., Wang, H., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. The Journal of Clinical Investigation, 107(11), 1395–1402.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Gomez-Mauricio, R. G., Acarregui, A., Sanchez-Margallo, F. M., et al. (2013). A preliminary approach to the repair of myocardial infarction using adipose tissue-derived stem cells encapsulated in magnetic resonance-labelled alginate microspheres in a porcine model. European Journal of Pharmaceutics and Biopharmaceutics, 84(1), 29–39.PubMedCrossRefGoogle Scholar
  154. 154.
    Badorff, C., Brandes, R. P., Popp, R., et al. (2003). Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation, 107(7), 1024–1032.PubMedCrossRefGoogle Scholar
  155. 155.
    Rupp, S., Badorff, C., Koyanagi, M., et al. (2004). Statin therapy in patients with coronary artery disease improves the impaired endothelial progenitor cell differentiation into cardiomyogenic cells. Basic Research in Cardiology, 99(1), 61–68.PubMedCrossRefGoogle Scholar
  156. 156.
    Tang, X. L., Rokosh, G., Sanganalmath, S. K., et al. (2010). Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation, 121(2), 293–305.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Gnecchi, M., He, H., Noiseux, N., et al. (2006). Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. The FASEB Journal, 20(6), 661–669.PubMedCrossRefGoogle Scholar
  158. 158.
    Haider, H. K., Jiang, S., Idris, N. M., et al. (2008). IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circulation Research, 103(11), 1300–1308.PubMedCrossRefGoogle Scholar
  159. 159.
    Sahoo, S., Klychko, E., Thorne, T., et al. (2011). Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circulation Research, 109(7), 724–728.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Han, C., Sun, X., Liu, L., et al. (2016). Exosomes and their therapeutic potentials of stem cells. Stem Cells International, 2016, 7653489.PubMedGoogle Scholar
  161. 161.
    Stoorvogel, W., Strous, G. J., Geuze, H. J., et al. (1991). Late endosomes derive from early endosomes by maturation. Cell, 65(3), 417–427.PubMedCrossRefGoogle Scholar
  162. 162.
    Kishore, R., & Khan, M. (2016). More than tiny sacks: stem cell exosomes as cell-free modality for cardiac repair. Circulation Research, 118(2), 330–343.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Pan, B. T., & Johnstone, R. M. (1983). Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell, 33(3), 967–978.PubMedCrossRefGoogle Scholar
  164. 164.
    Lai, R. C., Arslan, F., Lee, M. M., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214–222.PubMedCrossRefGoogle Scholar
  165. 165.
    Vrijsen, K. R., Sluijter, J. P., Schuchardt, M. W., et al. (2010). Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. Journal of Cellular and Molecular Medicine, 14(5), 1064–1070.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Raposo, G., Nijman, H. W., Stoorvogel, W., et al. (1996). B lymphocytes secrete antigen-presenting vesicles. The Journal of Experimental Medicine, 183(3), 1161–1172.PubMedCrossRefGoogle Scholar
  167. 167.
    Peters, P. J., Geuze, H. J., van der Donk, H. A., et al. (1989). Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. European Journal of Immunology, 19(8), 1469–1475.PubMedCrossRefGoogle Scholar
  168. 168.
    Zitvogel, L., Regnault, A., Lozier, A., et al. (1998). Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Medicine, 4(5), 594–600.PubMedCrossRefGoogle Scholar
  169. 169.
    Heijnen, H. F., Schiel, A. E., Fijnheer, R., et al. (1999). Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood, 94(11), 3791–3799.PubMedGoogle Scholar
  170. 170.
    Fevrier, B., Vilette, D., Archer, F., et al. (2004). Cells release prions in association with exosomes. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9683–9688.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Dignat-George, F., & Boulanger, C. M. (2011). The many faces of endothelial microparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(1), 27–33.PubMedCrossRefGoogle Scholar
  172. 172.
    Wolfers, J., Lozier, A., Raposo, G., et al. (2001). Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Medicine, 7(3), 297–303.PubMedCrossRefGoogle Scholar
  173. 173.
    Simons, M., & Raposo, G. (2009). Exosomes--vesicular carriers for intercellular communication. Current Opinion in Cell Biology, 21(4), 575–581.PubMedCrossRefGoogle Scholar
  174. 174.
    Mittelbrunn, M., Gutierrez-Vazquez, C., Villarroya-Beltri, C., et al. (2011). Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature Communications, 2, 282.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Dai, S., Wan, T., Wang, B., et al. (2005). More efficient induction of HLA-A*0201-restricted and carcinoembryonic antigen (CEA)-specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells. Clinical Cancer Research, 11(20), 7554–7563.PubMedCrossRefGoogle Scholar
  176. 176.
    Korkut, C., Ataman, B., Ramachandran, P., et al. (2009). Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell, 139(2), 393–404.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Soderberg, A., Barral, A. M., Soderstrom, M., et al. (2007). Redox-signaling transmitted in trans to neighboring cells by melanoma-derived TNF-containing exosomes. Free Radical Biology & Medicine, 43(1), 90–99.CrossRefGoogle Scholar
  178. 178.
    Chistiakov, D.A., Orekhov, A.N., Bobryshev, Y.V. (2016). Cardiac extracellular vesicles in normal and infarcted heart. International Journal of Molecular Sciences, 17(1), 63–81.Google Scholar
  179. 179.
    Garcia, N. A., Moncayo-Arlandi, J., Sepulveda, P., et al. (2015). Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovascular Research, 109(3), 397–408.PubMedCrossRefGoogle Scholar
  180. 180.
    Khan, M., Nickoloff, E., Abramova, T., et al. (2015). Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circulation Research, 117(1), 52–64.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Chen, L., Wang, Y., Pan, Y., et al. (2013). Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochemical and Biophysical Research Communications, 431(3), 566–571.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Gray, W. D., French, K. M., Ghosh-Choudhary, S., et al. (2015). Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circulation Research, 116(2), 255–263.PubMedCrossRefGoogle Scholar
  183. 183.
    Ibrahim, A. G., Cheng, K., & Marban, E. (2014). Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2(5), 606–619.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Wang, J., Huang, W., Xu, R., et al. (2012). MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. Journal of Cellular and Molecular Medicine, 16(9), 2150–2160.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Gurha, P., Abreu-Goodger, C., Wang, T., et al. (2012). Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction. Circulation, 125(22), 2751–2761.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Lyu, L., Wang, H., Li, B., et al. (2015). A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 89(Pt B), 268–279.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Wang, X., Huang, W., Liu, G., et al. (2014). Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. Journal of Molecular and Cellular Cardiology, 74, 139–150.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Behfar, A., Crespo-Diaz, R., Terzic, A., et al. (2014). Cell therapy for cardiac repair--lessons from clinical trials. Nature Reviews. Cardiology, 11(4), 232–246.PubMedCrossRefGoogle Scholar
  189. 189.
    van Berlo, J. H., Kanisicak, O., Maillet, M., et al. (2014). C-kit + cells minimally contribute cardiomyocytes to the heart. Nature, 509(7500), 337–341.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Sultana, N., Zhang, L., Yan, J., et al. (2015). Resident c-kit(+) cells in the heart are not cardiac stem cells. Nature Communications, 6, 8701.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Ilic, D., Devito, L., Miere, C., & Codognotto, S. (2015). Human embryonic and induced pluripotent stem cells in clinical trials. British Medical Bulletin, 116, 19–27.PubMedGoogle Scholar
  192. 192.
    Tarui, S., Ishigami, S., Ousaka, D., et al. (2015). Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: three-year follow-up of the Transcoronary infusion of cardiac progenitor cells in patients with single-ventricle physiology (TICAP) trial. The Journal of Thoracic and Cardiovascular Surgery, 150(5), 1198–1207, 1208.PubMedCrossRefGoogle Scholar
  193. 193.
    Poulin, M.F., Deka, A., Mohamedali, B., et al. (2016). Clinical benefits of stem cells for chronic symptomatic systolic heart failure a systematic review of the existing data and ongoing trials. Cell Transplantation. doi: 10.3727/096368916X692087.
  194. 194.
    Banovic, M., Loncar, Z., Behfar, A., et al. (2015). Endpoints in stem cell trials in ischemic heart failure. Stem Cell Research & Therapy, 6, 159.CrossRefGoogle Scholar
  195. 195.
    Oh, H., Ito, H., Sano, S. (2016) Challenges to success in heart failure: cardiac cell therapies in patients with heart diseases. Journal of Cardiology, 68(5), 361–367.Google Scholar
  196. 196.
    Micheu, M. M., Scafa-Udriste, A., & DorobanTu, M. (2016). Bringing cardiac stem cell therapy from bench to bedside: lessons from the past and future perspectives. Romanian Journal of Morphology and Embryology, 57(2), 367–372.PubMedGoogle Scholar
  197. 197.
    Bruyneel, A.A., Sehgal, A., Malandraki-Miller, S., et al. (2016) Stem cell therapy for the heart: blind alley or magic bullet? Journal of Cardiovascular Translational Research. PMID 27542008, doi: 10.1007/s12265-016-9708-y.
  198. 198.
    Ong, S. G., Lee, W. H., Huang, M., et al. (2014). Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation, 130(11 Suppl 1), S60–S69.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Mackie, A. R., Klyachko, E., Thorne, T., et al. (2012). Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circulation Research, 111(3), 312–321.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Akyurekli, C., Le, Y., Richardson, R. B., et al. (2015). A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Reviews, 11(1), 150–160.PubMedCrossRefGoogle Scholar
  201. 201.
    Singla, D. K. (2016). Stem cells and exosomes in cardiac repair. Current Opinion in Pharmacology, 27, 19–23.PubMedCrossRefGoogle Scholar
  202. 202.
    Spinetti, G., Fortunato, O., Caporali, A., et al. (2013). MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circulation Research, 112(2), 335–346.PubMedCrossRefGoogle Scholar
  203. 203.
    Janssen, H. L., Reesink, H. W., Lawitz, E. J., et al. (2013). Treatment of HCV infection by targeting microRNA. The New England Journal of Medicine, 368(18), 1685–1694.PubMedCrossRefGoogle Scholar
  204. 204.
    Das, S., & Halushka, M. K. (2015). Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovascular Pathology, 24(4), 199–206.PubMedCrossRefGoogle Scholar
  205. 205.
    Lin, Z., & Pu, W. T. (2014). Strategies for cardiac regeneration and repair. Science Translational Medicine, 6(239), 239rv1.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Priyanka Prathipati
    • 1
  • Shyam Sundar Nandi
    • 1
  • Paras Kumar Mishra
    • 1
    • 2
  1. 1.Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of AnesthesiologyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations