Stem Cell Reviews and Reports

, Volume 13, Issue 1, pp 68–78 | Cite as

Pluripotent Stem Cells as a Robust Source of Mesenchymal Stem Cells

Article

Abstract

Mesenchymal stem cells (MSC) have been extensively studied over the past years for the treatment of different diseases. Most of the ongoing clinical trials currently involve the use of MSC derived from adult tissues. This source may have some limitations, particularly with therapies that may require extensive and repetitive cell dosage. However, nowadays, there is a staggering growth in literature on a new source of MSC. There is now increasing evidence about the mesenchymal differentiation from pluripotent stem cell (PSC). Here, we summarize the current knowledge of pluripotent-derived mesenchymal stem cells (PD-MSC). We present a historical perspective on the subject, and then discuss some critical questions that remain unanswered.

Keywords

Pluripotent stem cells Embryonic stem cells Cell reprogramming Mesenchymal stem cells Mesenchymal stromal cells Differentiation Pluripotent-derived mesenchymal stem cells iPS-derived mesenchymal stem cells Epithelial-to-mesenchymal transition EMT 

Abbreviations

BM-MSC

Bone marrow-derived mesenchymal stem cells

EMT

Epithelial-to-mesenchymal transition

iPSC

induced pluripotent stem cells

MSC

Mesenchymal stem cells

PD-MSC

Pluripotent-derived mesenchymal stem cells

PSC

Plurpotent stem cells

Notes

Acknowledgments

This work is possible thanks to supporting grants from CONICET (PIP-112-20150100723) and FONCYT (PID-2014-0052, PICT-2015-1469, PICT-2015-0868, y PICT-2015-3850). We thank Fundación FLENI and Fundación Pérez Companc for their support.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Arpornmaeklong, P., Brown, S.E., Wang, Z., & Krebsbach, P.H. (2009). Phenotypic characterization, osteoblastic differentiation, and bone regeneration capacity of human embryonic stem cell-derived mesenchymal stem cells. Stem cells and Development, 18(7), 955–968.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Barberi, T., Willis, L.M., Socci, N.D., & Studer, L. (2005). Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Medicine, 2(6), e161.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Barbet, R., Peiffer, I., Hatzfeld, A., Charbord, P., & Hatzfeld, J.A. (2011). Comparison of gene expression in human embryonic stem cells, hesc-derived mesenchymal stem cells and human mesenchymal stem cells. Stem Cells International, 2011(368), 192. doi: 10.4061/2011/368192.Google Scholar
  4. 4.
    Baxter, M.A., Wynn, R.F., Jowitt, S.N., Wraith, J.E., Fairbairn, L.J., & Bellantuono, I. (2004). Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells, 22(5), 675–82. doi: 10.1634/stemcells.22-5-675  10.1634/stemcells.22-5-675.CrossRefPubMedGoogle Scholar
  5. 5.
    Billing, A.M., Ben Hamidane, H., Dib, S.S., Cotton, R.J., Bhagwat, A.M., Kumar, P., Hayat, S., Yousri, N.A., Goswami, N., Suhre, K., Rafii, A., & Graumann, J. (2016). Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers. Scientific reports, 6(21), 507–15.Google Scholar
  6. 6.
    Bonab, M.M., Alimoghaddam, K., Talebian, F., Ghaffari, S.H., Ghavamzadeh, A., & Nikbin, B. (2006). Aging of mesenchymal stem cell in vitro. BMC Cell Biology, 7, 14. doi: 10.1186/1471-2121-7-14.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Boyd, N.L., Robbins, K.R., Dhara, S.K., West, F.D., & Stice, S.L. (2009). Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells. Tissue Engineering Part A, 15 (8), 1897–1907.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cantinieaux, D., Quertainmont, R., Blacher, S., Rossi, L., Wanet, T., Noël, A, Brook, G., Schoenen, J., & Franzen, R. (2013). Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: An original strategy to avoid cell transplantation. PLoS ONE, 8 (8), e69,515.CrossRefGoogle Scholar
  9. 9.
    Chen, T.S., Arslan, F., Yin, Y., Tan, S.S., Lai, R.C., Choo, A.B.H., Padmanabhan, J., Lee, C.N., de Kleijn, D.P.V., & Lim, S.K. (2011). Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. Journal of Translational Medicine, 9(1), 47.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cheng, P.P., Liu, X.C., Ma, P.F., Gao, C., Li, J.L., Lin, Y.Y., Shao, W., Han, S., Zhao, B., Wang, L.M., Fu, J.Z., Meng, L.X., Li, Q., Lian, Q.Z., Xia, J.J., & Qi, Z.Q. (2015). iPSC-MSCs combined with low-dose rapamycin induced islet allograft tolerance through suppressing Th1 and enhancing regulatory T-Cell differentiation. Stem cells and Development, 24(15), 1793–1804.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Diederichs, S., & Tuan, R.S. (2014). Functional comparison of human-induced pluripotent stem cell-derived mesenchymal cells and bone marrow-derived mesenchymal stromal cells from the same donor. Stem Cells and Development, 23(14), 1594–1610.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dodsworth, B.T., Flynn, R., & Cowley, S.A. (2015). The current state of naive human pluripotency. Stem Cells, 33(11), 3181–3186.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8(4), 315–317.CrossRefPubMedGoogle Scholar
  14. 14.
    Du, J., Wu, Y., Ai, Z., Shi, X., Chen, L., & Guo, Z. (2014). Mechanism of sb431542 in inhibiting mouse embryonic stem cell differentiation. Cell Signal, 26(10), 2107–16. doi: 10.1016/j.cellsig.2014.06.002.CrossRefPubMedGoogle Scholar
  15. 15.
    El Haddad, N., Heathcote, D., Moore, R., Yang, S., Azzi, J., Mfarrej, B., Atkinson, M., Sayegh, M.H., Lee, J.S., Ashton-Rickardt, P.G., & Abdi, R. (2011). Mesenchymal stem cells express serine protease inhibitor to evade the host immune response. Blood, 117(4), 1176–83. doi: 10.1182/blood-2010-06-287979.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Evans, M.J., & Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.CrossRefPubMedGoogle Scholar
  17. 17.
    Evseenko, D., Zhu, Y., Schenke-Layland, K., Kuo, J., Latour, B., Ge, S., Scholes, J., Dravid, G., Li, X., Maclellan, W.R., & Crooks, G.M. (2010). Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13,742–13,747.CrossRefGoogle Scholar
  18. 18.
    Ferrer, L., Kimbrel, E.A., Lam, A., Falk, E.B., Zewe, C., Juopperi, T., Lanza, R., & Hoffman, A. (2016). Treatment of perianal fistulas with human embryonic stem cell-derived mesenchymal stem cells: A canine model of human fistulizing Crohn’s disease. Regenerative Medicine, 11(1), 33–43.CrossRefPubMedGoogle Scholar
  19. 19.
    Friedenstein, A.J., Piatetzky-Shapiro, I.I., & Petrakova, K.V. (1966). Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology, 16(3), 381– 390.PubMedGoogle Scholar
  20. 20.
    Frobel, J., Hemeda, H., Lenz, M., Abagnale, G., Joussen, S., Denecke, B., Sarić, T, Zenke, M., & Wagner, W. (2014). Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Reports, 3(3), 414–422.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fu, X., Chen, Y., Xie, F.N., Dong, P., Wb, Liu, Cao, Y., Zhang, W.J., & Xiao, R. (2015). Comparison of immunological characteristics of mesenchymal stem cells derived from human embryonic stem cells and bone marrow. Tissue Engineering Part A, 21(3-4), 616–626.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Giuliani, M., Oudrhiri, N., Noman, Z.M., Vernochet, A., Chouaib, S., Azzarone, B., Durrbach, A., & Bennaceur-Griscelli, A. (2011). Human mesenchymal stem cells derived from induced pluripotent stem cells down-regulate NK-cell cytolytic machinery. Blood, 118(12), 3254–3262.CrossRefPubMedGoogle Scholar
  23. 23.
    Glennie, S., Soeiro, I., Dyson, P.J., Lam, E.W.F., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105(7), 2821–2827.CrossRefPubMedGoogle Scholar
  24. 24.
    Gonzalo-Gil, E., Pérez-Lorenzo, M J, Galindo, M., Díaz de la Guardia, R, López-Millán, B, Bueno, C., Menendez, P., Pablos, J.L., & Criado, G. (2015). Human embryonic stem cell-derived mesenchymal stromal cells ameliorate collagen-induced arthritis by inducing host-derived indoleamine 2,3 dioxygenase. Arthritis Research & Therapy, 18(1), 77.CrossRefGoogle Scholar
  25. 25.
    Hajizadeh-Saffar, E., Tahamtani, Y., Aghdami, N., Azadmanesh, K., Habibi-Anbouhi, M., Heremans, Y., De Leu, N., Heimberg, H., Ravassard, P., Shokrgozar, M.A., & Baharvand, H. (2015). Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes. Scientific Reports, 5, 9322.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Haniffa, M.A., Collin, M.P., Buckley, C.D., & Dazzi, F. (2009). Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica, 94(2), 258–63. doi: 10.3324/haematol.13699.CrossRefPubMedGoogle Scholar
  27. 27.
    Hao, Q., Zhu, Y.G., Monsel, A., Gennai, S., Lee, T., Xu, F., & Lee, J.W. (2015). Study of bone marrow and embryonic stem cell-derived human mesenchymal stem cells for treatment of escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells Translational Medicine, 4(7), 832–840.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Himeno, T., Kamiya, H., Naruse, K., Cheng, Z., Ito, S., Kondo, M., Okawa, T., Fujiya, A., Kato, J., Suzuki, H., Kito, T., Hamada, Y., Oiso, Y., Isobe, K., & Nakamura, J. (2013). Mesenchymal stem cell-like cells derived from mouse induced pluripotent stem cells ameliorate diabetic polyneuropathy in mice. BioMed Research International, 2013, 259,187.CrossRefGoogle Scholar
  29. 29.
    Hu, G., Li, Q., Niu, X., Hu, B., Liu, J., Zhou, S., Guo, S., Lang, Hl, Zhang, C., Wang, Y., & Deng, Zf (2015). Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Research & Therapy, 6, 10. doi: 10.1186/scrt546.CrossRefGoogle Scholar
  30. 30.
    Huang, K., Maruyama, T., & Fan, G. (2014). The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. Cell Stem Cell, 15(4), 410–415.CrossRefPubMedGoogle Scholar
  31. 31.
    Hwang, N.S., Varghese, S., Lee, H.J., Zhang, Z., Ye, Z., Bae, J., Cheng, L., & Elisseeff, J. (2008). In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proceedings of the National Academy of Sciences, 105(52), 20,641–20,646.CrossRefGoogle Scholar
  32. 32.
    Kalluri, R., & Weinberg, R.A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kang, L., Wang, J., Zhang, Y., Kou, Z., & Gao, S. (2009). iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell.Google Scholar
  34. 34.
    Kang, R., Zhou, Y., Tan, S., Zhou, G., Aagaard, L., Xie, L., Bünger, C, Bolund, L., & Luo, Y. (2015). Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Research & Therapy, 6, 144. doi: 10.1186/s13287-015-0137-7.CrossRefGoogle Scholar
  35. 35.
    Karlsson, C., Emanuelsson, K., Wessberg, F., Kajic, K., Axell, M.Z., Eriksson, P.S., Lindahl, A., Hyllner, J., & Strehl, R. (2009). Human embryonic stem cell-derived mesenchymal progenitors–potential in regenerative medicine. Stem Cell Research, 3(1), 39–50. doi: 10.1016/j.scr.2009.05.002.CrossRefPubMedGoogle Scholar
  36. 36.
    Kimbrel, E.A., Kouris, N.A., Yavanian, G.J., Chu, J., Qin, Y., Chan, A., Singh, R.P., McCurdy, D., Gordon, L., Levinson, R.D., & Lanza, R. (2014). Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells and Development, 23(14), 1611–1624.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E., & Ringdén, O (2003). HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology, 31 (10), 890–896.CrossRefPubMedGoogle Scholar
  38. 38.
    Li, O., Tormin, A., Sundberg, B., Hyllner, J., Le Blanc, K., & Scheding, S. (2013). Human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs) engraft in vivo and support hematopoiesis without suppressing immune function: implications for off-the shelf ES-MSC therapies. PLoS ONE, 8(1), e55,319.CrossRefGoogle Scholar
  39. 39.
    Lian, Q., Lye, E., Suan Yeo, K., Khia Way Tan, E., Salto-Tellez, M., Liu, T.M., Palanisamy, N., El Oakley, R.M., Lee, E.H., Lim, B., & Lim, S.K. (2007). Derivation of clinically compliant mscs from cd105+, cd24- differentiated human escs. Stem Cells, 25(2), 425–36. doi: 10.1634/stemcells.2006-0420.CrossRefPubMedGoogle Scholar
  40. 40.
    Luzzani, C., Neiman, G., Garate, X., Questa, M., Solari, C., Fernandez Espinosa, D., Garcia, M., Errecalde, A.L., Guberman, A., Scassa, M.E., Sevlever, G.E., Romorini, L., & Miriuka, S.G. (2015). A therapy-grade protocol for differentiation of pluripotent stem cells into mesenchymal stem cells using platelet lysate as supplement. Stem Cell Research & Therapy, 6, 6. doi: 10.1186/scrt540.CrossRefGoogle Scholar
  41. 41.
    Mahmood, A., Harkness, L., Schroder, H.D., Abdallah, B.M., & Kassem, M. (2010). Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of tgf-beta/activin/nodal signaling using sb-431542. Journal of Bone and Mineral Research, 25(6), 1216–33. doi: 10.1002/jbmr.34.CrossRefPubMedGoogle Scholar
  42. 42.
    Miao, Q., Shim, W., Tee, N., Lim, S.Y., Chung, Y.Y., Ja, K.P.M.M., Ooi, T.H., Tan, G., Kong, G., Wei, H., Lim, C.H., Sin, Y.K., & Wong, P. (2014). iPSC-derived human mesenchymal stem cells improve myocardial strain of infarcted myocardium. Journal of Cellular and Molecular Medicine, 18(8), 1644–1654.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Olivier, E.N., Rybicki, A.C., & Bouhassira, E.E. (2006). Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells, 24(8), 1914–22. doi: 10.1634/stemcells.2005-0648  10.1634/stemcells.2005-0648.CrossRefPubMedGoogle Scholar
  44. 44.
    de Peppo, G.M., & Marolt, D. (2013). Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors. Stem Cell Research & Therapy, 4(5), 106. doi: 10.1186/scrt317.Google Scholar
  45. 45.
    Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., & Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.CrossRefPubMedGoogle Scholar
  46. 46.
    Potian, J.A., Aviv, H., Ponzio, N.M., Harrison, J.S., & Rameshwar, P. (2003). Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. Journal of immunology (Baltimore Md: 1950), 171(7), 3426–3434.CrossRefGoogle Scholar
  47. 47.
    Qi, X., Zhang, J., Yuan, H., Xu, Z., Li, Q., Niu, X., Hu, B., Wang, Y., & Li, X. (2016). Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. International Journal of Biological Sciences, 12(7), 836–49. doi: 10.7150/ijbs.14809.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sanchez, L., Gutierrez-Aranda, I., Ligero, G., Rubio, R., Munoz-Lopez, M., Garcia-Perez, J.L., Ramos, V., Real, P.J., Bueno, C., Rodriguez, R., Delgado, M., & Menendez, P. (2011). Enrichment of human esc-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease. Stem Cells, 29(2), 251–62. doi: 10.1002/stem.569.CrossRefPubMedGoogle Scholar
  49. 49.
    Sethe, S., Scutt, A., & Stolzing, A. (2006). Aging of mesenchymal stem cells. Ageing Res Rev, 5(1), 91–116. doi: 10.1016/j.arr.2005.10.001.CrossRefPubMedGoogle Scholar
  50. 50.
    Stavropoulos, M.E., Mengarelli, I., & Barberi, T. (2009). Differentiation of multipotent mesenchymal precursors and skeletal myoblasts from human embryonic stem cells. Current Protocols in Stem Cell Biology Chapter 1:Unit 1F.8.Google Scholar
  51. 51.
    Stolzing, A., Jones, E., McGonagle, D., & Scutt, A. (2008). Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mechanisms of Ageing and Development, 129(3), 163–173. doi: 10.1016/j.mad.2007.12.002.CrossRefPubMedGoogle Scholar
  52. 52.
    Sun, Y.Q., Zhang, Y., Li, X., Deng, M.X., Gao, W.X., Yao, Y., Chiu, S.M., Liang, X., Gao, F., Chan, C.W., Tse, H.F., Shi, J., Fu, Q.L., & Lian, Q. (2015). Insensitivity of human iPS cells-derived mesenchymal stem cells to interferon- γ-induced HLA expression potentiates repair efficiency of hind limb ischemia in immune humanized NOD Scid Gamma Mice. Stem Cells, 33(12), 3452–3467.CrossRefPubMedGoogle Scholar
  53. 53.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.CrossRefPubMedGoogle Scholar
  54. 54.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.CrossRefPubMedGoogle Scholar
  55. 55.
    Tan, F., Qian, C., Tang, K., Abd-Allah, S.M., & Jing, N. (2015). Inhibition of transforming growth factor β (tgf- β) signaling can substitute for oct4 protein in reprogramming and maintain pluripotency. The Journal of Biological Chemistry, 290(7), 4500–11. doi: 10.1074/jbc.M114.609016.CrossRefPubMedGoogle Scholar
  56. 56.
    Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., & Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.CrossRefPubMedGoogle Scholar
  57. 57.
    Timmers, L., Lim, S.K., Arslan, F., Armstrong, J.S., Hoefer, I.E., Doevendans, P.A., Piek, J.J., El Oakley, R.M., Choo, A., Lee, C.N., Pasterkamp, G., & de Kleijn, D.P.V. (2007). Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res, 1(2), 129–137. doi: 10.1016/j.scr.2008.02.002.CrossRefPubMedGoogle Scholar
  58. 58.
    Trivedi, P., & Hematti, P. (2008). Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Experimental hematology, 36(3), 350–359.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ullmann, U., In’t Veld, P., Gilles, C., Sermon, K., De Rycke, M., Van de Velde, H., Van Steirteghem, A., & Liebaers, I. (2007). Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Molecular human reproduction, 13(1), 21–32.CrossRefPubMedGoogle Scholar
  60. 60.
    Wang, S., Qu, X., & Zhao, R.C. (2012). Clinical applications of mesenchymal stem cells. Journal of hematology & oncology, 5, 19.CrossRefGoogle Scholar
  61. 61.
    Wang, X., Kimbrel, E.A., Ijichi, K., Paul, D., Lazorchak, A.S., Chu, J., Kouris, N.A., Yavanian, G.J., Lu, S.J., Pachter, J.S., Crocker, S.J., Lanza, R., & Xu, R.H. (2014). Human ESC-Derived MSCs Outperform Bone Marrow MSCs in the Treatment of an EAE Model of Multiple Sclerosis. Stem cell reports, 3(1), 115–130.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Wu, R., Gu, B., Zhao, X., Tan, Z., Chen, L., Zhu, J., & Zhang, M. (2013). Derivation of multipotent nestin(+)/CD271 (-)/STRO-1 (-) mesenchymal-like precursors from human embryonic stem cells in chemically defined conditions. Human cell, 26(1), 19–27.CrossRefPubMedGoogle Scholar
  63. 63.
    Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P., Gold, J.D., & Carpenter, M.K. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 19(10), 971–974.CrossRefPubMedGoogle Scholar
  64. 64.
    Xu, C., Jiang, J., Sottile, V., McWhir, J., Lebkowski, J., & Carpenter, M.K. (2004). Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells, 22 (6), 972–980.CrossRefPubMedGoogle Scholar
  65. 65.
    Yeo, R.W.Y., Lai, R.C., Zhang, B., Tan, S.S., Yin, Y., Teh, B.J., & Lim, S.K. (2013). Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Advanced drug delivery reviews, 65(3), 336–341.CrossRefPubMedGoogle Scholar
  66. 66.
    Zhang, J., Guan, J., Niu, X., Hu, G., Guo, S., Li, Q., Xie, Z., Zhang, C., & Wang, Y. (2015a). Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. Journal of Translational Medicine, 13, 49.Google Scholar
  67. 67.
    Zhang, Y., Liao, S., Yang, M., Liang, X., Poon, M.W., Wong, C.Y., Wang, J., Zhou, Z., Cheong, S.K., Lee, C.N., Tse, H.F., & Lian, Q. (2012). Improved cell survival and paracrine capacity of human embryonic stem cell-derived mesenchymal stem cells promote therapeutic potential for pulmonary arterial hypertension. Cell Transplantation, 21(10), 2225–2239.CrossRefPubMedGoogle Scholar
  68. 68.
    Zhang, Y., Liang, X., Liao, S., Wang, W., Wang, J., Li, X., Ding, Y., Liang, Y., Gao, F., Yang, M., Fu, Q., Xu, A., Chai, Y.H., He, J., Tse, H.F., & Lian, Q. (2015b). Potent Paracrine Effects of human induced Pluripotent Stem Cell-derived Mesenchymal Stem Cells Attenuate Doxorubicin-induced Cardiomyopathy. Scientific reports 5:11, 235.Google Scholar
  69. 69.
    Zhou, S., Greenberger, J.S., Epperly, M.W., Goff, J.P., Adler, C., Leboff, M.S., & Glowacki, J. (2008). Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell, 7(3), 335–343. doi: 10.1111/j.1474-9726.2008.00377.x.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.LIAN-CONICET - FLENIBuenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations