Stem Cell Reviews and Reports

, Volume 12, Issue 6, pp 621–633 | Cite as

The Role of Autophagy in the Maintenance of Stemness and Differentiation of Mesenchymal Stem Cells

  • Francesca Vittoria Sbrana
  • Margherita Cortini
  • Sofia Avnet
  • Francesca Perut
  • Marta Columbaro
  • Angelo De Milito
  • Nicola Baldini
Article

Abstract

Regulated self-consumption, also known as autophagy, is an evolutionary conserved process that degrades cellular components by directing them to the lysosomal compartment of eukaryotic cells. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining and remodeling cellular homeostasis during normal cellular and tissue development. Recent studies have demonstrated that autophagy is necessary for the maintenance of cellular stemness and for a number of differentiation processes, including the lineage determination of mesenchymal stem cells. These are multipotent progenitor cells with self-renewal capacities that can give rise to a subset of tissues and thus hold a consistent potential in regenerative medicine. Here, we review the current literature on the complex liaison between autophagy induced by various extra- or intracellular stimuli and the molecular targets that affect mesenchymal stem cells proliferation and differentiation.

Keywords

Mesenchymal stem cell Autophagy Stemness Differentiation Hypoxia Acidity Senescence 

Notes

Acknowledgments

Financial support by the Italian Ministry of the Health, Financial Support for Scientific Research “5 per mille 2012” (to NB and to Marta Columbaro), by the Regione Emilia Romagna, Programma di Ricerca Regione-Università 2010-2012– Strategic Programme ‘Regenerative medicine of cartilage and bone’ (to NB).

Compliance with Ethical Standards

Conflict of Interest

The authors declare NO potential conflict of interest.

References

  1. 1.
    Li, W. W., Li, J., & Bao, J. K. (2012). Microautophagy: lesser-known self-eating. Cellular and Molecular Life Sciences, 69, 1125–1136.PubMedCrossRefGoogle Scholar
  2. 2.
    Kaushik, S., & Cuervo, A. M. (2012). Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends in Cell Biology, 22, 407–417.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Mehrpour, M., Esclatine, A., Beau, I., & Codogno, P. (2010). Overview of macroautophagy regulation in mammalian cells. Cell Research, 20, 748–762.PubMedCrossRefGoogle Scholar
  4. 4.
    Mizushima, N., & Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell, 147, 728–741.PubMedCrossRefGoogle Scholar
  5. 5.
    Kroemer, G., Marino, G., & Levine, B. (2010). Autophagy and the integrated stress response. Molecular Cell, 40, 280–293.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Stolz, A., Ernst, A., & Dikic, I. (2014). Cargo recognition and trafficking in selective autophagy. Nature Cell Biology, 16, 495–501.PubMedCrossRefGoogle Scholar
  7. 7.
    Lippai, M., & Low, P. (2014). The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. BioMed Research International, 2014, 832704.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Sridhar, S., Botbol, Y., Macian, F., & Cuervo, A. M. (2012). Autophagy and disease: always two sides to a problem. Journal of Pathology, 226, 255–273.PubMedCrossRefGoogle Scholar
  9. 9.
    Lamb, C. A., Yoshimori, T., & Tooze, S. A. (2013). The autophagosome: origins unknown, biogenesis complex. Nature Reviews Molecular Cell Biology, 14, 759–774.PubMedCrossRefGoogle Scholar
  10. 10.
    Aplin, A., Jasionowski, T., Tuttle, D. L., Lenk, S. E., & Dunn, W. A., Jr. (1992). Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. Journal of Cellular Physiology, 152, 458–466.PubMedCrossRefGoogle Scholar
  11. 11.
    Rabinowitz, J. D., & White, E. (2010). Autophagy and metabolism. Science, 330, 1344–1348.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kim, J., Kundu, M., Viollet, B., & Guan, K. L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 13, 132–141.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Egan, D. F., Shackelford, D. B., Mihaylova, M. M., Gelino, S., Kohnz, R. A., Mair, W., et al. (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 331, 456–461.PubMedCrossRefGoogle Scholar
  14. 14.
    Funderburk, S. F., Wang, Q. J., & Yue, Z. (2010). The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends in Cell Biology, 20, 355–362.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6, 230–247.PubMedCrossRefGoogle Scholar
  16. 16.
    Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9, 641–650.PubMedCrossRefGoogle Scholar
  17. 17.
    Strioga, M., Viswanathan, S., Darinskas, A., Slaby, O., & Michalek, J. (2012). Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells and Development, 21, 2724–2752.PubMedCrossRefGoogle Scholar
  18. 18.
    Baglio, S. R., Rooijers, K., Koppers-Lalic, D., Verweij, F. J., Perez Lanzon, M., Zini, N., et al. (2015). Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Research & Therapy, 6, 127.CrossRefGoogle Scholar
  19. 19.
    Izadpanah, R., Trygg, C., Patel, B., Kriedt, C., Dufour, J., Gimble, J. M., et al. (2006). Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. Journal of Cellular Biochemistry, 99, 1285–1297.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    De Toni, F., Poglio, S., Youcef, A. B., Cousin, B., Pflumio, F., Bourin, P., et al. (2011). Human adipose-derived stromal cells efficiently support hematopoiesis in vitro and in vivo: a key step for therapeutic studies. Stem Cells and Development, 20, 2127–2138.PubMedCrossRefGoogle Scholar
  21. 21.
    Mosna, F., Sensebe, L., & Krampera, M. (2010). Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells and Development, 19, 1449–1470.PubMedCrossRefGoogle Scholar
  22. 22.
    Caplan, A. I. (2009). New era of cell-based orthopedic therapies. Tissue Engineering. Part B, Reviews, 15, 195–200.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Stoltz, J. F., Bensoussan, D., Zhang, L., Decot, V., De Isla, N., Li, Y. P., et al. (2015). Stem cells and applications: a survey. Biomedical Materials and Engineering, 25, 3–26.PubMedGoogle Scholar
  24. 24.
    Stoltz, J. F., de Isla, N., Li, Y. P., Bensoussan, D., Zhang, L., Huselstein, C., et al. (2015). Stem cells and regenerative medicine: myth or reality of the 21th century. Stem Cells International, 2015, 734731.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98, 1076–1084.PubMedCrossRefGoogle Scholar
  26. 26.
    Yi, T., & Song, S. U. (2012). Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Archives of Pharmacal Research, 35, 213–221.PubMedCrossRefGoogle Scholar
  27. 27.
    Salemi, S., Yousefi, S., Constantinescu, M. A., Fey, M. F., & Simon, H. U. (2012). Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Research, 22, 432–435.PubMedCrossRefGoogle Scholar
  28. 28.
    Oliver, L., Hue, E., Priault, M., & Vallette, F. M. (2012). Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells. Stem Cells and Development, 21, 2779–2788.PubMedCrossRefGoogle Scholar
  29. 29.
    Molaei, S., Roudkenar, M. H., Amiri, F., Harati, M. D., Bahadori, M., Jaleh, F., et al. (2015). Down-regulation of the autophagy gene, ATG7, protects bone marrow-derived mesenchymal stem cells from stressful conditions. Blood Research, 50, 80–86.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kojima, H., Kim, J., & Chan, L. (2014). Emerging roles of hematopoietic cells in the pathobiology of diabetic complications. Trends in Endocrinology and Metabolism, 25, 178–187.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Zhao, K., Hao, H., Liu, J., Tong, C., Cheng, Y., Xie, Z., et al. (2015). Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced beta-cell injury through modulation of autophagy. Cell Death & Disease, 6, e1885.CrossRefGoogle Scholar
  32. 32.
    Han, Y. F., Sun, T. J., Han, Y. Q., Xu, G., Liu, J., & Tao, R. (2015). Clinical perspectives on mesenchymal stem cells promoting wound healing in diabetes mellitus patients by inducing autophagy. European Review for Medical and Pharmacological Sciences, 19, 2666–2670.PubMedGoogle Scholar
  33. 33.
    Chang, T. C., Hsu, M. F., & Wu, K. K. (2015). High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy. PLoS One, 10, e0126537.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., et al. (2008). Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One, 3, e2213.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Zheng, Y., Hu, C. J., Zhuo, R. H., Lei, Y. S., Han, N. N., & He, L. (2014). Inhibition of autophagy alleviates the senescent state of rat mesenchymal stem cells during long-term culture. Molecular Medicine Reports, 10, 3003–3008.PubMedGoogle Scholar
  36. 36.
    Capasso, S., Alessio, N., Squillaro, T., Di Bernardo, G., Melone, M. A., Cipollaro, M., et al. (2015). Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells. Oncotarget, 6, 39457–39468.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Rubinsztein, D. C., Marino, G., & Kroemer, G. (2011). Autophagy and aging. Cell, 146, 682–695.PubMedCrossRefGoogle Scholar
  38. 38.
    Young, A. R., Narita, M., Ferreira, M., Kirschner, K., Sadaie, M., Darot, J. F., et al. (2009). Autophagy mediates the mitotic senescence transition. Genes and Development, 23, 798–803.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Maiuri, M. C., Zalckvar, E., Kimchi, A., & Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 8, 741–752.PubMedCrossRefGoogle Scholar
  40. 40.
    Armesilla-Diaz, A., Elvira, G., & Silva, A. (2009). p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells. Experimental Cell Research, 315, 3598–3610.PubMedCrossRefGoogle Scholar
  41. 41.
    Zheng, Y., Lei, Y., Hu, C., & Hu, C. (2016). p53 regulates autophagic activity in senescent rat mesenchymal stromal cells. Experimental Gerontology, 75, 64–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Vicencio, J. M., Galluzzi, L., Tajeddine, N., Ortiz, C., Criollo, A., Tasdemir, E., et al. (2008). Senescence, apoptosis or autophagy? When a damaged cell must decide its path—A mini-review. Gerontology, 54, 92–99.PubMedCrossRefGoogle Scholar
  43. 43.
    Sena, L. A., & Chandel, N. S. (2012). Physiological roles of mitochondrial reactive oxygen species. Molecular Cell, 48, 158–167.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Pan, H., Cai, N., Li, M., Liu, G. H., & Izpisua Belmonte, J. C. (2013). Autophagic control of cell ‘stemness’. EMBO Molecular Medicine, 5, 327–331.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hou, J., Han, Z. P., Jing, Y. Y., Yang, X., Zhang, S. S., Sun, K., et al. (2013). Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death & Disease, 4, e844.CrossRefGoogle Scholar
  46. 46.
    Liu, G. Y., Jiang, X. X., Zhu, X., He, W. Y., Kuang, Y. L., Ren, K., et al. (2015). ROS activates JNK-mediated autophagy to counteract apoptosis in mouse mesenchymal stem cells in vitro. Acta Pharmacologica Sinica, 36, 1473–1479.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Sacchetti, B., Funari, A., Michienzi, S., Di Cesare, S., Piersanti, S., Saggio, I., et al. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131, 324–336.PubMedCrossRefGoogle Scholar
  48. 48.
    Semenza, G. L. (2012). Hypoxia-inducible factors in physiology and medicine. Cell, 148, 399–408.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Taylor, C. T. (2008). Mitochondria and cellular oxygen sensing in the HIF pathway. Biochemical Journal, 409, 19–26.PubMedCrossRefGoogle Scholar
  50. 50.
    Wu, J., Niu, J., Li, X., Li, Y., Wang, X., Lin, J., et al. (2014). Hypoxia induces autophagy of bone marrow-derived mesenchymal stem cells via activation of ERK1/2. Cellular Physiology and Biochemistry, 33, 1467–1474.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang, Z., Yang, M., Wang, Y., Wang, L., Jin, Z., Ding, L., et al. (2016). Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway. Cell Biology International, 40, 671–685.PubMedCrossRefGoogle Scholar
  52. 52.
    Li, N., Zhang, Q., Qian, H., Jin, C., Yang, Y., & Gao, R. (2014). Atorvastatin induces autophagy of mesenchymal stem cells under hypoxia and serum deprivation conditions by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Chinese Medical Journal, 127, 1046–1051.PubMedGoogle Scholar
  53. 53.
    Zhang, Q., Yang, Y. J., Wang, H., Dong, Q. T., Wang, T. J., Qian, H. Y., et al. (2012). Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells and Development, 21, 1321–1332.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Li, L., Li, L., Zhang, Z., & Jiang, Z. (2015). Hypoxia promotes bone marrow-derived mesenchymal stem cell proliferation through apelin/APJ/autophagy pathway. Acta Biochimica et Biophysica Sinica Shanghai, 47, 362–367.CrossRefGoogle Scholar
  55. 55.
    Dong, W., Zhang, P., Fu, Y., Ge, J., Cheng, J., Yuan, H., et al. (2015). Roles of SATB2 in site-specific stemness, autophagy and senescence of bone marrow mesenchymal stem cells. Journal of Cellular Physiology, 230, 680–690.PubMedCrossRefGoogle Scholar
  56. 56.
    Gerweck, L. E., & Seetharaman, K. (1996). Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Research, 56, 1194–1198.PubMedGoogle Scholar
  57. 57.
    Garibotto, G., Russo, R., Sofia, A., Sala, M. R., Sabatino, C., Moscatelli, P., et al. (1996). Muscle protein turnover in chronic renal failure patients with metabolic acidosis or normal acid–base balance. Mineral and Electrolyte Metabolism, 22, 58–61.PubMedGoogle Scholar
  58. 58.
    Dominguez-Bendala, J., Lanzoni, G., Inverardi, L., & Ricordi, C. (2012). Concise review: mesenchymal stem cells for diabetes. Stem Cells Translational Medicine, 1, 59–63.PubMedCrossRefGoogle Scholar
  59. 59.
    Liu, X., Xu, Y., Chen, S., Tan, Z., Xiong, K., Li, Y., et al. (2014). Rescue of proinflammatory cytokine-inhibited chondrogenesis by the antiarthritic effect of melatonin in synovium mesenchymal stem cells via suppression of reactive oxygen species and matrix metalloproteinases. Free Radical Biology and Medicine, 68, 234–246.PubMedCrossRefGoogle Scholar
  60. 60.
    Lardner, A. (2001). The effects of extracellular pH on immune function. Journal of Leukocyte Biology, 69, 522–530.PubMedGoogle Scholar
  61. 61.
    Lamonte, G., Tang, X., Chen, J. L., Wu, J., Ding, C. K., Keenan, M. M., et al. (2013). Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metabolism, 1, 23.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Chano, T., Avnet, S., Kusuzaki, K., Bonuccelli, G., Sonveaux, P., Rotili, D., et al. (2016). Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells. American Journal of Cancer Research, 6, 859–875.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Parolini, I., Federici, C., Raggi, C., Lugini, L., Palleschi, S., De Milito, A., et al. (2009). Microenvironmental pH is a key factor for exosome traffic in tumor cells. Journal of Biological Chemistry, 284, 34211–34222.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Schoolwerth, A. C., Kaneko, T. M., Sedlacek, M., Block, C. A., & Remillard, B. D. (2006). Acid-base disturbances in the intensive care unit: metabolic acidosis. Seminars in Dialysis, 19, 492–495.PubMedCrossRefGoogle Scholar
  65. 65.
    Spugnini, E. P., Sonveaux, P., Stock, C., Perez-Sayans, M., De Milito, A., Avnet, S., et al. (2015). Proton channels and exchangers in cancer. Biochimica et Biophysica Acta, 1848, 2715–2726.PubMedCrossRefGoogle Scholar
  66. 66.
    Avnet, S., Di Pompo, G., Lemma, S., Salerno, M., Perut, F., Bonuccelli, G., et al. (2013). V-ATPase is a candidate therapeutic target for Ewing sarcoma. Biochimica et Biophysica Acta, 1832, 1105–1116.PubMedCrossRefGoogle Scholar
  67. 67.
    Warburg, O. (1956). On the origin of cancer cells. Science, 123, 309–314.PubMedCrossRefGoogle Scholar
  68. 68.
    Gillies, R. J., Robey, I., & Gatenby, R. A. (2008). Causes and consequences of increased glucose metabolism of cancers. Journal of Nuclear Medicine, 49(Suppl 2), 24S–42S.PubMedCrossRefGoogle Scholar
  69. 69.
    Wojtkowiak, J. W., Rothberg, J. M., Kumar, V., Schramm, K. J., Haller, E., Proemsey, J. B., et al. (2012). Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Research, 72, 3938–3947.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Marino, M. L., Pellegrini, P., Di Lernia, G., Djavaheri-Mergny, M., Brnjic, S., Zhang, X., et al. (2012). Autophagy is a protective mechanism for human melanoma cells under acidic stress. Journal of Biological Chemistry, 287, 30664–30676.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hjelmeland, A. B., Wu, Q., Heddleston, J. M., Choudhary, G. S., MacSwords, J., Lathia, J. D., et al. (2011). Acidic stress promotes a glioma stem cell phenotype. Cell Death and Differentiation, 18, 829–840.PubMedCrossRefGoogle Scholar
  72. 72.
    Salerno, M., Avnet, S., Bonuccelli, G., Hosogi, S., Granchi, D., & Baldini, N. (2014). Impairment of lysosomal activity as a therapeutic modality targeting cancer stem cells of embryonal rhabdomyosarcoma cell line RD. PLoS One, 9, e110340.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Disthabanchong, S., Radinahamed, P., Stitchantrakul, W., Hongeng, S., & Rajatanavin, R. (2007). Chronic metabolic acidosis alters osteoblast differentiation from human mesenchymal stem cells. Kidney International, 71, 201–209.PubMedCrossRefGoogle Scholar
  74. 74.
    Xiang, X., Zhao, J., Xu, G., Li, Y., & Zhang, W. (2011). mTOR and the differentiation of mesenchymal stem cells. Acta Biochimica et Biophysica Sinica Shanghai, 43, 501–510.CrossRefGoogle Scholar
  75. 75.
    Lee, K. W., Yook, J. Y., Son, M. Y., Kim, M. J., Koo, D. B., Han, Y. M., et al. (2010). Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway. Stem Cells and Development, 19, 557–568.PubMedCrossRefGoogle Scholar
  76. 76.
    Pantovic, A., Krstic, A., Janjetovic, K., Kocic, J., Harhaji-Trajkovic, L., Bugarski, D., et al. (2013). Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone, 52, 524–531.PubMedCrossRefGoogle Scholar
  77. 77.
    Singha, U. K., Jiang, Y., Yu, S., Luo, M., Lu, Y., Zhang, J., et al. (2008). Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells. Journal of Cellular Biochemistry, 103, 434–446.PubMedCrossRefGoogle Scholar
  78. 78.
    Mohyeldin, A., Garzon-Muvdi, T., & Quinones-Hinojosa, A. (2010). Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell, 7, 150–161.PubMedCrossRefGoogle Scholar
  79. 79.
    Eom, Y. W., Oh, J. E., Lee, J. I., Baik, S. K., Rhee, K. J., Shin, H. C., et al. (2014). The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 445, 16–22.PubMedCrossRefGoogle Scholar
  80. 80.
    Sordella, R., Jiang, W., Chen, G. C., Curto, M., & Settleman, J. (2003). Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell, 113, 147–158.PubMedCrossRefGoogle Scholar
  81. 81.
    Nuschke, A., Rodrigues, M., Stolz, D. B., Chu, C. T., Griffith, L., & Wells, A. (2014). Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation. Stem Cell Research & Therapy, 5, 140.CrossRefGoogle Scholar
  82. 82.
    Isomoto, S., Hattori, K., Ohgushi, H., Nakajima, H., Tanaka, Y., & Takakura, Y. (2007). Rapamycin as an inhibitor of osteogenic differentiation in bone marrow-derived mesenchymal stem cells. Journal of Orthopaedic Science, 12, 83–88.PubMedCrossRefGoogle Scholar
  83. 83.
    Guan, J. L., Simon, A. K., Prescott, M., Menendez, J. A., Liu, F., Wang, F., et al. (2013). Autophagy in stem cells. Autophagy, 9, 830–849.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Tsukamoto, S., Kuma, A., Murakami, M., Kishi, C., Yamamoto, A., & Mizushima, N. (2008). Autophagy is essential for preimplantation development of mouse embryos. Science, 321, 117–120.PubMedCrossRefGoogle Scholar
  85. 85.
    Cho, Y. H., Han, K. M., Kim, D., Lee, J., Lee, S. H., Choi, K. W., et al. (2014). Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. Stem Cells, 32, 424–435.PubMedCrossRefGoogle Scholar
  86. 86.
    Tra, T., Gong, L., Kao, L. P., Li, X. L., Grandela, C., Devenish, R. J., et al. (2011). Autophagy in human embryonic stem cells. PLoS One, 6, e27485.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mortensen, M., Soilleux, E. J., Djordjevic, G., Tripp, R., Lutteropp, M., Sadighi-Akha, E., et al. (2011). The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. Journal of Experimental Medicine, 208, 455–467.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Mortensen, M., Watson, A. S., & Simon, A. K. (2011). Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation. Autophagy, 7, 1069–1070.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Warr, M. R., Binnewies, M., Flach, J., Reynaud, D., Garg, T., Malhotra, R., et al. (2013). FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature, 494, 323–327.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Sousa-Victor, P., Garcia-Prat, L., Serrano, A. L., Perdiguero, E., & Munoz-Canoves, P. (2015). Muscle stem cell aging: regulation and rejuvenation. Trends in Endocrinology and Metabolism, 26, 287–296.PubMedCrossRefGoogle Scholar
  91. 91.
    Garcia-Prat, L., Munoz-Canoves, P., & Martinez-Vicente, M. (2016). Dysfunctional autophagy is a driver of muscle stem cell functional decline with aging. Autophagy, 12, 612–613.PubMedCrossRefGoogle Scholar
  92. 92.
    Garcia-Prat, L., Martinez-Vicente, M., Perdiguero, E., Ortet, L., Rodriguez-Ubreva, J., Rebollo, E., et al. (2016). Autophagy maintains stemness by preventing senescence. Nature, 529, 37–42.PubMedCrossRefGoogle Scholar
  93. 93.
    Tang, A. H., & Rando, T. A. (2014). Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO Journal, 33, 2782–2797.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Espina, V., Mariani, B. D., Gallagher, R. I., Tran, K., Banks, S., Wiedemann, J., et al. (2010). Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS One, 5, e10240.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Espina, V., & Liotta, L. A. (2011). What is the malignant nature of human ductal carcinoma in situ? Nature Reviews Cancer, 11, 68–75.PubMedCrossRefGoogle Scholar
  96. 96.
    Cufi, S., Vazquez-Martin, A., Oliveras-Ferraros, C., Martin-Castillo, B., Vellon, L., & Menendez, J. A. (2011). Autophagy positively regulates the CD44(+) CD24(−/low) breast cancer stem-like phenotype. Cell Cycle, 10, 3871–3885.PubMedCrossRefGoogle Scholar
  97. 97.
    Gong, C., Bauvy, C., Tonelli, G., Yue, W., Delomenie, C., Nicolas, V., et al. (2013). Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene, 32, 2261–2272.PubMedCrossRefGoogle Scholar
  98. 98.
    Yue, W., Hamai, A., Tonelli, G., Bauvy, C., Nicolas, V., Tharinger, H., et al. (2013). Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy, 9, 714–729.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., et al. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138, 645–659.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Maycotte, P., Jones, K. L., Goodall, M. L., Thorburn, J., & Thorburn, A. (2015). Autophagy supports breast cancer stem cell maintenance by regulating IL6 secretion. Molecular Cancer Research, 13, 651–658.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Yeo, S. K., Wen, J., Chen, S., & Guan, J. L. (2016). Autophagy differentially regulates distinct breast cancer stem-like cells in murine models via EGFR/Stat3 and Tgfbeta/Smad signaling. Cancer Research, 76, 3397–3410.PubMedCrossRefGoogle Scholar
  102. 102.
    Rausch, V., Liu, L., Apel, A., Rettig, T., Gladkich, J., Labsch, S., et al. (2012). Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. Journal of Pathology, 227, 325–335.PubMedCrossRefGoogle Scholar
  103. 103.
    Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Lujambio, A., & Lowe, S. W. (2012). The microcosmos of cancer. Nature, 482, 347–355.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Xu, J., Wang, Y., Tan, X., & Jing, H. (2012). MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis. Autophagy, 8, 873–882.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Zhu, H., Wu, H., Liu, X., Li, B., Chen, Y., Ren, X., et al. (2009). Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy, 5, 816–823.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Korkmaz, G., le Sage, C., Tekirdag, K. A., Agami, R., & Gozuacik, D. (2012). miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy, 8, 165–176.PubMedCrossRefGoogle Scholar
  108. 108.
    Huang, Y., Guerrero-Preston, R., & Ratovitski, E. A. (2012). Phospho-DeltaNp63alpha-dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle, 11, 1247–1259.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Xiao, J., Zhu, X., He, B., Zhang, Y., Kang, B., Wang, Z., et al. (2011). MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. Journal of Biomedical Science, 18, 35.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Mikhaylova, O., Stratton, Y., Hall, D., Kellner, E., Ehmer, B., Drew, A. F., et al. (2012). VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell, 21, 532–546.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kovaleva, V., Mora, R., Park, Y. J., Plass, C., Chiramel, A. I., Bartenschlager, R., et al. (2012). miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells. Cancer Research, 72, 1763–1772.PubMedCrossRefGoogle Scholar
  112. 112.
    Yang, J., Chen, D., He, Y., Melendez, A., Feng, Z., Hong, Q., et al. (2013). MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age (Dordrecht, Netherlands), 35, 11–22.CrossRefGoogle Scholar
  113. 113.
    Jegga, A. G., Schneider, L., Ouyang, X., & Zhang, J. (2011). Systems biology of the autophagy-lysosomal pathway. Autophagy, 7, 477–489.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Fader, C. M., Sanchez, D. G., Mestre, M. B., & Colombo, M. I. (2009). TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochimica et Biophysica Acta, 1793, 1901–1916.PubMedCrossRefGoogle Scholar
  115. 115.
    Maiese, K. (2015). MicroRNAs and SIRT1: a strategy for stem cell renewal and clinical development? Journal Translational Science, 1, 55–57.Google Scholar
  116. 116.
    Zhai, H., Fesler, A., Ba, Y., Wu, S., & Ju, J. (2015). Inhibition of colorectal cancer stem cell survival and invasive potential by hsa-miR-140-5p mediated suppression of Smad2 and autophagy. Oncotarget, 6, 19735–19746.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Morgado, A. L., Xavier, J. M., Dionisio, P. A., Ribeiro, M. F., Dias, R. B., Sebastiao, A. M., et al. (2015). MicroRNA-34a modulates neural stem cell differentiation by regulating expression of synaptic and autophagic proteins. Molecular Neurobiology, 51, 1168–1183.PubMedCrossRefGoogle Scholar
  118. 118.
    Yamamoto, A., Tagawa, Y., Yoshimori, T., Moriyama, Y., Masaki, R., & Tashiro, Y. (1998). Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Structure and Function, 23, 33–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Francesca Vittoria Sbrana
    • 1
    • 2
  • Margherita Cortini
    • 1
    • 2
  • Sofia Avnet
    • 1
  • Francesca Perut
    • 1
  • Marta Columbaro
    • 3
  • Angelo De Milito
    • 4
  • Nicola Baldini
    • 1
    • 2
  1. 1.Orthopaedic Pathophysiology and Regenerative Medicine UnitIstituto Ortopedico RizzoliBolognaItaly
  2. 2.Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
  3. 3.SC Laboratory of Musculoskeletal Cell BiologyIstituto Ortopedico RizzoliBolognaItaly
  4. 4.Department of Oncology-Pathology, Cancer Center KarolinskaKarolinska InstituteStockholmSweden

Personalised recommendations