Stem Cell Reviews and Reports

, Volume 12, Issue 6, pp 664–681 | Cite as

Hyaluronic Acid (HA) Scaffolds and Multipotent Stromal Cells (MSCs) in Regenerative Medicine

  • Elena Dai PrèEmail author
  • Giamaica Conti
  • Andrea Sbarbati


Traditional methods for tissue regeneration commonly used synthetic scaffolds to regenerate human tissues. However, they had several limitations, such as foreign body reactions and short time duration. In order to overcome these problems, scaffolds made of natural polymers are preferred. One of the most suitable and widely used materials to fabricate these scaffolds is hyaluronic acid. Hyaluronic acid is the primary component of the extracellular matrix of the human connective tissue. It is an ideal material for scaffolds used in tissue regeneration, thanks to its properties of biocompatibility, ease of chemical functionalization and degradability. In the last few years, especially from 2010, scientists have seen that the cell-based engineering of these natural scaffolds allows obtaining even better results in terms of tissue regeneration and the research started to grow in this direction. Multipotent stromal cells, also known as mesenchymal stem cells, plastic-adherent cells isolated from bone marrow and other mesenchymal tissues, with self-renew and multi-potency properties are ideal candidates for this aim. Normally, they are pre-seeded onto these scaffolds before their implantation in vivo. This review discusses the use of hyaluronic acid-based scaffolds together with multipotent stromal cells, as a very promising tool in regenerative medicine.


Hyaluronic acid Scaffolds Multipotent stromal cells Mesenchymal stem cells Tissue engineering Regenerative medicine 


Compliance with Ethical Standards


The authors indicate no potential conflicts of interest.


  1. 1.
    Dreifke, M. B., Jayasuriya, A. A., & Jayasuriya, A. C. (2015). Current wound healing procedures and potential care. Materials Science and Engineering C, 48, 651–662. doi: 10.1016/j.msec.2014.12.068.CrossRefPubMedGoogle Scholar
  2. 2.
    Docheva, D., Müller, S. A., Majewski, M., & Evans, C. H. (2015). Biologics for tendon repair. Advanced Drug Delivery Reviews, 84, 222–239. doi: 10.1016/j.addr.2014.11.015.CrossRefPubMedGoogle Scholar
  3. 3.
    Bertolai, R., Catelani, C., Aversa, A., Rossi, A., Giannini, D., & Bani, D. (2015). Bone graft and mesenchimal stem cells: clinical observations and histological analysis. Clinical cases in mineral and bone metabolism : the official journal of the Italian Society of Osteoporosis, Mineral Metabolism, and Skeletal Diseases, 12(2), 183–187. doi: 10.11138/ccmbm/2015.12.2.183.Google Scholar
  4. 4.
    Oryan, A., Alidadi, S., Moshiri, A., & Maffulli, N. (2014). Bone regenerative medicine: classic options, novel strategies, and future directions. Journal of orthopaedic surgery and research, 9(1), 18. doi: 10.1186/1749-799X-9-18.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Collins, M. N., & Birkinshaw, C. (2013). Hyaluronic acid based scaffolds for tissue engineering - A review. Carbohydrate Polymers, 92(2), 1262–1279. doi: 10.1016/j.carbpol.2012.10.028.CrossRefPubMedGoogle Scholar
  6. 6.
    Li, L., He, Z.-Y., Wei, X.-W., & Wei, Y.-Q. (2016). Recent advances of biomaterials in biotherapy. Regenerative biomaterials, 3(2), 99–105. doi: 10.1093/rb/rbw007.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hunt, N. C., & Grover, L. M. (2010). Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnology Letters, 32(6), 733–742. doi: 10.1007/s10529-010-0221-0.CrossRefPubMedGoogle Scholar
  8. 8.
    Gasperini, L., Mano, J. F., & Reis, R. L. (2014). Natural polymers for the microencapsulation of cells. Journal of the Royal Society, Interface / the Royal Society, 11(100), 20140817. doi: 10.1098/rsif.2014.0817.CrossRefGoogle Scholar
  9. 9.
    Baiguera, S., Urbani, L., & Del Gaudio, C. (2014). Tissue engineered scaffolds for an effective healing and regeneration: reviewing orthotopic studies. BioMed research international, 2014, 398069. doi: 10.1155/2014/398069.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dupont, K. M., Sharma, K., Stevens, H. Y., Boerckel, J. D., García, A. J., & Guldberg, R. E. (2010). Human stem cell delivery for treatment of large segmental bone defects. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3305–3310. doi: 10.1073/pnas.0905444107.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Burdick, J. A., & Prestwich, G. D. (2011). Hyaluronic acid hydrogels for biomedical applications. Advanced Materials, 23(12), 41–56. doi: 10.1002/adma.201003963.CrossRefGoogle Scholar
  12. 12.
    Viola, M., Vigetti, D., Karousou, E., D’Angelo, M. L., Caon, I., Moretto, P., et al. (2015). Biology and biotechnology of hyaluronan. Glycoconjugate Journal, 32(3–4), 93–103. doi: 10.1007/s10719-015-9586-6.CrossRefPubMedGoogle Scholar
  13. 13.
    Kogan, G., Šoltés, L., Stern, R., & Gemeiner, P. (2006). Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology Letters, 29(1), 17–25. doi: 10.1007/s10529-006-9219-z.CrossRefPubMedGoogle Scholar
  14. 14.
    Dicker, K. T., Gurski, L. A., Pradhan-Bhatt, S., Witt, R. L., Farach-Carson, M. C., & Jia, X. (2014). Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomaterialia, 10(4), 1558–1570. doi: 10.1016/j.actbio.2013.12.019.CrossRefPubMedGoogle Scholar
  15. 15.
    Hemshekhar, M., Thushara, R. M., Chandranayaka, S., Sherman, L. S., Kemparaju, K., & Girish, K. S. (2016). Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 86, 917–928. doi: 10.1016/j.ijbiomac.2016.02.032.CrossRefPubMedGoogle Scholar
  16. 16.
    La Manna, G., Bianchi, F., Cappuccilli, M., Cenacchi, G., Tarantino, L., Pasquinelli, G., et al. (2011). Mesenchymal stem cells in renal function recovery after acute kidney injury: use of a differentiating agent in a rat model. Cell transplantation, 20(8), 1193–1208. doi: 10.3727/096368910X543394.CrossRefPubMedGoogle Scholar
  17. 17.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., & Mosca, J. D. (1999). Marshak, D. R. (2011). Multilineage potential of adult human mesenchymal. Stem Cells, 143, 143–148. doi: 10.1126/science.284.5411.143.Google Scholar
  18. 18.
    Caplan, A. I. (2007). Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology, 213(2), 341–347. doi: 10.1002/jcp.21200.CrossRefPubMedGoogle Scholar
  19. 19.
    Richardson, S. M., Kalamegam, G., Pushparaj, P. N., Matta, C., Memic, A., Khademhosseini, A., et al. (2015). Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods, 99, 69–80. doi: 10.1016/j.ymeth.2015.09.015.CrossRefPubMedGoogle Scholar
  20. 20.
    Reitinger, S., & Lepperdinger, G. (2013). Hyaluronan, a Ready Choice to Fuel Regeneration: A Mini-Review. Gerontology, 59(1), 71–76. doi: 10.1159/000342200.CrossRefPubMedGoogle Scholar
  21. 21.
    Lapcik, L., Bohdanecky, M., Lapcik, L., & Bakos, D. (1991). Hyaluronic-Acid - Preparation, Structure, Properties, Application. Chemicke Listy, 85(3), 281–299. doi: 10.1021/cr941199z.Google Scholar
  22. 22.
    Boeriu, C. G., Springer, J., Kooy, F. K., van den Broek, L. a. M., & Eggink, G. (2013). Production Methods for Hyaluronan. International Journal of Carbohydrate Chemistry, 2013, 1–14. doi: 10.1155/2013/624967
  23. 23.
    Xu, X., Jha, A., Harrington, D. A., & Farach-Carson, M. (2012). Hyaluronic acid - based hydrogel: from a natural polysaccharide to complex networks. Soft Matter, 8(12), 3280–3294. doi: 10.1039/C2SM06463D.Hyaluronic.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rhodes, N. P. (2007). Inflammatory signals in the development of tissue-engineered soft tissue. Biomaterials, 28(34), 5131–5136. doi: 10.1016/j.biomaterials.2007.08.004.CrossRefPubMedGoogle Scholar
  25. 25.
    Kota, D. J., Prabhakara, K. S., Cox, C. S., & Olson, S. D. (2014). MSCs and hyaluronan: Sticking together for new therapeutic potential? International Journal of Biochemistry and Cell Biology, 55, 1–10. doi: 10.1016/j.biocel.2014.07.022.CrossRefPubMedGoogle Scholar
  26. 26.
    Erickson, I. E., Huang, A. H., Chung, C., Li, R. T., Burdick, J. A., & Mauck, R. L. (2009). Differential Maturation and Structure-Function Relationships in Mesenchymal Stem Cell- and Chondrocyte-Seeded Hydrogels. Tissue Engineering Part A, 15(5), 1041–1052. doi: 10.1089/ten.tea.2008.0099.CrossRefPubMedGoogle Scholar
  27. 27.
    Lam, J., Truong, N. F., & Segura, T. (2014). Design of cell-matrix interactions in hyaluronic acid hydrogel scaffolds. Acta Biomaterialia, 10(4), 1571–1580. doi: 10.1016/j.actbio.2013.07.025.CrossRefPubMedGoogle Scholar
  28. 28.
    Bianco, P. (2014). Mesenchymal” stem cells. Annual Review of Cell and Developmental Biology, 30(1), 677–704. doi: 10.1146/annurev-cellbio-100913-013132.CrossRefPubMedGoogle Scholar
  29. 29.
    Bianco, P., Robey, P. G., & Simmons, P. J. (2008). Mesenchymal Stem Cells: Revisiting History, Concepts, and Assays. Cell Stem Cell, 2(4), 313–319. doi: 10.1016/j.stem.2008.03.002.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. doi: 10.1080/14653240600855905.CrossRefPubMedGoogle Scholar
  31. 31.
    Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-gonzalez, X. R., … Verfaillie, C. M. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow, 418(July). doi: 10.1038/nature05812
  32. 32.
    Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem cells, 25(11), 2896–2902. doi: 10.1634/stemcells.2007-0637.CrossRefPubMedGoogle Scholar
  33. 33.
    Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell, 13(12), 4279–4295. doi: 10.1091/mbc.E02-02-0105.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Peroni, D., Scambi, I., Pasini, A., Lisi, V., Bifari, F., Krampera, M., et al. (2008). Stem molecular signature of adipose-derived stromal cells. Experimental Cell Research, 314(3), 603–615. doi: 10.1016/j.yexcr.2007.10.007.CrossRefPubMedGoogle Scholar
  35. 35.
    Al-Nbaheen, M., vishnubalaji, R., Ali, D., Bouslimi, A., Al-Jassir, F., Megges, M., … Aldahmash, A. (2013). Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential. Stem Cell Reviews and Reports, 9(1), 32–43. doi: 10.1007/s12015-012-9365-8
  36. 36.
    Constantin, G., Marconi, S., Rossi, B., Angiari, S., Calderan, L., Anghileri, E., et al. (2009). Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells, 27(10), 2624–2635. doi: 10.1002/stem.194.CrossRefPubMedGoogle Scholar
  37. 37.
    Weiss, M. L., & Troyer, D. L. (2006). Stem Cells in the Umbilical Cord. Stem Cell Rev, 2(2), 155–162. doi: 10.1007/s12015-006-0022-y.Stem.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Roura, S., Pujal, J.-M., Gálvez-Montón, C., & Bayes-Genis, A. (2015). The role and potential of umbilical cord blood in an era of new therapies: a review. Stem cell research & therapy, 6(1), 123. doi: 10.1186/s13287-015-0113-2.CrossRefGoogle Scholar
  39. 39.
    Sacchetti, B., Funari, A., Michienzi, S., Di Cesare, S., Piersanti, S., Saggio, I., et al. (2007). Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment. Cell, 131(2), 324–336. doi: 10.1016/j.cell.2007.08.025.CrossRefPubMedGoogle Scholar
  40. 40.
    Wakao, S., Kitada, M., Kuroda, Y., Shigemoto, T., Matsuse, D., Akashi, H., et al. (2011). Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 108(24), 9875–9880. doi: 10.1073/pnas.1100816108.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wakao, S., Kuroda, Y., Ogura, F., Shigemoto, T., & Dezawa, M. (2012). Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells. Cells, 1(4), 1045–1060. doi: 10.3390/cells1041045.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ogura, F., Wakao, S., Kuroda, Y., Tsuchiyama, K., Bagheri, M., Heneidi, S., et al. (2014). Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem cells and development, 23(7), 717–728. doi: 10.1089/scd.2013.0473.CrossRefPubMedGoogle Scholar
  43. 43.
    Rigotti, G., Marchi, A., Gali??, M., Baroni, G., Benati, D., Krampera, M., … Sbarbati, A. (2007). Clinical Treatment of Radiotherapy Tissue Damage by Lipoaspirate Transplant: A Healing Process Mediated by Adipose-Derived Adult Stem Cells. Plastic and Reconstructive Surgery, 119(5), 1409–1422. doi: 10.1097/01.prs.0000256047.47909.71
  44. 44.
    Mazzola, R. F., Cantarella, G., Torretta, S., Sbarbati, a, Lazzari, L., & Pignataro, L. (2011). Autologous fat injection to face and neck: from soft tissue augmentation to regenerative medicine. Acta otorhinolaryngologica Italica : organo ufficiale della Società italiana di otorinolaringologia e chirurgia cervico-facciale, 31(2), 59–69. Retrieved from
  45. 45.
    Girish, K. S., & Kemparaju, K. (2007). The magic glue hyaluronan and its eraser hyaluronidase: A biological overview. Life Sciences, 80(21), 1921–1943. doi: 10.1016/j.lfs.2007.02.037.CrossRefPubMedGoogle Scholar
  46. 46.
    Solis, M. A., Chen, Y.-H., Wong, T. Y., Bittencourt, V. Z., Lin, Y.-C., & Huang, L. L. H. (2012). Hyaluronan Regulates Cell Behavior: A Potential Niche Matrix for Stem Cells. Biochemistry Research International, 2012, 1–11. doi: 10.1155/2012/346972.CrossRefGoogle Scholar
  47. 47.
    Chung, C., & Burdick, J. A. (2009). Influence of 3D Hyaluronic Acid Microenvironments on Mesenchymal Stem Cell Chondrogenes. Tissue Engineering, 15(2), 243–254. doi: 10.1089/ten.tea.2008.0067.Influence.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Snyder, T. N., Madhavan, K., Intrator, M., Dregalla, R. C., & Park, D. (2014). A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. Journal of biological engineering, 8(1), 10. doi: 10.1186/1754-1611-8-10.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Erickson, I. E., Van Veen, S. C., Sengupta, S., Kestle, S. R., & Mauck, R. L. (2011). Cartilage matrix formation by bovine mesenchymal stem cells in three-dimensional culture is age-dependent. Clinical Orthopaedics and Related Research, 469(10), 2744–2753. doi: 10.1007/s11999-011-1869-z.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lisignoli, G., Cristino, S., Piacentini, A., Toneguzzi, S., Grassi, F., Cavallo, C., et al. (2005). Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Biomaterials, 26(28), 5677–5686. doi: 10.1016/j.biomaterials.2005.02.031.CrossRefPubMedGoogle Scholar
  51. 51.
    Angele, P., Müller, R., Schumann, D., Englert, C., Zellner, J., Johnstone, B., et al. (2010). Characterization of esterified hyaluronan-gelatin polymer composites suitable for chondrogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research, 91(2), 416–427. doi: 10.1002/jbm.a.32236.Characterization.Google Scholar
  52. 52.
    Meng, F., He, A., Zhang, Z., Zhang, Z., Lin, Z., Yang, Z., et al. (2014). Chondrogenic differentiation of ATDC5 and hMSCs could be induced by a novel scaffold-tricalcium phosphate-collagen-hyaluronan without any exogenous growth factors in vitro. Journal of Biomedical Materials Research - Part A, 102(8), 2725–2735. doi: 10.1002/jbm.a.34948.CrossRefPubMedGoogle Scholar
  53. 53.
    Reppel, L., Schiavi, J., Charif, N., Leger, L., Yu, H., Pinzano, A., et al. (2015). Chondrogenic induction of mesenchymal stromal/stem cells from Wharton’s jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering. Stem Cell Research & Therapy, 6(1), 260. doi: 10.1186/s13287-015-0263-2.CrossRefGoogle Scholar
  54. 54.
    Bian, L., Zhai, D. Y., Mauck, R. L., & Burdick, J. A. (2011). Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue engineering. Part A, 17(7–8), 1137–1145. doi: 10.1089/ten.tea.2010.0531.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Erickson, I. E., Kestle, S. R., Zellars, H. K., Farrell, M. J., Kim, M., Burdick, J. A., & Mauck, R. L. (2013). High Mesenchymal Stem Cell Seeding Densities in Hyaluronic Acid Hydrogels Produce Engineered Cartilage with Native Tissue Properties. Acta Biomaterialia, 8(8), 3027–3034. doi: 10.1016/j.actbio.2012.04.033.High.CrossRefGoogle Scholar
  56. 56.
    Erickson, I. E., Huang, A. H., Sengupta, S., Kestle, S., Jason, A., & Mauck, R. L. (2010). Macromer Density Influences Mesenchymal Stem Cell Chondrogenesis and Maturation in Photocrosslinked Hyaluronic Acid Hydrogels, 17(12), 1639–1648. doi: 10.1016/j.joca.2009.07.003.MACROMER.Google Scholar
  57. 57.
    Choi, J. W., Choi, B. H., Park, S. H., Pai, K. S., Li, T. Z., Min, B. H., & Park, S. R. (2013). Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel. Artificial Organs, 37(7), 648–655. doi: 10.1111/aor.12041.CrossRefPubMedGoogle Scholar
  58. 58.
    Kim, M., Erickson, I. E., Choudhury, M., Pleshko, N., & Mauck, R. L. (2012). Transient exposure to TGF-3 improves the functional chondrogenesis of MSC-laden hyaluronic acid hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 11(2), 92–101. doi: 10.1016/j.jmbbm.2012.03.006.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Sawatjui, N., Damrongrungruang, T., Leeanansaksiri, W., Jearanaikoon, P., Hongeng, S., & Limpaiboon, T. (2015). Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells. Materials Science and Engineering C, 52, 90–96. doi: 10.1016/j.msec.2015.03.043.CrossRefPubMedGoogle Scholar
  60. 60.
    Frith, J. E., Menzies, D. J., Cameron, A. R., Ghosh, P., Whitehead, D. L., Gronthos, S., et al. (2014). Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration. Biomaterials, 35(4), 1150–1162. doi: 10.1016/j.biomaterials.2013.10.056.CrossRefPubMedGoogle Scholar
  61. 61.
    Nesti, L. J., Li, W.-J. J., Shanti, R. M., Jiang, Y. J., Jackson, W., Freedman, B. A., et al. (2008). Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam. Tissue Eng Part A, 14(9), 1527–1537. doi: 10.1089/ten.tea.2008.0215.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Calderon, L., Collin, E., Velasco-Bayon, D., Murphy, M., O’Halloran, D., & Pandit, A. (2010). Type II collagen-hyaluronan hydrogel--a step towards a scaffold for intervertebral disc tissue engineering. European cells & materials, 20, 134–148.Google Scholar
  63. 63.
    Chung, J. Y., Song, M., Ha, C. W., Kim, J. A., Lee, C. H., & Park, Y. B. (2014). Comparison of articular cartilage repair with different hydrogel-human umbilical cord blood-derived mesenchymal stem cell composites in a rat model. Stem Cell Res Ther, 5(2), 39. doi: 10.1186/scrt427.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kim, Y. M., Oh, S. H., Choi, J. S., Lee, S., Ra, J. C., Lee, J. H., & Lim, J. Y. (2014). Adipose-derived stem cell-containing hyaluronic acid/alginate hydrogel improves vocal fold wound healing. Laryngoscope, 124(3), 64–72. doi: 10.1002/lary.24405.CrossRefGoogle Scholar
  65. 65.
    Yeh, H.-Y., Lin, T.-Y., Lin, C.-H., Yen, B. L., Tsai, C.-L., & Hsu, S. (2013). Neocartilage formation from mesenchymal stem cells grown in type II collagen–hyaluronan composite scaffolds. Differentiation, 86(4–5), 171–183. doi: 10.1016/j.diff.2013.11.001.CrossRefPubMedGoogle Scholar
  66. 66.
    Dai, R., Wang, Z., Samanipour, R., Koo, K., & Kim, K. (2016). ). Adipose-derived stem cells for tissue engineering and regenerative medicine applications. Stem Cells International, 2016. doi: 10.1155/2016/6737345.
  67. 67.
    Nguyen, T. B. L., & Lee, B.-T. (2014). A combination of biphasic calcium phosphate scaffold with hyaluronic acid-gelatin hydrogel as a new tool for bone regeneration. Tissue engineering. Part A, 20(13–14), 1993–2004. doi: 10.1089/ten.TEA.2013.0352.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Mathews, S., Bhonde, R., Gupta, P. K., & Totey, S. (2011). A novel tripolymer coating demonstrating the synergistic effect of chitosan, collagen type 1 and hyaluronic acid on osteogenic differentiation of human bone marrow derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 414(1), 270–276. doi: 10.1016/j.bbrc.2011.09.071.CrossRefPubMedGoogle Scholar
  69. 69.
    Hempel, U., Hintze, V., Möller, S., Schnabelrauch, M., Scharnweber, D., & Dieter, P. (2012). Artificial extracellular matrices composed of collagen i and sulfated hyaluronan with adsorbed transforming growth factor β1 promote collagen synthesis of human mesenchymal stromal cells. Acta Biomaterialia, 8(2), 659–666. doi: 10.1016/j.actbio.2011.10.026.CrossRefPubMedGoogle Scholar
  70. 70.
    Zhu, M., Lin, S., Sun, Y., Feng, Q., Li, G., & Bian, L. (2015). Hydrogels Functionalized with N-cadherin Mimetic Peptide Enhance Osteogenesis of hMSCs by Emulating the Osteogenic Niche. Biomaterials, 77, 44–52. doi: 10.1016/j.biomaterials.2015.10.072.CrossRefPubMedGoogle Scholar
  71. 71.
    Korurer, E., Kenar, H., Doger, E., & Karaoz, E. (2014). Production of a composite hyaluronic acid/gelatin blood plasma gel for hydrogel-based adipose tissue engineering applications. Journal of Biomedical Materials Research - Part A, 102(7), 2220–2229. doi: 10.1002/jbm.a.34901.CrossRefPubMedGoogle Scholar
  72. 72.
    Chang, K. H., Liao, H. T., & Chen, J. P. (2013). Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: In vitro and in vivo studies. Acta Biomaterialia, 9(11), 9012–9026. doi: 10.1016/j.actbio.2013.06.046.CrossRefPubMedGoogle Scholar
  73. 73.
    Cerqueira, M. T., da Silva, L. P., Santos, T. C., Pirraco, R. P., Correlo, V. M., Reis, R. L., & Marques, A. P. (2014). Gellan Gum-Hyaluronic Acid Spongy-like Hydrogels and Cells from Adipose Tissue Synergize Promoting Neoskin Vascularization. ACS applied materials & interfaces, 6(22), 19668–19679. doi: 10.1021/am504520j.CrossRefGoogle Scholar
  74. 74.
    Hsu, S. H., & Hsieh, P. S. (2015). Self-assembled adult adipose-derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model. Wound Repair and Regeneration, 23(1), 57–64. doi: 10.1111/wrr.12239.CrossRefPubMedGoogle Scholar
  75. 75.
    Cristino, S., Grassi, F., Toneguzzi, S., Piacentini, A., Grigolo, B., Santi, S., et al. (2005). Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11®-based prototype ligament scaffold. Journal of Biomedical Materials Research - Part A, 73(3), 275–283. doi: 10.1002/jbm.a.30261.CrossRefPubMedGoogle Scholar
  76. 76.
    Vindigni, V., Tonello, C., Lancerotto, L., Abatangelo, G., Cortivo, R., Zavan, B., & Bassetto, F. (2013). Preliminary Report of In Vitro Reconstruction of a Vascularized Tendonlike Structure. Annals of Plastic Surgery, 71(6), 664–670. doi: 10.1097/SAP.0b013e3182583e99.CrossRefPubMedGoogle Scholar
  77. 77.
    Desiderio, V., De Francesco, F., Schiraldi, C., De Rosa, A., La Gatta, A., Paino, F., et al. (2013). Human Ng2+ adipose stem cells loaded in vivo on a new crosslinked hyaluronic acid-lys scaffold fabricate a skeletal muscle tissue. Journal of Cellular Physiology, 228(8), 1762–1773. doi: 10.1002/jcp.24336.CrossRefPubMedGoogle Scholar
  78. 78.
    Fiumana, E., Pasquinelli, G., Foroni, L., Carboni, M., Bonaf??, F., Orrico, C., … Muscari, C. (2013). Localization of mesenchymal stem cells grafted with a hyaluronan-based scaffold in the infarcted heart. Journal of Surgical Research, 179(1), 1–9. doi: 10.1016/j.jss.2012.01.028
  79. 79.
    Yang, M. C., Wang, S. S., Chou, N. K., Chi, N. H., Huang, Y. Y., Chang, Y. L., et al. (2009). The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro. Biomaterials, 30(22), 3757–3765. doi: 10.1016/j.biomaterials.2009.03.057.CrossRefPubMedGoogle Scholar
  80. 80.
    Khorsandi, L., Khodadadi, A., Nejad-Dehbashi, F., & Saremy, S. (2015). Three-dimensional differentiation of adipose-derived mesenchymal stem cells into insulin-producing cells. Cell and Tissue Research, 361(3), 745–753. doi: 10.1007/s00441-015-2140-9.CrossRefPubMedGoogle Scholar
  81. 81.
    Her, G. J., Wu, H. C., Chen, M. H., Chen, M. Y., Chang, S. C., & Wang, T. W. (2013). Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages. Acta Biomaterialia, 9(2), 5170–5180. doi: 10.1016/j.actbio.2012.10.012.CrossRefPubMedGoogle Scholar
  82. 82.
    Chitrangi, S., Nair, P., & Khanna, A. (2016). Three-dimensional polymer scaffolds for enhanced differentiation of human mesenchymal stem cells to hepatocyte-like cells: a comparative study. Journal of Tissue Engineering and Regenerative Medicine, 4(7), 524–531. doi: 10.1002/term.2136.Google Scholar
  83. 83.
    Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Tian, L., Shamirzaei-Jeshvaghani, E., Dehghani, L., & Ramakrishna, S. (2015). Structural properties of scaffolds: Crucial parameters towards stem cells differentiation. World journal of stem cells, 7(4), 728–744. doi: 10.4252/wjsc.v7.i4.728.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Elena Dai Prè
    • 1
    Email author
  • Giamaica Conti
    • 1
  • Andrea Sbarbati
    • 1
  1. 1.Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly

Personalised recommendations