Advertisement

Stem Cell Reviews and Reports

, Volume 12, Issue 5, pp 530–542 | Cite as

Embryonic Intra-Aortic Clusters Undergo Myeloid Differentiation Mediated by Mesonephros-Derived CSF1 in Mouse

  • Tatsuya Sasaki
  • Yuka Tanaka
  • Kasem Kulkeaw
  • Ayako Yumine-Takai
  • Keai Sinn Tan
  • Ryuichi Nishinakamura
  • Junji Ishida
  • Akiyoshi Fukamizu
  • Daisuke SugiyamaEmail author
Article

Abstract

The aorta-gonad-mesonephros (AGM) region contains intra-aortic clusters (IACs) thought to have acquired hematopoietic stem cell (HSC) potential in vertebrate embryos. To assess extrinsic regulation of IACs in the AGM region, we employed mouse embryos harboring a Sall1-GFP reporter gene, which allows identification of mesonephros cells based on GFP expression. Analysis of AGM region tissue sections confirmed mesonephros GFP expression. Mesonephric cells sorted at E10.5 expressed mRNA encoding Csf1, a hematopoietic cytokine, and corresponding protein, based on real-time PCR and immunocytochemistry, respectively. Further analysis indicated that some IACs express the CSF1 receptor, CSF1R. Expression of Cebpa and Irf8 mRNAs was higher in CSF1R-positive IACs, whereas that of Cebpε and Gfi1 mRNAs was lower relative to CSF1R-negative IACs, suggesting that CSF1/CSF1R signaling functions in IAC myeloid differentiation by modulating expression of these transcription factors. Colony formation assays using CSF1R-positive IACs revealed increased numbers of myeloid colonies in the presence of CSF1. Analysis using an intra-cellular signaling array indicated the greatest fold increase of Cleaved Caspase-3 in AGM cells in the presence of CSF1. Immunohistochemistry revealed that Cleaved Caspase-3 is primarily expressed in IACs in the AGM region, and incubation of IACs with CSF1 up-regulated Cleaved Caspase-3. Overall, our findings suggest that CSF1 secreted from mesonephros accelerates IAC myeloid differentiation in the AGM region, possibly via Caspase-3 cleavage.

Keywords

Intra-aortic clusters Hematopoietic stem cells AGM region Mesonephros CSF1 Myeloid differentiation 

Notes

Acknowledgments

This work was supported by a Grant-in-Aid for Exploratory Research by the Project for Realization of Regenerative Medicine, of the Ministry of Education, Culture, Sports, Science and Technology; and by a Bilateral grant to promote scientific exchange between Germany and Japan from the Japan Society for the Promotion of Science. We thank Dr. Elise Lamar for critical reading of our manuscript; Ms. Chiyo Yanagi-Mizuochi for technical support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no potential conflicts of interest.

Supplementary material

12015_2016_9668_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1379 kb)

References

  1. 1.
    Cumano, A., Dieterlen-Lievre, F., & Godin, I. (1996). Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell, 86(6), 907–916.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferkowicz, M. J., & Yoder, M. C. (2005). Blood island formation: longstanding observations and modern interpretations. Experimental Hematology, 33(9), 1041–1047.PubMedCrossRefGoogle Scholar
  3. 3.
    Li, W., Johnson, S. A., Shelley, W. C., et al. (2003). Primary endothelial cells isolated from the yolk sac and Para-aortic splanchnopleura support the expansion of adult marrow stem cells in vitro. Blood, 102(13), 4345–4353.PubMedCrossRefGoogle Scholar
  4. 4.
    McGrath, K. E., & Palis, J. (2005). Hematopoiesis in the yolk sac: more than meets the eye. Experimental Hematology, 33(9), 1021–1028.PubMedCrossRefGoogle Scholar
  5. 5.
    Palis, J., Robertson, S., Kennedy, M., Wall, C., & Keller, G. (1999). Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development, 126(22), 5073–5084.PubMedGoogle Scholar
  6. 6.
    Sugiyama, D., & Tsuji, K. (2006). Definitive hematopoiesis from endothelial cells in the mouse embryo; a simple guide. Trends in Cardiovascular Medicine, 16(2), 45–49.PubMedCrossRefGoogle Scholar
  7. 7.
    Medvinsky, A., & Dzierzak, E. (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell, 86(6), 897–906.PubMedCrossRefGoogle Scholar
  8. 8.
    Kumano, K., Chiba, S., Kunisato, A., et al. (2003). Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity, 18(5), 699–711.PubMedCrossRefGoogle Scholar
  9. 9.
    Yoder, M. C., Hiatt, K., Dutt, P., Mukherjee, P., Bodine, D. M., & Orlic, D. (1997). Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity, 7(3), 335–344.PubMedCrossRefGoogle Scholar
  10. 10.
    Taoudi, S., Gonneau, C., Moore, K., et al. (2008). Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin + CD45+ pre-definitive HSCs. Cell Stem Cell, 3(1), 99–108.PubMedCrossRefGoogle Scholar
  11. 11.
    Rybtsov, S., Sobiesiak, M., Taoudi, S., et al. (2011). Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. The Journal of Experimental Medicine, 208(6), 1305–1315.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sugiyama, D., Inoue-Yokoo, T., Fraser, S. T., Kulkeaw, K., Mizuochi, C., & Horio, Y. (2011). Embryonic regulation of the mouse hematopoietic niche. The Scientific World Journal, 11, 1770–1780.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Mizuochi, C., Fraser, S. T., Biasch, K., et al. (2012). Intra-aortic clusters undergo endothelial to hematopoietic phenotypic transition during early embryogenesis. PloS One, 7(4), e35763.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    North, T., Gu, T. L., Stacy, T., et al. (1999). Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development, 126(11), 2563–2575.PubMedGoogle Scholar
  15. 15.
    Cai, Z., de Bruijn, M., Ma, X., et al. (2000). Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity, 13(4), 423–431.PubMedCrossRefGoogle Scholar
  16. 16.
    Ling, K. W., Ottersbach, K., Van Hamburg, J. P., et al. (2004). GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells. The Journal of Experimental Medicine, 200(7), 871–882.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lugus, J. J., Chung, Y. S., Mills, J. C., et al. (2007). GATA2 functions at multiple steps in hemangioblast development and differentiation. Development, 134(2), 393–405.PubMedCrossRefGoogle Scholar
  18. 18.
    Bigas, A., Guiu, J., & Gama-Norton, L. (2013). Notch and Wnt signaling in the emergence of hematopoietic stem cells. Blood Cells, Molecules, and Diseases, 51(4), 264–270.PubMedCrossRefGoogle Scholar
  19. 19.
    Desgrange, A., & Cereghini, S. (2015). Nephron patterning: lessons from Xenopus, zebrafish, and mouse studies. Cell, 4(3), 483–499.CrossRefGoogle Scholar
  20. 20.
    Takasato, M., Osafune, K., Matsumoto, Y., et al. (2004). Identification of kidney mesenchymal genes by a combination of microarray analysis and Sall1-GFP knockin mice. Mechanisms of Development, 121(6), 547–557.PubMedCrossRefGoogle Scholar
  21. 21.
    Nishinakamura, R., & Takasato, M. (2005). Essential roles of Sall1 in kidney development. Kidney International, 68(5), 1948–1950.PubMedCrossRefGoogle Scholar
  22. 22.
    Sasaki, T., Mizuochi, C., Horio, Y., et al. (2010). Regulation of hematopoietic cell clusters in the placental niche through SCF/kit signaling in embryonic mouse. Development, 137(23), 3941–3952.PubMedCrossRefGoogle Scholar
  23. 23.
    McKinney-Freeman, S. L., Naveiras, O., Yates, F., et al. (2009). Surface antigen phenotypes of hematopoietic stem cells from embryos and murine embryonic stem cells. Blood, 114(2), 268–278.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rosenbauer, F., & Tenen, D. G. (2007). Transcription factors in myeloid development: balancing differentiation with transformation. Nature Reviews Immunology, 7(2), 105–117.PubMedCrossRefGoogle Scholar
  25. 25.
    Chittenden, T., Harrington, E. A., O'Connor, R., et al. (1995). Induction of apoptosis by the Bcl-2 homologue Bak. Nature, 374(6524), 733–736.PubMedCrossRefGoogle Scholar
  26. 26.
    Oltval, Z. N., Milliman, C. L., & Korsmeyer, S. J. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell, 74(4), 609–619.CrossRefGoogle Scholar
  27. 27.
    Bae, J., Leo, C. P., Hsu, S. Y., & Hsueh, A. J. (2000). MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. Journal of Biological Chemistry, 275(33), 25255–25261.PubMedCrossRefGoogle Scholar
  28. 28.
    Yang, J., Liu, X., Bhalla, K., et al. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science, 275(5303), 1129–1132.PubMedCrossRefGoogle Scholar
  29. 29.
    Robin, C., Ottersbach, K., Durand, C., et al. (2006). An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Developmental Cell, 11(2), 171–180.PubMedCrossRefGoogle Scholar
  30. 30.
    Petit-Cocault, L., Volle-Challier, C., Fleury, M., Péault, B., & Souyri, M. (2007). Dual role of Mpl receptor during the establishment of definitive hematopoiesis. Development, 134(16), 3031–3040.PubMedCrossRefGoogle Scholar
  31. 31.
    Huang, X., Sakamoto, H., & Ogawa, M. (2009). Thrombopoietin controls proliferation of embryonic multipotent hematopoietic progenitors. Genes to Cells, 14(7), 851–860.PubMedCrossRefGoogle Scholar
  32. 32.
    Crisan, M., Kartalaei, P. S., Vink, C., et al. (2015). BMP signalling differentially regulates distinct haematopoietic stem cell types. Nature Communications. doi: 10.1038/ncomms9040.PubMedCentralGoogle Scholar
  33. 33.
    Robert-Moreno, À., Espinosa, L., de la Pompa, J. L., & Bigas, A. (2005). RBPjκ-dependent notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development, 132(5), 1117–1126.PubMedCrossRefGoogle Scholar
  34. 34.
    Robert-Moreno, À., Guiu, J., Ruiz-Herguido, C., et al. (2008). Impaired embryonic haematopoiesis yet normal arterial development in the absence of the notch ligand Jagged1. The EMBO Journal, 27(13), 1886–1895.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Durand, C., Robin, C., Bollerot, K., Baron, M. H., Ottersbach, K., & Dzierzak, E. (2007). Embryonic stromal clones reveal developmental regulators of definitive hematopoietic stem cells. Proceedings of the National Academy of Sciences, 104(52), 20838–20843.CrossRefGoogle Scholar
  36. 36.
    Peeters, M., Ottersbach, K., Bollerot, K., et al. (2009). Ventral embryonic tissues and hedgehog proteins induce early AGM hematopoietic stem cell development. Development, 136(15), 2613–2621.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Godin, I., Garcia-Porrero, J. A., Dieterlen-Lièvre, F., & Cumano, A. (1999). Stem cell emergence and hemopoietic activity are incompatible in mouse intraembryonic sites. The Journal of Experimental Medicine, 190(1), 43–52.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Guilbert, L. J., & Stanley, E. R. (1986). The interaction of 125I-colony-stimulating factor-1 with bone marrow-derived macrophages. Journal of Biological Chemistry, 261(9), 4024–4032.PubMedGoogle Scholar
  39. 39.
    Yeung, Y. G., Jubinsky, P. T., Sengupta, A., Yeung, D., & Stanley, E. R. (1987). Purification of the colony-stimulating factor 1 receptor and demonstration of its tyrosine kinase activity. Proceedings of the National Academy of Sciences, 84(5), 1268–1271.CrossRefGoogle Scholar
  40. 40.
    Lin, H., Lee, E., Hestir, K., et al. (2008). Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science, 320(5877), 807–811.PubMedCrossRefGoogle Scholar
  41. 41.
    Mukouyama, Y. S., Hara, T., Xu, M. J., et al. (1998). In vitro expansion of murine multipotential hematopoietic progenitors from the embryonic aorta–gonad–mesonephros region. Immunity, 8(1), 105–114.PubMedCrossRefGoogle Scholar
  42. 42.
    Dakic, A., Metcalf, D., Di Rago, L., Mifsud, S., Wu, L., & Nutt, S. L. (2005). PU. 1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. The Journal of Experimental Medicine, 201(9), 1487–1502.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Scott, E. W., Fisher, R. C., Olson, M. C., Kehrli, E. W., Simon, M. C., & Singh, H. (1997). PU. 1 functions in a cell-autonomous manner to control the differentiation of multipotential lymphoid–myeloid progenitors. Immunity, 6(4), 437–447.PubMedCrossRefGoogle Scholar
  44. 44.
    Iwasaki, H., Somoza, C., Shigematsu, H., et al. (2005). Distinctive and indispensable roles of PU. 1 in maintenance of hematopoietic stem cells and their differentiation. Blood, 106(5), 1590–1600.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zhang, D. E., Zhang, P., Wang, N. D., Hetherington, C. J., Darlington, G. J., & Tenen, D. G. (1997). Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. Proceedings of the National Academy of Sciences, 94(2), 569–574.CrossRefGoogle Scholar
  46. 46.
    Zhang, P., Iwasaki-Arai, J., Iwasaki, H., et al. (2004). Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity, 21(6), 853–863.PubMedCrossRefGoogle Scholar
  47. 47.
    Yamanaka, R., Barlow, C., Lekstrom-Himes, J., et al. (1997). Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein α-deficient mice. Proceedings of the National Academy of Sciences, 94(24), 13187–13192.CrossRefGoogle Scholar
  48. 48.
    Hock, H., Hamblen, M. J., Rooke, H. M., et al. (2003). Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity, 18(1), 109–120.PubMedCrossRefGoogle Scholar
  49. 49.
    Tamura, T., Nagamura-Inoue, T., Shmeltzer, Z., Kuwata, T., & Ozato, K. (2000). ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity, 13(2), 155–165.PubMedCrossRefGoogle Scholar
  50. 50.
    Scheller, M., Foerster, J., Heyworth, C. M., et al. (1999). Altered development and cytokine responses of myeloid progenitors in the absence of transcription factor, interferon consensus sequence binding protein. Blood, 94(11), 3764–3771.PubMedGoogle Scholar
  51. 51.
    Richardson, E. T., Shukla, S., Nagy, N., Boom, W. H., Beck, R. C., Zhou, L., Landreth, G. E., Harding, C. V., (2015). ERK signaling is essential for macrophage development. PloS One, 10(10), e0140064.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kelley, T. W., Graham, M. M., Doseff, A. I., Pomerantz, R. W., Lau, S. M., Ostrowski, M. C., Franke, T. F., Marsh, C. B., (1999). Macrophage colony-stimulating factor promotes cell survival through Akt/protein kinase B. Journal of Biological Chemistry, 274(37), 26393–26398.PubMedCrossRefGoogle Scholar
  53. 53.
    Cohen, G. M. A. P. (1997). Caspases: the executioners of apoptosis. The Biochemical Journal, 326, 1–16.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Fujita, J., Crane, A. M., Souza, M. K., et al. (2008). Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell, 2(6), 595–601.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Janzen, V., Fleming, H. E., Riedt, T., et al. (2008). Hematopoietic stem cell responsiveness to exogenous signals is limited by caspase-3. Cell Stem Cell, 2(6), 584–594.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tatsuya Sasaki
    • 1
  • Yuka Tanaka
    • 2
    • 3
  • Kasem Kulkeaw
    • 2
  • Ayako Yumine-Takai
    • 2
  • Keai Sinn Tan
    • 2
  • Ryuichi Nishinakamura
    • 4
  • Junji Ishida
    • 1
    • 5
  • Akiyoshi Fukamizu
    • 1
    • 5
  • Daisuke Sugiyama
    • 2
    • 6
    • 7
    Email author
  1. 1.Graduate School of Life and Environmental SciencesUniversity of TsukubaIbarakiJapan
  2. 2.Department of Research and Development of Next Generation Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
  3. 3.Department of Cell Biology, Faculty of MedicineFukuoka UniversityFukuokaJapan
  4. 4.Department of Kidney Development, Institute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
  5. 5.Life Science Center, Tsukuba Advanced Research AllianceUniversity of TsukubaIbarakiJapan
  6. 6.Center for Clinical and Translational ResearchKyushu UniversityFukuokaJapan
  7. 7.Department of Clinical Study, Center for Advanced Medical InnovationKyushu UniversityFukuokaJapan

Personalised recommendations