Stem Cell Reviews and Reports

, Volume 12, Issue 4, pp 476–483 | Cite as

Functionalizing Ascl1 with Novel Intracellular Protein Delivery Technology for Promoting Neuronal Differentiation of Human Induced Pluripotent Stem Cells

  • Meghan Robinson
  • Parv Chapani
  • Tara Styan
  • Ranjani Vaidyanathan
  • Stephanie Michelle WillerthEmail author


Pluripotent stem cells can become any cell type found in the body. Accordingly, one of the major challenges when working with pluripotent stem cells is producing a highly homogenous population of differentiated cells, which can then be used for downstream applications such as cell therapies or drug screening. The transcription factor Ascl1 plays a key role in neural development and previous work has shown that Ascl1 overexpression using viral vectors can reprogram fibroblasts directly into neurons. Here we report on how a recombinant version of the Ascl1 protein functionalized with intracellular protein delivery technology (Ascl1-IPTD) can be used to rapidly differentiate human induced pluripotent stem cells (hiPSCs) into neurons. We first evaluated a range of Ascl1-IPTD concentrations to determine the most effective amount for generating neurons from hiPSCs cultured in serum free media. Next, we looked at the frequency of Ascl1-IPTD supplementation in the media on differentiation and found that one time supplementation is sufficient enough to trigger the neural differentiation process. Ascl1-IPTD was efficiently taken up by the hiPSCs and enabled rapid differentiation into TUJ1-positive and NeuN-positive populations with neuronal morphology after 8 days. After 12 days of culture, hiPSC-derived neurons produced by Ascl1-IPTD treatment exhibited greater neurite length and higher numbers of branch points compared to neurons derived using a standard neural progenitor differentiation protocol. This work validates Ascl1-IPTD as a powerful tool for engineering neural tissue from pluripotent stem cells.


Stem cells Proteins Drug delivery Neuroscience Intracellular targeting Neurite extension 



The authors would like to acknowledge support from our NSERC Engage grant with iProgen Biotech, Inc. and funding from the Canada Research Chairs Program (S.M.W.).


  1. 1.
    Willerth, S. M. (2011). Neural tissue engineering using embryonic and induced pluripotent stem cells. Stem Cell Research & Therapy, 2, 17.CrossRefGoogle Scholar
  2. 2.
    Buzhor, E., Leshansky, L., Blumenthal, J., et al. (2014). Cell-based therapy approaches: the hope for incurable diseases. Regenerative Medicine, 9, 649–672.CrossRefPubMedGoogle Scholar
  3. 3.
    Fox, I. J., Daley, G. Q., Goldman, S. A., Huard, J., Kamp, T. J., & Trucco, M. (2014). Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science, 345, 1247391.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Grochmal, J., & Midha, R. (2014). Recent advances in stem cell-mediated peripheral nerve repair. Cells, Tissues, Organs, 200, 13–22.CrossRefPubMedGoogle Scholar
  5. 5.
    Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78, 7634–7638.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.CrossRefPubMedGoogle Scholar
  7. 7.
    Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.CrossRefPubMedGoogle Scholar
  8. 8.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.CrossRefPubMedGoogle Scholar
  9. 9.
    Cyranoski, D. (2014). Japanese woman is first recipient of next-generation stem cells. Nature News.Google Scholar
  10. 10.
    Doron-Mandel, E., Fainzilber, M., & Terenzio, M. (2015). Growth control mechanisms in neuronal regeneration. FEBS Letters, 589, 1669–1677.CrossRefPubMedGoogle Scholar
  11. 11.
    Emery, B., & Lu, Q. R. (2015). Transcriptional and epigenetic regulation of oligodendrocyte development and myelination in the central nervous system. Cold Spring Harbor Perspectives in Biology, 7, a020461.CrossRefPubMedGoogle Scholar
  12. 12.
    Imayoshi, I., & Kageyama, R. (2014). bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. Neuron, 82, 9–23.CrossRefPubMedGoogle Scholar
  13. 13.
    Prochiantz, A., & Di Nardo, A. A. (2015). Homeoprotein signaling in the developing and adult nervous system. Neuron, 85, 911–925.CrossRefPubMedGoogle Scholar
  14. 14.
    Yamamizu, K., Piao, Y., Sharov, A. A., et al. (2013). Identification of transcription factors for lineage-specific ESC differentiation. Stem Cell Reports, 1, 545–559.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kageyama, R., Ishibashi, M., Takebayashi, K., & Tomita, K. (1997). bHLH transcription factors and mammalian neuronal differentiation. The International Journal of Biochemistry & Cell Biology, 29, 1389–1399.CrossRefGoogle Scholar
  16. 16.
    Ball, D. W., Azzoli, C. G., Baylin, S. B., et al. (1993). Identification of a human achaete-scute homolog highly expressed in neuroendocrine tumors. Proceedings of the National Academy of Sciences of the United States of America, 90, 5648–5652.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Casarosa, S., Fode, C., & Guillemot, F. (1999). Mash1 regulates neurogenesis in the ventral telencephalon. Development, 126, 525–534.PubMedGoogle Scholar
  18. 18.
    Gonzalez, F., Romani, S., Cubas, P., Modolell, J., & Campuzano, S. (1989). Molecular analysis of the asense gene, a member of the achaete-scute complex of Drosophila melanogaster, and its novel role in optic lobe development. EMBO Journal, 8, 3553–3562.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Vasconcelos, F. F., & Castro, D. S. (2014). Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1. Frontiers in Cellular Neuroscience, 8, 412.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Colasante, G., Lignani, G., Rubio, A., et al. (2015). Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell Stem Cell.Google Scholar
  21. 21.
    Ueki, Y., Wilken, M. S., Cox, K. E., et al. (2015). Transgenic expression of the proneural transcription factor Ascl1 in Muller glia stimulates retinal regeneration in young mice. Proceedings of the National Academy of Sciences of the United States of America, 112, 13717–13722.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chanda, S., Ang, C. E., Davila, J., et al. (2014). Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Reports, 3, 282–296.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gopalakrishnan, S., Hor, P., & Ichida, J.K. (2015). New approaches for direct conversion of patient fibroblasts into neural cells. Brain Research.Google Scholar
  24. 24.
    Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463, 1035–1041.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jiang, H., Xu, Z., Zhong, P., et al. (2015). Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons. Nature Communications, 6, 10100.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hu, K. (2014). Vectorology and factor delivery in induced pluripotent stem cell reprogramming. Stem Cells and Development, 23, 1301–1315.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee, K.H., Lin, L.Y.C., & Wang, A. (2014). Intracellular protein delivery. Google Patents.Google Scholar
  28. 28.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.CrossRefPubMedGoogle Scholar
  29. 29.
    Robinson, M., Yau, S., Sun, L., et al. (2015). Optimizing differentiation protocols for producing dopaminergic neurons from human induced pluripotent stem cells for tissue engineering applications. Biomarker Insights, (1), 61–70.Google Scholar
  30. 30.
    Lecuyer, E., Lariviere, S., Sincennes, M. C., et al. (2007). Protein stability and transcription factor complex assembly determined by the SCL-LMO2 interaction. Journal of Biological Chemistry, 282, 33649–33658.CrossRefPubMedGoogle Scholar
  31. 31.
    Willerth, S. M., Faxel, T. E., Gottlieb, D. I., & Sakiyama-Elbert, S. E. (2007). The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds. Stem Cells, 25, 2235–2244.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Willerth, S. M., Rader, A., & Sakiyama-Elbert, S. E. (2008). The effect of controlled growth factor delivery on embryonic stem cell differentiation inside fibrin scaffolds. Stem Cell Research, 1, 205–218.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Willerth, S. M., & Sakiyama-Elbert, S. E. (2009). Kinetic analysis of neurotrophin-3-mediated differentiation of embryonic stem cells into neurons. Tissue Engineering Part A, 15, 307–318.CrossRefPubMedGoogle Scholar
  34. 34.
    He, S., Guo, Y., Zhang, Y., et al. (2015). Reprogramming somatic cells to cells with neuronal characteristics by defined medium both in vitro and in vivo. Cell Regeneration (London, England), 4, 12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Meghan Robinson
    • 1
  • Parv Chapani
    • 2
  • Tara Styan
    • 1
  • Ranjani Vaidyanathan
    • 3
  • Stephanie Michelle Willerth
    • 4
    • 5
    • 6
    Email author
  1. 1.Biomedical Engineering ProgramUniversity of VictoriaVictoriaCanada
  2. 2.Department of BiochemistryUniversity of VictoriaVictoriaCanada
  3. 3.iProgen Biotech, Inc.VancouverCanada
  4. 4.Department of Mechanical EngineeringUniversity of VictoriaVictoriaCanada
  5. 5.Division of Medical SciencesUniversity of VictoriaVictoriaCanada
  6. 6.International Collaboration on Repair Discoveries (ICORD)VancouverCanada

Personalised recommendations