Stem Cell Reviews and Reports

, Volume 12, Issue 2, pp 235–244 | Cite as

Adipogenic Mesenchymal Stromal Cells from Bone Marrow and Their Hematopoietic Supportive Role: Towards Understanding the Permissive Marrow Microenvironment in Acute Myeloid Leukemia

  • Yevgeniya Le
  • Sylvain Fraineau
  • Priya Chandran
  • Mitchell Sabloff
  • Marjorie Brand
  • Jessie R. Lavoie
  • Rémi Gagne
  • Michael Rosu-Myles
  • Carole L. Yauk
  • Richard B. Richardson
  • David S. Allan



The role of bone marrow-derived mesenchymal stem/stromal cells (MSCs) in creating a permissive microenvironment that supports the emergence and progression of acute myeloid leukemia (AML) is not well established. We investigated the extent to which adipogenic differentiation in normal MSCs alters hematopoietic supportive capacity and we undertook an in-depth comparative study of human bone marrow MSCs derived from newly diagnosed AML patients and healthy donors, including an assessment of adipogenic differentiation capacity.


MSCs from healthy controls with partial induction of adipogenic differentiation, in comparison to MSCs undergoing partial osteogenic differentiation, expressed increased levels of hematopoietic factors and induced greater proliferation, decreased quiescence and reduced in vitro hematopoietic colony forming capacity of CD34+ hematopoietic stem and progenitor cells (HSPCs). Moreover, we observed that AML-derived MSCs had markedly increased adipogenic potential and delayed osteogenic differentiation, while maintaining normal morphology and viability. AML-derived MSCs, however, possessed reduced proliferative capacity and decreased frequency of subendothelial quiescent MSCs compared to controls.


Our results support the notion of a bone marrow microenvironment characterized by increased propensity toward adipogenesis in AML, which may negatively impact normal hematopoiesis. Larger confirmatory studies are needed to understand the impact of various clinical factors. Novel leukemia treatments aimed at normalizing bone marrow niches may enhance the competitive advantage of normal hematopoietic progenitors over leukemia cells.


Mesenchymal stromal cells AML Hematopoietic niche Bone marrow microenvironment Adipogenesis Osteogenesis 



This work was supported by Canadian Nuclear Laboratories, the Joan Sealy Trust Fund, Faculty of Medicine, University of Ottawa and The Ottawa Hospital Foundation (Cushing Fund). We gratefully acknowledge the support from the Department of Medicine, University of Ottawa and Canadian Institutes for Health Research (New Investigator Award, DSA). RNA-sequencing work was funded by Health Canada Genomics Research and Development Initiative, Phase IV (2014–2019).

Compliance with Ethical Standards

Conflict of Interest

Authors declare no conflict of interest.

Supplementary material

12015_2015_9639_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)
12015_2015_9639_MOESM2_ESM.docx (15 kb)
Supplementary Table 1 (DOCX 14 kb)


  1. 1.
    Klepin, H. D., Rao, A. V., & Pardee, T. S. (2014). Acute myeloid leukemia and myelodysplastic syndromes in older adults. Journal of Clinical Oncology, 32(24), 2541–2552.CrossRefPubMedGoogle Scholar
  2. 2.
    Wiseman, D. H., Das, M., Poulton, K., & Liakopoulou, E. (2011). Donor cell leukemia following unrelated donor bone marrow transplantation for primary granulocytic sarcoma of the small intestine. American Journal of Hematology, 86(3), 315–318.CrossRefPubMedGoogle Scholar
  3. 3.
    Hertenstein, B., Hambach, L., Bacigalupo, A., et al. (2005). Development of leukemia in donor cells after allogeneic stem cell transplantation—a survey of the European Group for Blood and Marrow Transplantation (EBMT). Haematologica, 90(7), 969–975.PubMedGoogle Scholar
  4. 4.
    Kim, Y. W., Koo, B. K., Jeong, H. W., et al. (2008). Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood, 112(12), 4628–4638.CrossRefPubMedGoogle Scholar
  5. 5.
    Kode, A., Manavalan, J. S., Mosialou, I., et al. (2014). Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature, 506(7487), 240–244.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Raaijmakers, M. H., Mukherjee, S., Guo, S., et al. (2010). Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature, 464(7290), 852–857.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Morrison, S. J., & Scadden, D. T. (2014). The bone marrow niche for haematopoietic stem cells. Nature, 505(7483), 327–334.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hass, R., & Otte, A. (2012). Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Communication & Signaling, 10(1), 26.CrossRefGoogle Scholar
  9. 9.
    Sacchetti, B., Funari, A., Michienzi, S., et al. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131(2), 324–336.CrossRefPubMedGoogle Scholar
  10. 10.
    Sugiyama, T., Kohara, H., Noda, M., & Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 25(6), 977–988.CrossRefPubMedGoogle Scholar
  11. 11.
    Mendez-Ferrer, S., Michurina, T. V., Ferraro, F., et al. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466(7308), 829–834.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kunisaki, Y., Bruns, I., Scheiermann, C., et al. (2013). Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 502(7473), 637–643.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ding, L., Saunders, T. L., Enikolopov, G., & Morrison, S. J. (2012). Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 481(7382), 457–462.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ogawa, M., Matsuzaki, Y., Nishikawa, S., et al. (1991). Expression and function of c-kit in hemopoietic progenitor cells. Journal of Experimental Medicine, 174(1), 63–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Ellis, S. L., Grassinger, J., Jones, A., et al. (2011). The relationship between bone, hemopoietic stem cells, and vasculature. Blood, 118(6), 1516–1524.CrossRefPubMedGoogle Scholar
  16. 16.
    Naveiras, O., Nardi, V., Wenzel, P. L., Hauschka, P. V., Fahey, F., & Daley, G. Q. (2009). Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature, 460(7252), 259–263.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Medyouf, H., Mossner, M., Jann, J. C., et al. (2014). Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell, 14(6), 824–837.CrossRefPubMedGoogle Scholar
  18. 18.
    Hanoun, M., Zhang, D., Mizoguchi, T., et al. (2014). Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell, 15(3), 365–375.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Arranz, L., Sánchez-Aguilera, A., Martín-Pérez, D., et al. (2014). Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature, 512(7512), 78–81.PubMedGoogle Scholar
  20. 20.
    Geyh, S., Oz, S., Cadeddu, R. P., et al. (2013). Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia, 27(9), 1841–1851.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao, Z. G., Liang, Y., Li, K., et al. (2007). Phenotypic and functional comparison of mesenchymal stem cells derived from the bone marrow of normal adults and patients with hematologic malignant diseases. Stem Cells and Development, 16(4), 637–648.CrossRefPubMedGoogle Scholar
  22. 22.
    Chandran, P., Le, Y., Li, Y., et al. (2015). Mesenchymal stromal cells from patients with acute myeloid leukemia have altered capacity to expand differentiated hematopoietic progenitors. Leukemia Research, 39(4), 486–493.CrossRefPubMedGoogle Scholar
  23. 23.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.CrossRefPubMedGoogle Scholar
  24. 24.
    Battula, V. L., Chen, Y., Cabreira Mda, G., et al. (2013). Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment. Blood, 122(3), 357–366.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sorrentino, A., Ferracin, M., Castelli, G., et al. (2008). Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Experimental Hematology, 36(8), 1035–1046.CrossRefPubMedGoogle Scholar
  26. 26.
    Valastyan, S., & Weinberg, R. A. (2011). Roles for microRNAs in the regulation of cell adhesion molecules. Journal of Cell Science, 124(7), 999–1006.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mishra, P. J., Mishra, P. J., Humeniuk, R., et al. (2008). Carcinoma-associated fibroblast–like differentiation of human mesenchymal stem cells. Cancer Research, 68(11), 4331–4339.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Colmone, A., Amorim, M., Pontier, A. L., Wang, S., Jablonski, E., & Sipkins, D. A. (2008). Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science, 322(5909), 1861–1865.CrossRefPubMedGoogle Scholar
  29. 29.
    Kim, H. Y., Oh, Y. S., Song, I. C., et al. (2013). Endogenous stromal cell-derived factor-1 (CXCL12) supports autonomous growth of acute myeloid leukemia cells. Leukemia Research, 37(5), 566–572.CrossRefPubMedGoogle Scholar
  30. 30.
    Konoplev, S., Rassidakis, G. Z., Estey, E., et al. (2007). Overexpression of CXCR4 predicts adverse overall and event‐free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer, 109(6), 1152–1156.CrossRefPubMedGoogle Scholar
  31. 31.
    Crisan, M., Yap, S., Casteilla, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–313.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yevgeniya Le
    • 1
  • Sylvain Fraineau
    • 2
  • Priya Chandran
    • 2
  • Mitchell Sabloff
    • 3
  • Marjorie Brand
    • 2
    • 3
  • Jessie R. Lavoie
    • 4
  • Rémi Gagne
    • 4
    • 5
  • Michael Rosu-Myles
    • 4
  • Carole L. Yauk
    • 4
    • 5
  • Richard B. Richardson
    • 1
    • 6
  • David S. Allan
    • 2
    • 3
  1. 1.Canadian Nuclear LaboratoriesChalk RiverCanada
  2. 2.Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaCanada
  3. 3.Department of MedicineUniversity of OttawaOttawaCanada
  4. 4.Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food BranchHealth CanadaOttawaCanada
  5. 5.Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety BranchHealth CanadaOttawaCanada
  6. 6.McGill Medical Physics UnitMontreal General HospitalMontrealCanada

Personalised recommendations