Stem Cell Reviews and Reports

, Volume 12, Issue 1, pp 26–41 | Cite as

An Overview of Neural Differentiation Potential of Human Adipose Derived Stem Cells

  • Hossein Salehi
  • Noushin Amirpour
  • Ali Niapour
  • Shahnaz Razavi


There is wide interest in application of adult stem cells due to easy to obtain with a minimal patient discomfort, capable of producing cell numbers in large quantities and their immunocompatible properties without restriction by ethical concerns. Among these stem cells, multipotent mesenchymal stem cells (MSCs) from human adipose tissue are considered as an ideal source for various regenerative medicine. In spite of mesodermal origin of human adipose-derived stem cells (hADSCs), these cells have differentiation potential toward mesodermal and non-mesodermal lineages. Up to now, several studies have shown that hADSCs can undergo transdifferentiation and produce cells outside of their lineage, especially into neural cells when they are transferred to a specific cell environment. The purpose of this literature review is to provide an overview of the existing state of knowledge of the differentiation potential of hADSCs, specifically their ability to give rise to neuronal cells. The following review discusses different protocols considered for differentiation of hADSCs to neural cells, the neural markers that are used in each procedure and possible mechanisms that are involved in this differentiation.


HADSCs Potential Neural differentiation In vitro In vivo 


  1. 1.
    Diecke, S., Jung, S. M., Lee, J., & Ju, J. H. (2014). Recent technological updates and clinical applications of induced pluripotent stem cells. The Korean Journal of Internal Medicine, 29, 547–557.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Wan, W., Cao, L., Kalionis, B., Xia, S., & Tai, X. (2015). Applications of induced pluripotent stem cells in studying the neurodegenerative diseases. Stem Cells International, 2015, 382530.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Medvedev, S. P., Shevchenko, A. I., & Zakian, S. M. (2010). Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine. Acta Naturae, 2, 18–28.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7, 211–228.PubMedCrossRefGoogle Scholar
  5. 5.
    Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9, 641–650.PubMedCrossRefGoogle Scholar
  6. 6.
    Halvorsen, Y. D., Franklin, D., Bond, A. L., et al. (2001). Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Engineering, 7, 729–741.PubMedCrossRefGoogle Scholar
  7. 7.
    Hicok, K. C., Du Laney, T. V., Zhou, Y. S., et al. (2004). Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Engineering, 10, 371–380.PubMedCrossRefGoogle Scholar
  8. 8.
    Erickson, G. R., Gimble, J. M., Franklin, D. M., Rice, H. E., Awad, H., & Guilak, F. (2002). Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochemical and Biophysical Research Communications, 290, 763–769.PubMedCrossRefGoogle Scholar
  9. 9.
    Seo, M. J., Suh, S. Y., Bae, Y. C., & Jung, J. S. (2005). Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochemical and Biophysical Research Communications, 328, 258–264.PubMedCrossRefGoogle Scholar
  10. 10.
    Halvorsen, Y. D., Bond, A., Sen, A., et al. (2001). Thiazolidinediones and glucocorticoids synergistically induce differentiation of human adipose tissue stromal cells: biochemical, cellular, and molecular analysis. Metabolism: Clinical and Experimental, 50, 407–413.CrossRefGoogle Scholar
  11. 11.
    Ashjian, P. H., Elbarbary, A. S., Edmonds, B., et al. (2003). In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plastic and Reconstructive Surgery, 111, 1922–1931.PubMedCrossRefGoogle Scholar
  12. 12.
    Safford, K. M., Hicok, K. C., Safford, S. D., et al. (2002). Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 294, 371–379.PubMedCrossRefGoogle Scholar
  13. 13.
    Safford, K. M., Safford, S. D., Gimble, J. M., Shetty, A. K., & Rice, H. E. (2004). Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Experimental Neurology, 187, 319–328.PubMedCrossRefGoogle Scholar
  14. 14.
    Planat-Benard, V., Menard, C., Andre, M., et al. (2004). Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 94, 223–229.PubMedCrossRefGoogle Scholar
  15. 15.
    Song, Y. H., Gehmert, S., Sadat, S., et al. (2007). VEGF is critical for spontaneous differentiation of stem cells into cardiomyocytes. Biochemical and Biophysical Research Communications, 354, 999–1003.PubMedCrossRefGoogle Scholar
  16. 16.
    Miranville, A., Heeschen, C., Sengenes, C., Curat, C. A., Busse, R., & Bouloumie, A. (2004). Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 110, 349–355.PubMedCrossRefGoogle Scholar
  17. 17.
    Planat-Benard, V., Silvestre, J. S., Cousin, B., et al. (2004). Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation, 109, 656–663.PubMedCrossRefGoogle Scholar
  18. 18.
    Rehman, J., Traktuev, D., Li, J., et al. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109, 1292–1298.PubMedCrossRefGoogle Scholar
  19. 19.
    Krampera, M., Pasini, A., Pizzolo, G., Cosmi, L., Romagnani, S., & Annunziato, F. (2006). Regenerative and immunomodulatory potential of mesenchymal stem cells. Current Opinion in Pharmacology, 6, 435–441.PubMedCrossRefGoogle Scholar
  20. 20.
    McIntosh, K., Zvonic, S., Garrett, S., et al. (2006). The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells, 24, 1246–1253.PubMedCrossRefGoogle Scholar
  21. 21.
    Razavi, S., Mardani, M., Kazemi, M., et al. (2013). Effect of leukemia inhibitory factor on the myelinogenic ability of schwann-like cells induced from human adipose-derived stem cells. Cellular and Molecular Neurobiology, 33, 283–289.PubMedCrossRefGoogle Scholar
  22. 22.
    Ulrich, H., do Nascimento, I. C., Bocsi, J., & Tárnok, A. (2015). Immunomodulation in stem cell differentiation into neurons and brain repair. Stem Cell Reviews and Reports, 11, 474–486.PubMedCrossRefGoogle Scholar
  23. 23.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8, 315–317.PubMedCrossRefGoogle Scholar
  24. 24.
    Erba, P., Terenghi, G., & Kingham, P. J. (2010). Neural differentiation and therapeutic potential of adipose tissue derived stem cells. Current Stem Cell Research & Therapy, 5, 153–160.CrossRefGoogle Scholar
  25. 25.
    Ying, C., Hu, W., Cheng, B., Zheng, X., & Li, S. (2012). Neural differentiation of rat adipose-derived stem cells in vitro. Cellular and Molecular Neurobiology, 32, 1255–1263.PubMedCrossRefGoogle Scholar
  26. 26.
    Yu, J. M., Bunnell, B. A., & Kang, S. K. (2011). Neural differentiation of human adipose tissue-derived stem cells. Methods in Molecular Biology, 702, 219–231.PubMedCrossRefGoogle Scholar
  27. 27.
    Zavan, B., Vindigni, V., Gardin, C., et al. (2010). Neural potential of adipose stem cells. Discovery Medicine, 10, 37–43.PubMedGoogle Scholar
  28. 28.
    Kokai, L. E., Rubin, J. P., & Marra, K. G. (2005). The potential of adipose-derived adult stem cells as a source of neuronal progenitor cells. Plastic and Reconstructive Surgery, 116, 1453–1460.PubMedCrossRefGoogle Scholar
  29. 29.
    Razavi, S., Razavi, M. R., Zarkesh Esfahani, H., Kazemi, M., & Mostafavi, F. S. (2013). Comparing brain-derived neurotrophic factor and ciliary neurotrophic factor secretion of induced neurotrophic factor secreting cells from human adipose and bone marrow-derived stem cells. Development, Growth & Differentiation, 55, 648–655.CrossRefGoogle Scholar
  30. 30.
    Vidal, M. A., Kilroy, G. E., Lopez, M. J., Johnson, J. R., Moore, R. M., & Gimble, J. M. (2007). Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Veterinary Surgery : VS, 36, 613–622.CrossRefGoogle Scholar
  31. 31.
    Tholpady, S. S., Katz, A. J., & Ogle, R. C. (2003). Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. The Anatomical record Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 272, 398–402.PubMedCrossRefGoogle Scholar
  32. 32.
    Fraser, J. K., Zhu, M., Wulur, I., & Alfonso, Z. (2008). Adipose-derived stem cells. Methods in Molecular Biology, 449, 59–67.PubMedGoogle Scholar
  33. 33.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.PubMedCrossRefGoogle Scholar
  34. 34.
    De Ugarte, D. A., Morizono, K., Elbarbary, A., et al. (2003). Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells, Tissues, Organs, 174, 101–109.PubMedCrossRefGoogle Scholar
  35. 35.
    Aust, L., Devlin, B., Foster, S. J., et al. (2004). Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy, 6, 7–14.PubMedCrossRefGoogle Scholar
  36. 36.
    Oedayrajsingh-Varma, M. J., van Ham, S. M., Knippenberg, M., et al. (2006). Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 8, 166–177.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X., & Cui, Z. (2008). Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochemistry and Function, 26, 664–675.PubMedCrossRefGoogle Scholar
  38. 38.
    Guilak, F., Lott, K. E., Awad, H. A., et al. (2006). Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. Journal of Cellular Physiology, 206, 229–237.PubMedCrossRefGoogle Scholar
  39. 39.
    Mitchell, J. B., McIntosh, K., Zvonic, S., et al. (2006). Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 24, 376–385.PubMedCrossRefGoogle Scholar
  40. 40.
    Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 100, 1249–1260.PubMedCrossRefGoogle Scholar
  41. 41.
    Boquest, A. C., Shahdadfar, A., Fronsdal, K., et al. (2005). Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Molecular Biology of the Cell, 16, 1131–1141.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Varma, M. J., Breuls, R. G., Schouten, T. E., et al. (2007). Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells and Development, 16, 91–104.PubMedCrossRefGoogle Scholar
  43. 43.
    Schellenberg, A., Stiehl, T., Horn, P., et al. (2012). Population dynamics of mesenchymal stromal cells during culture expansion. Cytotherapy, 14, 401–411.PubMedCrossRefGoogle Scholar
  44. 44.
    Le Blanc, K. (2003). Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy, 5, 485–489.PubMedCrossRefGoogle Scholar
  45. 45.
    Siegel, G., Schafer, R., & Dazzi, F. (2009). The immunosuppressive properties of mesenchymal stem cells. Transplantation, 87, S45–S49.PubMedCrossRefGoogle Scholar
  46. 46.
    Mimeault, M., & Batra, S. K. (2008). Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Reviews, 4, 27–49.PubMedCrossRefGoogle Scholar
  47. 47.
    Franco Lambert, A. P., Fraga Zandonai, A., Bonatto, D., Cantarelli Machado, D., & Pegas Henriques, J. A. (2009). Differentiation of human adipose-derived adult stem cells into neuronal tissue: does it work? Differentiation; Research in Biological Diversity, 77, 221–228.PubMedCrossRefGoogle Scholar
  48. 48.
    Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Krampera, M., Marconi, S., Pasini, A., et al. (2007). Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone, 40, 382–390.PubMedCrossRefGoogle Scholar
  50. 50.
    Changqing Ye, X. Y., Liu, H., Cai, Y., & Ya, O. (2010). Ultrastructure of neuronal-like cells differentiated from adult adipose-derived stromal cells. Neural Regen Res, 5, 1456–1463.Google Scholar
  51. 51.
    Jang, S., Cho, H. H., Cho, Y. B., Park, J. S., & Jeong, H. S. (2010). Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biology, 11, 25.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Cardozo, A. J., Gomez, D. E., & Argibay, P. F. (2011). Transcriptional characterization of Wnt and notch signaling pathways in neuronal differentiation of human adipose tissue-derived stem cells. Journal of Molecular Neuroscience, 44, 186–194.PubMedCrossRefGoogle Scholar
  53. 53.
    Li, H., Han, Z., Liu, D., Zhao, P., Liang, S., & Xu, K. (2013). Autologous platelet-rich plasma promotes neurogenic differentiation of human adipose-derived stem cells in vitro. The International Journal of Neuroscience, 123, 184–190.PubMedCrossRefGoogle Scholar
  54. 54.
    Xu, F. T., Li, H. M., Yin, Q. S., et al. (2014). Effect of ginsenoside Rg1 on proliferation and neural phenotype differentiation of human adipose-derived stem cells in vitro. Canadian Journal of Physiology and Pharmacology, 92, 467–475.PubMedCrossRefGoogle Scholar
  55. 55.
    Wu, J., Pan, Z., Cheng, M., et al. (2013). Ginsenoside Rg1 facilitates neural differentiation of mouse embryonic stem cells via GR-dependent signaling pathway. Neurochemistry International, 62, 92–102.PubMedCrossRefGoogle Scholar
  56. 56.
    Elena Anghileri, S. M., Pignatelli, A., Cifelli, P., Galié, M., Sbarbati, A., Krampera, M., Belluzzi, O., & Bonetti, B. (2008). Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells and Development, 17, 909–916.PubMedCrossRefGoogle Scholar
  57. 57.
    Zavan, B. M. L., Lancerotto, L., Della Puppa, A., D’Avella, D., Abatangelo, G., Vindigni, V., & Cortivo, R. (2010). Neural potential of a stem cell population in the adipose and cutaneous tissues. Neurological Research, 32, 47–54.PubMedCrossRefGoogle Scholar
  58. 58.
    Ahmadi, N., Razavi, S., Kazemi, M., & Oryan, S. (2012). Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue & Cell, 44, 87–94.CrossRefGoogle Scholar
  59. 59.
    Razavi, S. A. N., Kazemi, M., Mardani, M., & Esfandiari, E. (2012). Efficient transdifferentiation of human adipose-derived stem cells into schwann-like cells : a promise for treatment of demyelinating diseases. Adv Biomed Res, 1, 12.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Qian, D. X., Zhang, H. T., Ma, X., Jiang, X. D., & Xu, R. X. (2010). Comparison of the efficiencies of three neural induction protocols in human adipose stromal cells. Neurochemical Research, 35, 572–579.PubMedCrossRefGoogle Scholar
  61. 61.
    Berg, J., Roch, M., Altschuler, J., et al. (2015). Human adipose-derived mesenchymal stem cells improve motor functions and are neuroprotective in the 6-hydroxydopamine-rat model for parkinson’s disease when cultured in monolayer cultures but suppress hippocampal neurogenesis and hippocampal memory function when cultured in spheroids. Stem Cell Reviews, 11, 133–149.PubMedCrossRefGoogle Scholar
  62. 62.
    Katayama, M., & Ishii, K. (1994). 2-mercaptoethanol-independent survival of fetal mouse brain neurons cultured in a medium of human serum. Brain Research, 656, 409–412.PubMedCrossRefGoogle Scholar
  63. 63.
    Kashafi, E., Jashni, H. K., Erfaniyan, S., Solhjou, K., Sepidkar, A., & Fakhryniya, H. (2013). Transdifferentiation of human synovium-derived mesenchymal stem cell into neuronal-like cells in vitro. Journal of Jahrom University of Medical Sciences, 11, 31–38.Google Scholar
  64. 64.
    Tao, H., Rao, R., & Ma, D. D. (2005). Cytokine-induced stable neuronal differentiation of human bone marrow mesenchymal stem cells in a serum/feeder cell-free condition. Development, Growth & Differentiation, 47, 423–433.CrossRefGoogle Scholar
  65. 65.
    Schneider, N., Lanz, S., Ramer, R., Schaefer, D., & Goppelt-Struebe, M. (2001). Up-regulation of cyclooxygenase-1 in neuroblastoma cell lines by retinoic acid and corticosteroids. Journal of Neurochemistry, 77, 416–424.PubMedCrossRefGoogle Scholar
  66. 66.
    Kim, H. S., Song, M., Kim, E., Ryu, S. H., & Suh, P. G. (2003). Dexamethasone differentiates NG108-15 cells through cyclooxygenase 1 induction. Experimental & Molecular Medicine, 35, 203–210.CrossRefGoogle Scholar
  67. 67.
    Cai, L., Johnstone, B. H., Cook, T. G., et al. (2009). IFATS collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells, 27, 230–237.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Yang, Z., Li, K., Yan, X., Dong, F., & Zhao, C. (2010). Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefe’s Rrchive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv fur Klinische und Experimentelle Ophthalmologie, 248, 1415–1422.CrossRefGoogle Scholar
  69. 69.
    Scholz, T., Sumarto, A., Krichevsky, A., & Evans, G. R. (2011). Neuronal differentiation of human adipose tissue-derived stem cells for peripheral nerve regeneration in vivo. Archives of Surgery, 146, 666–674.PubMedCrossRefGoogle Scholar
  70. 70.
    Ra, J. C., Shin, I. S., Kim, S. H., et al. (2011). Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells and Development, 20, 1297–1308.PubMedCrossRefGoogle Scholar
  71. 71.
    Ghasemi, N., Razavi, S., Mardani, M., Esfandiari, E., Salehi, H., & Zarkesh Esfahani, S. H. (2014). Transplantation of human adipose-derived stem cells enhances remyelination in lysolecithin-induced focal demyelination of rat spinal cord. Molecular Biotechnology, 56, 470–478.PubMedCrossRefGoogle Scholar
  72. 72.
    McCain, J. (2013). The MAPK (ERK) pathway: investigational combinations for the treatment of BRAF-mutated metastatic melanoma. P & T : A peer-Reviewed Journal for Formulary Management, 38, 96–108.Google Scholar
  73. 73.
    Pearson, G., Robinson, F., Beers Gibson, T., et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews, 22, 153–183.PubMedGoogle Scholar
  74. 74.
    Bucci, C., Alifano, P., & Cogli, L. (2014). The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. Membranes, 4, 642–677.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Karaoz, E., Demircan, P. C., Saglam, O., Aksoy, A., Kaymaz, F., & Duruksu, G. (2011). Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochemistry and Cell Biology, 136, 455–473.PubMedCrossRefGoogle Scholar
  76. 76.
    Kiraly, M., Porcsalmy, B., Pataki, A., et al. (2009). Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochemistry International, 55, 323–332.PubMedCrossRefGoogle Scholar
  77. 77.
    Airaksinen, M. S., & Saarma, M. (2002). The GDNF family: signalling, biological functions and therapeutic value. Nature Reviews Neuroscience, 3, 383–394.PubMedCrossRefGoogle Scholar
  78. 78.
    Osaki, M., Oshimura, M., & Ito, H. (2004). PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis : An international Journal on Programmed Cell Death, 9, 667–676.CrossRefGoogle Scholar
  79. 79.
    Minichiello, L. (2009). TrkB signalling pathways in LTP and learning. Nature Reviews Neuroscience, 10, 850–860.PubMedCrossRefGoogle Scholar
  80. 80.
    Cargnello, M., & Roux, P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular biology Reviews : MMBR, 75, 50–83.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Park, S., Jung, H. H., Park, Y. H., Ahn, J. S., & Im, Y. H. (2011). ERK/MAPK pathways play critical roles in EGFR ligands-induced MMP1 expression. Biochemical and Biophysical Research Communications, 407, 680–686.PubMedCrossRefGoogle Scholar
  82. 82.
    Cardozo, A., Ielpi, M., Gomez, D., & Argibay, P. (2010). Differential expression of Shh and BMP signaling in the potential conversion of human adipose tissue stem cells into neuron-like cells in vitro. Gene Expression, 14, 307–319.PubMedCrossRefGoogle Scholar
  83. 83.
    Cardozo, A. J., Gomez, D. E., & Argibay, P. F. (2012). Neurogenic differentiation of human adipose-derived stem cells: relevance of different signaling molecules, transcription factors, and key marker genes. Gene, 511, 427–436.PubMedCrossRefGoogle Scholar
  84. 84.
    Virginie Neirinckx, Cécile Coste, Bernard Rogister, Sabine Wislet-Gendebien. Neural fate of mesenchymal stem cells and neural crest stem cells: which ways to get neurons for cell therapy purpose? In: trends in cell signaling pathways in neuronal fate decision INTECH open access publisher; 2013 327–58.Google Scholar
  85. 85.
    Duester, G. (2008). Retinoic acid synthesis and signaling during early organogenesis. Cell, 134, 921–931.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Gudas, L. J., & Wagner, J. A. (2011). Retinoids regulate stem cell differentiation. Journal of Cellular Physiology, 226, 322–330.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Cai, A. Q., Radtke, K., Linville, A., Lander, A. D., Nie, Q., & Schilling, T. F. (2012). Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish. Development, 139, 2150–2155.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Glover, J. C., Renaud, J. S., & Rijli, F. M. (2006). Retinoic acid and hindbrain patterning. Journal of Neurobiology, 66, 705–725.PubMedCrossRefGoogle Scholar
  89. 89.
    Mark, M., Kastner, P., Ghyselinck, N. B., Krezel, W., Dupe, V., & Chambon, P. (1997). Genetic control of the development by retinoic acid. Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales, 191, 77–90.PubMedGoogle Scholar
  90. 90.
    Mascrez, B., Mark, M., Dierich, A., Ghyselinck, N. B., Kastner, P., & Chambon, P. (1998). The RXRalpha ligand-dependent activation function 2 (AF-2) is important for mouse development. Development, 125, 4691–4707.PubMedGoogle Scholar
  91. 91.
    Ghyselinck, N. B., Dupe, V., Dierich, A., et al. (1997). Role of the retinoic acid receptor beta (RARbeta) during mouse development. The International Journal of Developmental Biology, 41, 425–447.PubMedGoogle Scholar
  92. 92.
    Liao, W. L., & Liu, F. C. (2005). RARbeta isoform-specific regulation of DARPP-32 gene expression: an ectopic expression study in the developing rat telencephalon. The European Journal of Neuroscience, 21, 3262–3268.PubMedCrossRefGoogle Scholar
  93. 93.
    Bi, Y., Gong, M., Zhang, X., et al. (2010). Pre-activation of retinoid signaling facilitates neuronal differentiation of mesenchymal stem cells. Development, Growth & Differentiation, 52, 419–431.CrossRefGoogle Scholar
  94. 94.
    Goncalves, M. B., Boyle, J., Webber, D. J., Hall, S., Minger, S. L., & Corcoran, J. P. (2005). Timing of the retinoid-signalling pathway determines the expression of neuronal markers in neural progenitor cells. Developmental Biology, 278, 60–70.PubMedCrossRefGoogle Scholar
  95. 95.
    Franca Scintu, C. R. (2006). Rita pillai, manuela badiali, adele maria sanna, francesca argiolu, maria serafina ristaldi. Valeria Sogos. Differentiation of Human bone Marrow Stem Cells into Cells with a Neural Phenotype: Diverse Effects of two Specific Treatments. BMC Neuroscience, 7, 14.PubMedGoogle Scholar
  96. 96.
    Kim, C., Cheng, C. Y., Saldanha, S. A., & Taylor, S. S. (2007). PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Cell, 130, 1032–1043.PubMedCrossRefGoogle Scholar
  97. 97.
    Castro, A., Jerez, M. J., Gil, C., & Martinez, A. (2005). Cyclic nucleotide phosphodiesterases and their role in immunomodulatory responses: advances in the development of specific phosphodiesterase inhibitors. Medicinal Research Reviews, 25, 229–244.PubMedCrossRefGoogle Scholar
  98. 98.
    Dorsa, K. K., Santos, M. V., & Silva, M. R. (2010). Enhancing T3 and cAMP responsive gene participation in the thermogenic regulation of fuel oxidation pathways. Arquivos Brasileiros de Endocrinologia e Metabologia, 54, 381–389.PubMedCrossRefGoogle Scholar
  99. 99.
    Dugan, L. L., Kim, J. S., Zhang, Y., et al. (1999). Differential effects of cAMP in neurons and astrocytes. Role of B-raf. The Journal of Biological Chemistry, 274, 25842–25848.PubMedCrossRefGoogle Scholar
  100. 100.
    Sanchez, S., Jimenez, C., Carrera, A. C., Diaz-Nido, J., Avila, J., & Wandosell, F. (2004). A cAMP-activated pathway, including PKA and PI3K, regulates neuronal differentiation. Neurochemistry International, 44, 231–242.PubMedCrossRefGoogle Scholar
  101. 101.
    Ivins, J. K., Parry, M. K., & Long, D. A. (2004). A novel cAMP-dependent pathway activates neuronal integrin function in retinal neurons. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 24, 1212–1216.CrossRefGoogle Scholar
  102. 102.
    Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., & Silva, A. J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 79, 59–68.PubMedCrossRefGoogle Scholar
  103. 103.
    Dworkin, S., Heath, J. K., deJong-Curtain, T. A., et al. (2007). CREB activity modulates neural cell proliferation, midbrain-hindbrain organization and patterning in zebrafish. Developmental Biology, 307, 127–141.PubMedCrossRefGoogle Scholar
  104. 104.
    Mantamadiotis, T., Lemberger, T., Bleckmann, S. C., et al. (2002). Disruption of CREB function in brain leads to neurodegeneration. Nature Genetics, 31, 47–54.PubMedCrossRefGoogle Scholar
  105. 105.
    Gallagher, H. C., Bacon, C. L., Odumeru, O. A., Gallagher, K. F., Fitzpatrick, T., & Regan, C. M. (2004). Valproate activates phosphodiesterase-mediated cAMP degradation: relevance to C6 glioma G1 phase progression. Neurotoxicology and Teratology, 26, 73–81.PubMedCrossRefGoogle Scholar
  106. 106.
    Zhang, L., Seitz, L. C., Abramczyk, A. M., Liu, L., & Chan, C. (2011). CAMP initiates early phase neuron-like morphology changes and late phase neural differentiation in mesenchymal stem cells. Cellular and Molecular life Sciences : CMLS, 68, 863–876.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    McMahon, A. P. (2000). More surprises in the hedgehog signaling pathway. Cell, 100, 185–188.PubMedCrossRefGoogle Scholar
  108. 108.
    Liu, S., Dontu, G., & Wicha, M. S. (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer research : BCR, 7, 86–95.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Beachy, P. A., Hymowitz, S. G., Lazarus, R. A., Leahy, D. J., & Siebold, C. (2010). Interactions between hedgehog proteins and their binding partners come into view. Genes & Development, 24, 2001–2012.CrossRefGoogle Scholar
  110. 110.
    Berman, D. M., Karhadkar, S. S., Hallahan, A. R., et al. (2002). Medulloblastoma growth inhibition by hedgehog pathway blockade. Science, 297, 1559–1561.PubMedCrossRefGoogle Scholar
  111. 111.
    Liqing, Y., Jia, G., Jiqing, C., et al. (2011). Directed differentiation of motor neuron cell-like cells from human adipose-derived stem cells in vitro. Neuroreport, 22, 370–373.PubMedCrossRefGoogle Scholar
  112. 112.
    Yamanaka, H., Oue, T., Uehara, S., & Fukuzawa, M. (2010). Forskolin, a hedgehog signal inhibitor, inhibits cell proliferation and induces apoptosis in pediatric tumor cell lines. Molecular Medicine Reports, 3, 133–139.PubMedGoogle Scholar
  113. 113.
    Hyman, J. M., Firestone, A. J., Heine, V. M., et al. (2009). Small-molecule inhibitors reveal multiple strategies for hedgehog pathway blockade. Proceedings of the National Academy of Sciences of the United States of America, 106, 14132–14137.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Zhang, J., & Li, L. (2005). BMP signaling and stem cell regulation. Developmental Biology, 284, 1–11.PubMedCrossRefGoogle Scholar
  115. 115.
    Mishina, Y. (2003). Function of bone morphogenetic protein signaling during mouse development. Frontiers in Bioscience : a Journal and Virtual Library, 8, d855–d869.CrossRefGoogle Scholar
  116. 116.
    Miyazono, K., Kamiya, Y., & Morikawa, M. (2010). Bone morphogenetic protein receptors and signal transduction. Journal of Biochemistry, 147, 35–51.PubMedCrossRefGoogle Scholar
  117. 117.
    Ying, Q. L., Nichols, J., Chambers, I., & Smith, A. (2003). BMP induction of id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115, 281–292.PubMedCrossRefGoogle Scholar
  118. 118.
    Chen, C., Uludag, H., Wang, Z., & Jiang, H. (2012). Noggin suppression decreases BMP-2-induced osteogenesis of human bone marrow-derived mesenchymal stem cells in vitro. Journal of Cellular Biochemistry, 113, 3672–3680.PubMedCrossRefGoogle Scholar
  119. 119.
    Krause, C. (2014). The Imperative Balance of Agonist and Antagonist for BMP Signalling Driven Adult Tissue Homeostasis. Austin Biomark Diagn, 1–2.Google Scholar
  120. 120.
    Salinas, P. C. (2003). Synaptogenesis: Wnt and TGF-beta take centre stage. Current Biology : CB, 13, R60–R62.PubMedCrossRefGoogle Scholar
  121. 121.
    Salinas, P. C. (2012). Wnt signaling in the vertebrate central nervous system: from axon guidance to synaptic function. Cold Spring Harbor Perspectives in Biology, 4.Google Scholar
  122. 122.
    Zou, Y. (2004). Wnt signaling in axon guidance. Trends in Neurosciences, 27, 528–532.PubMedCrossRefGoogle Scholar
  123. 123.
    Ring, A., Kim, Y. M., & Kahn, M. (2014). Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Reviews, 10, 512–525.PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental Cell, 17, 9–26.PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Choi, H. J., Park, H., Lee, H. W., & Kwon, Y. G. (2012). The Wnt pathway and the roles for its antagonists, DKKS, in angiogenesis. IUBMB Life, 64, 724–731.PubMedCrossRefGoogle Scholar
  126. 126.
    Lu, J., Tan, L., Li, P., et al. (2009). All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways. BMC Cell Biology, 10, 57.PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Jang, S., Park, J., & Jeong, H. (2015). Neural differentiation of human adipose tissue-derived stem cells involves activation of the Wnt5a/JNK signalling. Stem Cells International, 2015, 7.CrossRefGoogle Scholar
  128. 128.
    Rosso, S. B., & Inestrosa, N. C. (2013). WNT signaling in neuronal maturation and synaptogenesis. Frontiers in Cellular Neuroscience, 7.Google Scholar
  129. 129.
    Bodmer, D., Levine-Wilkinson, S., Richmond, A., Hirsh, S., & Kuruvilla, R. (2009). Wnt5a mediates nerve growth factor-dependent axonal branching and growth in developing sympathetic neurons. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 29, 7569–7581.CrossRefGoogle Scholar
  130. 130.
    Paldino, E., Cenciarelli, C., Giampaolo, A., et al. (2014). Induction of dopaminergic neurons from human wharton’s jelly mesenchymal stem cell by forskolin. Journal of Cellular Physiology, 229, 232–244.PubMedCrossRefGoogle Scholar
  131. 131.
    Kim, H., Kim, S., Song, Y., Kim, W., Ying, Q. L., & Jho, E. H. (2015). Dual function of Wnt signaling during neuronal differentiation of mouse embryonic stem cells. Stem Cells International, 2015, 459301.PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology, 164, 247–256.PubMedCrossRefGoogle Scholar
  133. 133.
    Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61, 364–370.PubMedCrossRefGoogle Scholar
  134. 134.
    Yang, S., Lin, G., Tan, Y. Q., et al. (2008). Tumor progression of culture-adapted human embryonic stem cells during long-term culture. Genes, Chromosomes & Cancer, 47, 665–679.CrossRefGoogle Scholar
  135. 135.
    Rodriguez, A. M., Elabd, C., Delteil, F., et al. (2004). Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochemical and Biophysical Research Communications, 315, 255–263.PubMedCrossRefGoogle Scholar
  136. 136.
    Havlas, V., Kos, P., Jendelova, P., Lesny, P., Trc, T., & Sykova, E. (2011). Comparison of chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells with cultured chondrocytes and bone marrow mesenchymal stem cells. Acta Chirurgiae Orthopaedicae et Traumatologiae Cechoslovaca, 78, 138–144.PubMedGoogle Scholar
  137. 137.
    Kim, H. J., Park, S. H., Durham, J., Gimble, J. M., Kaplan, D. L., & Dragoo, J. L. (2012). In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffolds. Journal of Tissue engineering, 3, 2041731412466405.PubMedCentralPubMedCrossRefGoogle Scholar
  138. 138.
    Yoon, I. S., Chung, C. W., Sung, J. H., et al. (2011). Proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells in porous hyaluronic acid scaffold. Journal of Bioscience and Bioengineering, 112, 402–408.PubMedCrossRefGoogle Scholar
  139. 139.
    de Girolamo, L., Sartori, M. F., Albisetti, W., & Brini, A. T. (2007). Osteogenic differentiation of human adipose-derived stem cells: comparison of two different inductive media. Journal of Tissue Engineering and Regenerative Medicine, 1, 154–157.PubMedCrossRefGoogle Scholar
  140. 140.
    Fan, J., Park, H., Tan, S., & Lee, M. (2013). Enhanced osteogenesis of adipose derived stem cells with noggin suppression and delivery of BMP-2. PloS One, 8, e72474.PubMedCentralPubMedCrossRefGoogle Scholar
  141. 141.
    Luzi, E., Marini, F., Sala, S. C., Tognarini, I., Galli, G., & Brandi, M. L. (2008). Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. Journal of Bone and Mineral Research : The Official Journal of the American Society for Bone and Mineral Research, 23, 287–295.CrossRefGoogle Scholar
  142. 142.
    Goudenege, S., Pisani, D. F., Wdziekonski, B., et al. (2009). Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Molecular Therapy, 17, 1064–1072.PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Grauss, R. W., van Tuyn, J., Steendijk, P., et al. (2008). Forced myocardin expression enhances the therapeutic effect of human mesenchymal stem cells after transplantation in ischemic mouse hearts. Stem Cells, 26, 1083–1093.PubMedCrossRefGoogle Scholar
  144. 144.
    Jeon, E. S., Moon, H. J., Lee, M. J., et al. (2006). Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism. Journal of Cell Science, 119, 4994–5005.PubMedCrossRefGoogle Scholar
  145. 145.
    Sung, M. S., Mun, J. Y., Kwon, O., Kwon, K. S., & Oh, D. B. (2013). Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein. Biochemical and Biophysical Research Communications, 437, 156–161.PubMedCrossRefGoogle Scholar
  146. 146.
    Shevchenko, E. K., Makarevich, P. I., Tsokolaeva, Z. I., et al. (2013). Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. Journal of Translational Medicine, 11, 138.PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    Bhang, S. H., Jung, M. J., Shin, J. Y., et al. (2013). Mutual effect of subcutaneously transplanted human adipose-derived stem cells and pancreatic islets within fibrin gel. Biomaterials, 34, 7247–7256.PubMedCrossRefGoogle Scholar
  148. 148.
    Marappagounder, D., Somasundaram, I., Dorairaj, S., & Sankaran, R. J. (2013). Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro. Cellular & Molecular Biology Letters, 18, 75–88.CrossRefGoogle Scholar
  149. 149.
    Baer, P. C., Brzoska, M., & Geiger, H. (2011). Epithelial differentiation of human adipose-derived stem cells. Methods in Molecular Biology, 702, 289–298.PubMedCrossRefGoogle Scholar
  150. 150.
    Baer, P. C., Doring, C., Hansmann, M. L., Schubert, R., & Geiger, H. (2013). New insights into epithelial differentiation of human adipose-derived stem cells. Journal of Tissue Engineering and Regenerative Medicine, 7, 271–278.PubMedCrossRefGoogle Scholar
  151. 151.
    Griesche, N., Bereiter-Hahn, J., Geiger, H., Schubert, R., & Baer, P. C. (2012). During epithelial differentiation of human adipose-derived stromal/stem cells, expression of zonula occludens protein-1 is induced by a combination of retinoic acid, activin-a and bone morphogenetic protein-7. Cytotherapy, 14, 61–69.PubMedCrossRefGoogle Scholar
  152. 152.
    Jumabay, M., Abdmaulen, R., Ly, A., et al. (2014). Pluripotent stem cells derived from mouse and human white mature adipocytes. Stem Cells translational Medicine, 3, 161–171.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hossein Salehi
    • 1
  • Noushin Amirpour
    • 1
  • Ali Niapour
    • 2
  • Shahnaz Razavi
    • 1
  1. 1.Department of Anatomical Sciences and Molecular Biology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
  2. 2.Department of AnatomyArdabil University of Medical SciencesArdabilIran

Personalised recommendations