Advertisement

Stem Cell Reviews and Reports

, Volume 11, Issue 5, pp 728–742 | Cite as

Stem Cells for Temporomandibular Joint Repair and Regeneration

  • Shipin Zhang
  • Adrian U. J. Yap
  • Wei Seong TohEmail author
Article

Abstract

Temporomandibular Disorders (TMD) represent a heterogeneous group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles and/or associated structures. They are a major cause of non-dental orofacial pain. As a group, they are often multi-factorial in nature and have no common etiology or biological explanations. TMD can be broadly divided into masticatory muscle and TMJ disorders. TMJ disorders are characterized by intra-articular positional and/or structural abnormalities. The most common type of TMJ disorders involves displacement of the TMJ articular disc that precedes progressive degenerative changes of the joint leading to osteoarthritis (OA). In the past decade, progress made in the development of stem cell-based therapies and tissue engineering have provided alternative methods to attenuate the disease symptoms and even replace the diseased tissue in the treatment of TMJ disorders. Resident mesenchymal stem cells (MSCs) have been isolated from the synovia of TMJ, suggesting an important role in the repair and regeneration of TMJ. The seminal discovery of pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have provided promising cell sources for drug discovery, transplantation as well as for tissue engineering of TMJ condylar cartilage and disc. This review discusses the most recent advances in development of stem cell-based treatments for TMJ disorders through innovative approaches of cell-based therapeutics, tissue engineering and drug discovery.

Keywords

Stem cells Secretome Temporomandibular joint Cartilage Tissue engineering Tissue regeneration 

Notes

Acknowledgments

This work was supported by grants from the National University Healthcare System, National University of Singapore (R221000067133, R221000070733, R221000077733 and R221000083112) and National Medical Research Council Singapore (R221000080511).

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. 1.
    Jerjes, W., Upile, T., Abbas, S., Kafas, P., Vourvachis, M., Rob, J., et al. (2008). Muscle disorders and dentition-related aspects in temporomandibular disorders: controversies in the most commonly used treatment modalities. International Archives of Medicine, 1(1), 23.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Mountziaris, P. M., Kramer, P. R., & Mikos, A. G. (2009). Emerging intra-articular drug delivery systems for the temporomandibular joint. Methods, 47(2), 134–140.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Rigon, M., Pereira, L.M., Bortoluzzi, M.C., Loguercio, A.D., Ramos, A.L., & Cardoso, J.R. (2011). Arthroscopy for temporomandibular disorders. The Cochrane Library, Cd006385.Google Scholar
  4. 4.
    Murphy, M. K., MacBarb, R. F., Wong, M. E., & Athanasiou, K. A. (2012). Temporomandibular disorders: a review of etiology, clinical management, and tissue engineering strategies. The International Journal of Oral & Maxillofacial Implants, 28(6), e393–e414.CrossRefGoogle Scholar
  5. 5.
    LeResche, L. (1997). Epidemiology of temporomandibular disorders: implications for the investigation of etiologic factors. Critical Reviews in Oral Biology & Medicine, 8(3), 291–305.CrossRefGoogle Scholar
  6. 6.
    Guarda-Nardini, L., Piccotti, F., Mogno, G., Favero, L., & Manfredini, D. (2012). Age-related differences in temporomandibular disorder diagnoses. CRANIO®, 30(2), 103–109.Google Scholar
  7. 7.
    Peck, C. C., Goulet, J. P., Lobbezoo, F., Schiffman, E. L., Alstergren, P., Anderson, G., et al. (2014). Expanding the taxonomy of the diagnostic criteria for temporomandibular disorders. Journal of Oral Rehabilitation, 41(1), 2–23.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    de Leeuw, R., & Klasser, G. D. (2013). Orofacial pain: Guidelines for assessment, diagnosis, and management. Chicago: Quintessence Publishing Co, Inc.Google Scholar
  9. 9.
    Klausner, J. J. (1994). Epidemiologic studies reveal trends in temporomandibular pain and dysfunction. Journal of the Massachusetts Dental Society, 44(1), 21–25.Google Scholar
  10. 10.
    Wright, E. F., & North, S. L. (2009). Management and treatment of temporomandibular disorders: a clinical perspective. Journal of Manual & Manipulative Therapy, 17(4), 247–254.CrossRefGoogle Scholar
  11. 11.
    Tanaka, E., Detamore, M. S., & Mercuri, L. G. (2008). Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. Journal of Dental Research, 87(4), 296–307.PubMedCrossRefGoogle Scholar
  12. 12.
    Mujakperuo, H.R., Watson, M., Morrison, R., & Macfarlane, T.V. (2010). Pharmacological interventions for pain in patients with temporomandibular disorders. The Cochrane Library, Cd004715.Google Scholar
  13. 13.
    Gundlach, K. K. (1990). Long-term results following surgical treatment of internal derangement of the temporomandibular joint. Journal of Cranio-Maxillofacial Surgery, 18(5), 206–209.PubMedCrossRefGoogle Scholar
  14. 14.
    Dimitroulis, G. (2011). Condylar morphology after temporomandibular joint discectomy with interpositional abdominal dermis-fat graft. Journal of Oral and Maxillofacial Surgery, 69(2), 439–446.PubMedCrossRefGoogle Scholar
  15. 15.
    González-García, R. (2015). The current role and the future of minimally invasive temporomandibular joint surgery. Oral and Maxillofacial Surgery Clinics of North America, 27(1), 69–84.PubMedCrossRefGoogle Scholar
  16. 16.
    Dionne, R. A. (1997). Pharmacologic treatments for temporomandibular disorders. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 83(1), 134–142.PubMedCrossRefGoogle Scholar
  17. 17.
    Long, X., Chen, G., Cheng, A. H., Cheng, Y., Deng, M., Cai, H., et al. (2009). A randomized controlled trial of superior and inferior temporomandibular joint space injection with hyaluronic acid in treatment of anterior disc displacement without reduction. Journal of Oral and Maxillofacial Surgery, 67(2), 357–361.PubMedCrossRefGoogle Scholar
  18. 18.
    Agus, B., Weisberg, J., & Friedman, M. H. (1983). Therapeutic injection of the temporomandibular joint. Oral Surgery, Oral Medicine, Oral Pathology, 55(6), 553–555.PubMedCrossRefGoogle Scholar
  19. 19.
    Detamore, M. S., & Athanasiou, K. A. (2005). Evaluation of three growth factors for TMJ disc tissue engineering. Annals of Biomedical Engineering, 33(3), 383–390.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Johns, D. E., Wong, M. E., & Athanasiou, K. A. (2008). Clinically relevant cell sources for TMJ disc engineering. Journal of Dental Research, 87(6), 548–552.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Anderson, D. E. J., & Athanasiou, K. A. (2009). A comparison of primary and passaged chondrocytes for use in engineering the temporomandibular joint. Archives of Oral Biology, 54(2), 138–145.PubMedCrossRefGoogle Scholar
  22. 22.
    Allen, K. D., & Athanasiou, K. A. (2007). Effect of passage and topography on gene expression of temporomandibular joint disc cells. Tissue Engineering, 13(1), 101–110.PubMedCrossRefGoogle Scholar
  23. 23.
    Wu, Y., Gong, Z., Li, J., Meng, Q., Fang, W., & Long, X. (2014). The pilot study of fibrin with temporomandibular joint derived synovial stem cells in repairing TMJ disc perforation. BioMediciine Research International, 2014, 454021.Google Scholar
  24. 24.
    Ahtiainen, K., Mauno, J., Ellä, V., Hagström, J., Lindqvist, C., Miettinen, S., et al. (2013). Autologous adipose stem cells and polylactide discs in the replacement of the rabbit temporomandibular joint disc. Journal of the Royal Society Interface, 10(85), 20130287.PubMedCentralCrossRefGoogle Scholar
  25. 25.
    Alhadlaq, A., Elisseeff, J. H., Hong, L., Williams, C. G., Caplan, A. I., Sharma, B., et al. (2004). Adult stem cell driven genesis of human-shaped articular condyle. Annals of Biomedical Engineering, 32(7), 911–923.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang, J., Guo, F., Mi, J., & Zhang, Z. (2014). Periodontal ligament mesenchymal stromal cells increase proliferation and glycosaminoglycans formation of temporomandibular joint derived fibrochondrocytes. BioMedicine Research International, 2014, 410167.Google Scholar
  27. 27.
    da Silva Meirelles, L., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine and Growth Factor Reviews, 20(5), 419–427.CrossRefGoogle Scholar
  28. 28.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.PubMedCrossRefGoogle Scholar
  29. 29.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang, L., Tran, I., Seshareddy, K., Weiss, M. L., & Detamore, M. S. (2009). A comparison of human bone marrow—derived mesenchymal stem cells and human umbilical cord—derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Engineering Part A, 15(8), 2259–2266.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen, K., Man, C., Zhang, B., Hu, J., & Zhu, S. S. (2013). Effect of in vitro chondrogenic differentiation of autologous mesenchymal stem cells on cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint. International Journal of Oral and Maxillofacial Surgery, 42(2), 240–248.PubMedCrossRefGoogle Scholar
  32. 32.
    Zheng, Y. H., Su, K., Jian, Y. T., Kuang, S. J., & Zhang, Z. G. (2011). Basic fibroblast growth factor enhances osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells in coral scaffold constructs. Journal of Tissue Engineering and Regenerative Medicine, 5(7), 540–550.PubMedCrossRefGoogle Scholar
  33. 33.
    Toh, W. S., Liu, H., Heng, B. C., Rufaihah, A. J., Ye, C. P., & Cao, T. (2005). Combined effects of TGFβ1 and BMP2 in serum-free chondrogenic differentiation of mesenchymal stem cells induced hyaline-like cartilage formation. Growth Factors, 23(4), 313–321.PubMedCrossRefGoogle Scholar
  34. 34.
    Ciocca, L., Donati, D., Ragazzini, S., Dozza, B., Rossi, F., Fantini, M., et al. (2013) Mesenchymal stem cells and platelet gel improve bone deposition within CAD-CAM custom-made ceramic HA scaffolds for condyle substitution. BioMedicine Research International, 2013, 549762. Google Scholar
  35. 35.
    Cao, B., Zheng, B., Jankowski, R. J., Kimura, S., Ikezawa, M., Deasy, B., et al. (2003) Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nature Cell Biology, 5(7), 640646.Google Scholar
  36. 36.
    Gao, Y., Bai, C., Xiong, H., Li, Q., Shan, Z., Huang, L., et al. (2013) Isolation and characterization of chicken dermis-derived mesenchymal stem/progenitor cells. BioMedicine Research International. 2013, 626258.Google Scholar
  37. 37.
    Wu, L., Cai, X., Zhang, S., Karperien, M., & Lin, Y. (2013). Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine. Journal of Cellular Physiology, 228(5), 938–944.PubMedCrossRefGoogle Scholar
  38. 38.
    Gimble, J. M., & Guilak, F. (2003). Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 5(5), 362–369.PubMedCrossRefGoogle Scholar
  39. 39.
    Fu, W. L., Zhou, C. Y., & Yu, J. K. (2014). A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived From mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. The American Journal of Sports Medicine, 42(3), 592–601.PubMedCrossRefGoogle Scholar
  40. 40.
    Huang, G. J., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792–806.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    De Bari, C., Dell’Accio, F., Tylzanowski, P., & Luyten, F. P. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis and Rheumatism, 44(8), 1928–1942.PubMedCrossRefGoogle Scholar
  42. 42.
    Jones, B. A., & Pei, M. (2012). Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Engineering, Part B: Reviews, 18(4), 301–311.CrossRefGoogle Scholar
  43. 43.
    Koyama, N., Okubo, Y., Nakao, K., Osawa, K., Fujimura, K., & Bessho, K. (2011). Pluripotency of mesenchymal cells derived from synovial fluid in patients with temporomandibular joint disorder. Life Sciences, 89(19), 741–747.PubMedCrossRefGoogle Scholar
  44. 44.
    Liu, Z., Long, X., Li, J., Wei, L., Gong, Z., Fang, W. (2011). Differentiation of temporomandibular joint synovial mesenchymal stem cells into neuronal cells in vitro: an in vitro study. Cell Biology International, 35(1), 87–91.Google Scholar
  45. 45.
    Sun, Y. P., Zheng, Y. H., Liu, W. J., Zheng, Y. L., & Zhang, Z. G. (2014). Synovium fragment-derived cells exhibit characteristics similar to those of dissociated multipotent cells in synovial fluid of the temporomandibular joint. PLoS ONE, 9(7), e101896.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Futami, I., Ishijima, M., Kaneko, H., Tsuji, K., Ichikawa-Tomikawa, N., Sadatsuki, R., et al. (2012). Isolation and characterization of multipotential mesenchymal cells from the mouse synovium. PLoS ONE, 7(9), e45517.Google Scholar
  47. 47.
    Pizzute, T., Lynch, K., & Pei, M. (2015). Impact of tissue-specific stem cells on lineage-specific differentiation: a focus on the musculoskeletal system. Stem Cell Reviews and Reports, 11(1), 119–132.PubMedCrossRefGoogle Scholar
  48. 48.
    Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis and Rheumatism, 52(8), 2521–2529.PubMedCrossRefGoogle Scholar
  49. 49.
    Pei, M., He, F., Boyce, B. M., & Kish, V. L. (2009). Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis and Cartilage, 17(6), 714–722.PubMedCrossRefGoogle Scholar
  50. 50.
    Yoshimura, H., Muneta, T., Nimura, A., Yokoyama, A., Koga, H., & Sekiya, I. (2007). Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell and Tissue Research, 327(3), 449–462.PubMedCrossRefGoogle Scholar
  51. 51.
    Handorf, A. M., & Li, W. J. (2014). Induction of mesenchymal stem cell chondrogenesis through sequential administration of growth factors within specific temporal windows. Journal of Cellular Physiology, 229(2), 162–171.PubMedCrossRefGoogle Scholar
  52. 52.
    Shirasawa, S., Sekiya, I., Sakaguchi, Y., Yagishita, K., Ichinose, S., & Muneta, T. (2006). In vitro chondrogenesis of human synovium‐derived mesenchymal stem cells: Optimal condition and comparison with bone marrow‐derived cells. Journal of Cellular Biochemistry, 97(1), 84–97.PubMedCrossRefGoogle Scholar
  53. 53.
    Indrawattana, N., Chen, G., Tadokoro, M., Shann, L. H., Ohgushi, H., Tateishi, T., et al. (2004). Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochemical and Biophysical Research Communications, 320(3), 914–919.PubMedCrossRefGoogle Scholar
  54. 54.
    Li, J., & Pei, M. (2010). Optimization of an in vitro three-dimensional microenvironment to reprogram synovium-derived stem cells for cartilage tissue engineering. Tissue Engineering Part A, 17(5–6), 703–712.PubMedGoogle Scholar
  55. 55.
    Schek, R. M., Taboas, J. M., Hollister, S. J., & Krebsbach, P. H. (2005). Tissue engineering osteochondral implants for temporomandibular joint repair. Orthodontics & Craniofacial Research, 8(4), 313–319.CrossRefGoogle Scholar
  56. 56.
    Handorf, A. M., & Li, W. J. (2011). Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis. PLoS ONE, 6(7), e22887.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Adesida, A. B., Mulet-Sierra, A., & Jomha, N. M. (2012). Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Research & Therapy, 3(2), 1–13.CrossRefGoogle Scholar
  58. 58.
    Boyette, L. B., Creasey, O. A., Guzik, L., Lozito, T., & Tuan, R. S. (2014). Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Translational Medicine, 3(2), 241–254.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Toh, W. S., Foldager, C. B., Pei, M., & Hui, J. H. P. (2014). Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration. Stem Cell Reviews and Reports, 10(5), 686–696.PubMedCrossRefGoogle Scholar
  60. 60.
    Toh, W. S. (2014). Recent progress in stem cell chondrogenesis. Progress in Stem Cell, 1(1), 7–17.CrossRefGoogle Scholar
  61. 61.
    Grayson, W. L., Fröhlich, M., Yeager, K., Bhumiratana, S., Chan, M. E., Cannizzaro, C., et al. (2010). Engineering anatomically shaped human bone grafts. Proceedings of the National Academy of Sciences, 107(8), 3299–3304.CrossRefGoogle Scholar
  62. 62.
    O’Donoghue, K., & Chan, J. (2006). Human fetal mesenchymal stem cells. Current Stem Cell Research & Therapy, 1(3), 371–386.CrossRefGoogle Scholar
  63. 63.
    Bara, J. J., McCarthy, H. E., Humphrey, E., Johnson, W. E., & Roberts, S. (2014). Bone marrow-derived mesenchymal stem cells become antiangiogenic when chondrogenically or osteogenically differentiated: implications for bone and cartilage tissue engineering. Tissue Engineering Part A, 20(1–2), 147–159.PubMedCrossRefGoogle Scholar
  64. 64.
    Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 18(4), 399–404.PubMedCrossRefGoogle Scholar
  65. 65.
    Odorico, J. S., Kaufman, D. S., & Thomson, J. A. (2001). Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 19(3), 193–204.PubMedCrossRefGoogle Scholar
  66. 66.
    Chong, J. J., Yang, X., Don, C. W., Minami, E., Liu, Y. W., Weyers, J. J., et al. (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature, 510(7504), 273–277.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Boheler, K. R., Czyz, J., Tweedie, D., Yang, H. T., Anisimov, S. V., & Wobus, A. M. (2002). Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circulation Research, 91(3), 189–201.PubMedCrossRefGoogle Scholar
  68. 68.
    Rufaihah, A. J., Haider, H. K., Heng, B. C., Ye, L., Toh, W. S., Tian, X. F., et al. (2007). Directing endothelial differentiation of human embryonic stem cells via transduction with an adenoviral vector expressing the VEGF165 gene. The Journal of Gene Medicine, 9(6), 452–461.PubMedCrossRefGoogle Scholar
  69. 69.
    Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., & Langer, R. (2002). Endothelial cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences, 99(7), 4391–4396.CrossRefGoogle Scholar
  70. 70.
    Rufaihah, A. J., Haider, H. K., Heng, B. C., Ye, L., Tan, R. S., Toh, W. S., et al. (2010). Therapeutic angiogenesis by transplantation of human embryonic stem cell-derived CD133+ endothelial progenitor cells for cardiac repair. Regenerative Medicine, 5(2), 231–244.PubMedCrossRefGoogle Scholar
  71. 71.
    Toh, W. S., Yang, Z., Liu, H., Heng, B. C., Lee, E. H., & Cao, T. (2007). Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells, 25(4), 950–960.PubMedCrossRefGoogle Scholar
  72. 72.
    Oldershaw, R. A., Baxter, M. A., Lowe, E. T., Bates, N., Grady, L. M., Soncin, F., et al. (2010). Directed differentiation of human embryonic stem cells toward chondrocytes. Nature Biotechnology, 28(11), 1187–1194.PubMedCrossRefGoogle Scholar
  73. 73.
    Toh, W. S., Lee, E. H., & Cao, T. (2011). Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Reviews and Reports, 7(3), 544–559.PubMedCrossRefGoogle Scholar
  74. 74.
    Toh, W. S., Lee, E. H., Guo, X. M., Chan, J. K., Yeow, C. H., Choo, A. B., et al. (2010). Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials, 31(27), 6968–6980.PubMedCrossRefGoogle Scholar
  75. 75.
    Toh, W. S., Guo, X. M., Choo, A. B., Lu, K., Lee, E. H., & Cao, T. (2009). Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro. Journal of Cellular and Molecular Medicine, 13(9b), 3570–3590.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Cao, T., Heng, B. C., Ye, C. P., Liu, H., Toh, W. S., Robson, P., et al. (2005). Osteogenic differentiation within intact human embryoid bodies result in a marked increase in osteocalcin secretion after 12 days of in vitro culture, and formation of morphologically distinct nodule-like structures. Tissue and Cell, 37(4), 325–334.PubMedCrossRefGoogle Scholar
  77. 77.
    Hu, J., Smith, L. A., Feng, K., Liu, X., Sun, H., & Ma, P. X. (2010). Response of human embryonic stem cell-derived mesenchymal stem cells to osteogenic factors and architectures of materials during in vitro osteogenesis. Tissue Engineering Part A, 16(11), 3507–3514.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Heng, B. C., Toh, W. S., Pereira, B. P., Tan, B. L., Fu, X., Liu, H., et al. (2008). An autologous cell lysate extract from human embryonic stem cell (hESC) derived osteoblasts can enhance osteogenesis of hESC. Tissue and Cell, 40(3), 219–228.PubMedCrossRefGoogle Scholar
  79. 79.
    Zhang, S. C., Wernig, M., Duncan, I. D., Brüstle, O., & Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology, 19(12), 1129–1133.PubMedCrossRefGoogle Scholar
  80. 80.
    Parsons, X. H., Teng, Y. D., Parsons, J. F., Snyder, E. Y., Smotrich, D. B., & Moore, D. A. (2011). Efficient derivation of human neuronal progenitors and neurons from pluripotent human embryonic stem cells with small molecule induction. Journal of Visualized Experiments: JoVE, 56, e3273.PubMedGoogle Scholar
  81. 81.
    Ozolek, J. A., Jane, E. P., Esplen, J. E., Petrosko, P., Wehn, A. K., Erb, T. M., et al. (2010). In vitro neural differentiation of human embryonic stem cells using a low-density mouse embryonic fibroblast feeder protocol. Methods in Molecular Biology (Clifton, NJ), 584, 71–95.CrossRefGoogle Scholar
  82. 82.
    Chan, A. A., Hertsenberg, A. J., Funderburgh, M. L., Mann, M. M., Du, Y., Davoli, K. A., et al. (2013). Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype. PLoS ONE, 8(2), e56831.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Kidwai, F. K., Liu, H., Toh, W. S., Fu, X., Jokhun, D. S., Movahednia, M. M., et al. (2013). Differentiation of human embryonic stem cells into clinically amenable keratinocytes in an autogenic environment. Journal of Investigative Dermatology, 133(3), 618–628.PubMedCrossRefGoogle Scholar
  84. 84.
    Hay, D. C., Zhao, D., Fletcher, J., Hewitt, Z. A., McLean, D., Urruticoechea‐Uriguen, A., et al. (2008). Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells, 26(4), 894–902.PubMedCrossRefGoogle Scholar
  85. 85.
    Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146.PubMedCrossRefGoogle Scholar
  86. 86.
    Chun, Y. S., Chaudhari, P., & Jang, Y. Y. (2010). Applications of patient-specific induced pluripotent stem cells; focused on disease modeling, drug screening and therapeutic potentials for liver disease. International Journal of Biological Sciences, 6(7), 796–805.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Colman, A., & Dreesen, O. (2009). Pluripotent stem cells and disease modeling. Cell Stem Cell, 5(3), 244–247.PubMedCrossRefGoogle Scholar
  88. 88.
    Rosa, V., Toh, W. S., Cao, T., & Shim, W. (2014). Inducing pluripotency for disease modeling, drug development and craniofacial applications. Expert Opinion on Biological Therapy, 14(9), 1233–1240.PubMedCrossRefGoogle Scholar
  89. 89.
    Saha, K., & Jaenisch, R. (2009). Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell, 5(6), 584–595.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Kim, M. J., Son, M. J., Son, M. Y., Seol, B., Kim, J., Park, J., et al. (2011). Generation of human induced pluripotent stem cells from osteoarthritis patient-derived synovial cells. Arthritis and Rheumatism, 63(10), 3010–3021.PubMedCrossRefGoogle Scholar
  91. 91.
    Wei, Y., Zeng, W., Wan, R., Wang, J., Zhou, Q., Qiu, S., et al. (2012). Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix. European Cells & Materials, 23, 1–12.Google Scholar
  92. 92.
    Lee, J., Kim, Y., Yi, H., Diecke, S., Kim, J., Jung, H., et al. (2014). Generation of disease-specific induced pluripotent stem cells from patients with rheumatoid arthritis and osteoarthritis. Arthritis Reseach and Therapy, 16(1), R41.CrossRefGoogle Scholar
  93. 93.
    Craft, A. M., Ahmed, N., Rockel, J. S., Baht, G. S., Alman, B. A., Kandel, R. A., et al. (2013). Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development, 140(12), 2597–2610.PubMedCrossRefGoogle Scholar
  94. 94.
    Khillan, J. S. (2006). Generation of chondrocytes from embryonic stem cells. Methods in Molecular Biology (Clifton, NJ), 330, 161–170.Google Scholar
  95. 95.
    Heng, B. C., Cao, T., & Lee, E. H. (2004). Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells, 22(7), 1152–1167.PubMedCrossRefGoogle Scholar
  96. 96.
    Toh, W. S., Lee, E. H., Richards, M., & Cao, T. (2010). In vitro derivation of chondrogenic cells from human embryonic stem cells. Methods in Molecular Biology (Clifton, NJ), 584, 317–331.CrossRefGoogle Scholar
  97. 97.
    Hoben, G. M., Willard, V. P., & Athanasiou, K. A. (2009). Fibrochondrogenesis of hESCs: growth factor combinations and cocultures. Stem Cells and Development, 18(2), 283–292.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Nakayama, N., Duryea, D., Manoukian, R., Chow, G., & Han, C. Y. (2003). Macroscopic cartilage formation with embryonic stem-cell-derived mesodermal progenitor cells. Journal of Cell Science, 116(10), 2015–2028.PubMedCrossRefGoogle Scholar
  99. 99.
    Yang, Z., Sui, L., Toh, W. S., Lee, E. H., & Cao, T. (2009). Stage-dependent effect of TGF-β1 on chondrogenic differentiation of human embryonic stem cells. Stem Cells and Development, 18(6), 929–940.PubMedCrossRefGoogle Scholar
  100. 100.
    Umeda, K., Zhao, J., Simmons, P., Stanley, E., Elefanty, A., & Nakayama, N. (2012). Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Scientific Reports, 2, 455–465.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Vats, A., Bielby, R. C., Tolley, N., Dickinson, S. C., Boccaccini, A. R., Hollander, A. P., et al. (2006). Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Engineering, 12(6), 1687–1697.PubMedCrossRefGoogle Scholar
  102. 102.
    Bigdeli, N., Karlsson, C., Strehl, R., Concaro, S., Hyllner, J., & Lindahl, A. (2009). Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells, 27(8), 1812–1821.PubMedCrossRefGoogle Scholar
  103. 103.
    Hwang, N. S., Varghese, S., & Elisseeff, J. (2008). Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS ONE, 3(6), e2498.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Lian, Q., Lye, E., Suan Yeo, K., Khia Way Tan, E., Salto‐Tellez, M., Liu, T. M., et al. (2007). Derivation of clinically compliant MSCs from CD105+, CD24− differentiated human ESCs. Stem Cells, 25(2), 425–436.PubMedCrossRefGoogle Scholar
  105. 105.
    Olee, T., Grogan, S. P., Lotz, M. K., Colwell, C. W., Jr., D’Lima, D. D., & Snyder, E. Y. (2014). Repair of cartilage defects in arthritic tissue with differentiated human embryonic stem cells. Tissue Engineering Part A, 20(3–4), 683–692.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Cheng, A., Kapacee, Z., Peng, J., Lu, S., Lucas, R. J., Hardingham, T. E., et al. (2014). Cartilage repair using human embryonic stem cell-derived chondroprogenitors. Stem Cells Translational Medicine, 3(11), 1287–1294.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Barberi, T., Willis, L. M., Socci, N. D., & Studer, L. (2005). Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Medicine, 2(6), e161.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Chen, X., Song, X. H., Yin, Z., Zou, X. H., Wang, L. L., Hu, H., et al. (2009). Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. Stem Cells, 27(6), 1276–1287.PubMedCrossRefGoogle Scholar
  109. 109.
    Karlsson, C., Emanuelsson, K., Wessberg, F., Kajic, K., Axell, M. Z., Eriksson, P. S., et al. (2009). Human embryonic stem cell-derived mesenchymal progenitors—potential in regenerative medicine. Stem Cell Research, 3(1), 39–50.PubMedCrossRefGoogle Scholar
  110. 110.
    Lee, E. J., Lee, H. N., Kang, H. J., Kim, K. H., Hur, J., Cho, H. J., et al. (2009). Novel embryoid body-based method to derive mesenchymal stem cells from human embryonic stem cells. Tissue Engineering Part A, 16(2), 705–715.CrossRefGoogle Scholar
  111. 111.
    Ankrum, J., & Karp, J. M. (2010). Mesenchymal stem cell therapy: two steps forward, one step back. Trends in Molecular Medicine, 16(5), 203–209.PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Lai, R. C., Tan, S. S., Teh, B. J., Sze, S. K., Arslan, F., de Kleijn, D. P., et al. (2012). Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. International Journal of Proteomics, 2012, 971907.PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Lai, R.C., Yeo, R.W.Y., Tan, S.S., Zhang, B., Yin, Y., Sze, N.S.K., et al. (2012). Mesenchymal stem cell exosomes: The future MSC-based therapy? Mesenchymal Stem Cell Therapy, 39–61. Humana press.Google Scholar
  114. 114.
    MacFarlane, R. J., Graham, S. M., Davies, P. S., Korres, N., Tsouchnica, H., Heliotis, M., et al. (2013). Anti-inflammatory role and immunomodulation of mesenchymal stem cells in systemic joint diseases: potential for treatment. Expert Opinion on Therapeutic Targets, 17(3), 243–254.PubMedCrossRefGoogle Scholar
  115. 115.
    Yagi, H., Soto-Gutierrez, A., Parekkadan, B., Kitagawa, Y., Tompkins, R. G., Kobayashi, N., et al. (2010). Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplantation, 19(6), 667–679.PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Sze, S. K., de Kleijn, D. P., Lai, R. C., Tan, E. K. W., Zhao, H., Yeo, K. S., et al. (2007). Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Molecular & Cellular Proteomics, 6(10), 1680–1689.CrossRefGoogle Scholar
  117. 117.
    Lee, M. J., Kim, J., Kim, M. Y., Bae, Y., Ryu, S. H., Lee, T. G., et al. (2010). Proteomic analysis of tumor necrosis factor-alpha-induced secretome of human adipose tissue-derived mesenchymal stem cells. Journal of Proteome Research, 9(4), 1754–1762.PubMedCrossRefGoogle Scholar
  118. 118.
    YlÖstalo, J. H., Bartosh, T. J., Coble, K., & Prockop, D. J. (2012). Human mesenchymal stem/stromal cells cultured as spheroids are self‐activated to produce prostaglandin E2 that directs stimulated macrophages into an anti‐inflammatory phenotype. Stem Cells, 30(10), 2283–2296.PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Khan, M., Akhtar, S., Mohsin, S., Khan, N. S., & Riazuddin, S. (2011). Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells and Development, 20(1), 67–75.PubMedCrossRefGoogle Scholar
  120. 120.
    Cho, G. W., Kang, B. Y., Kim, K. S., & Kim, S. H. (2012). Effects of valproic acid on the expression of trophic factors in human bone marrow mesenchymal stromal cells. Neuroscience Letters, 526(2), 100–105.PubMedCrossRefGoogle Scholar
  121. 121.
    Liu, G. S., Peshavariya, H. M., Higuchi, M., Chan, E. C., Dusting, G. J., & Jiang, F. (2013). Pharmacological priming of adipose‐derived stem cells for paracrine VEGF production with deferoxamine. Journal of Tissue Engineering and Regenerative Medicine. doi: 10.1002/term.1796.Google Scholar
  122. 122.
    Bartosh, T. J., Ylöstalo, J. H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., et al. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences, 107(31), 13724–13729.CrossRefGoogle Scholar
  123. 123.
    Tse, W. T., Pendleton, J. D., Beyer, W. M., Egalka, M. C., & Guinan, E. C. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 75(3), 389–397.PubMedCrossRefGoogle Scholar
  124. 124.
    Krampera, M., Glennie, S., Dyson, J., Scott, D., Laylor, R., Simpson, E., & Dazzi, F. (2003). Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 101(9), 3722–3729.PubMedCrossRefGoogle Scholar
  125. 125.
    Liu, H., Lu, K., MacAry, P. A., Wong, K. L., Heng, A., Cao, T., et al. (2012). Soluble molecules are key in maintaining the immunomodulatory activity of murine mesenchymal stromal cells. Journal of Cell Science, 125(1), 200–208.PubMedCrossRefGoogle Scholar
  126. 126.
    English, K., Barry, F., Field-Corbett, C., & Mahon, B. (2007). IFN- gamma and TNF- alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunology Letters, 110(2), 91–100.PubMedCrossRefGoogle Scholar
  127. 127.
    Ortiz, L. A., DuTreil, M., Fattman, C., Pandey, A. C., Torres, G., Go, K., et al. (2007). Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11002–11007.PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Van Koppen, A., Joles, J. A., van Balkom, B. W., Lim, S. K., de Kleijn, D., Giles, R. H., et al. (2012). Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. PLoS ONE, 7(6), e38746.PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Timmers, L., Lim, S. K., Hoefer, I. E., Arslan, F., Lai, R. C., van Oorschot, A. A., et al. (2011). Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Research, 6(3), 206–214.PubMedCrossRefGoogle Scholar
  130. 130.
    Locatelli, F., Bersano, A., Ballabio, E., Lanfranconi, S., Papadimitriou, D., Strazzer, S., et al. (2009). Stem cell therapy in stroke. Cellular and Molecular Life Sciences, 66(5), 757–772.PubMedCrossRefGoogle Scholar
  131. 131.
    Linero, I., & Chaparro, O. (2014). Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS ONE, 9(9), e107001.PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Diekman, B. O., Wu, C. L., Louer, C. R., Furman, B. D., Huebner, J. L., Kraus, V. B., et al. (2013). Intra-articular delivery of purified mesenchymal stem cells from C57BL/6 or MRL/MpJ superhealer mice prevents post-traumatic arthritis. Cell Transplantation, 22(8), 1395–1408.PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Horie, M., Choi, H., Lee, R. H., Reger, R. L., Ylostalo, J., Muneta, T., et al. (2012). Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that enhances expression of type II collagen. Osteoarthritis and Cartilage, 20(10), 1197–1207.PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Van Buul, G. M., Villafuertes, E., Bos, P. K., Waarsing, J. H., Kops, N., Narcisi, R., et al. (2012). Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explant culture. Osteoarthritis and Cartilage, 20(10), 1186–1196.PubMedCrossRefGoogle Scholar
  135. 135.
    Wu, L., Leijten, J. C., Georgi, N., Post, J. N., van Blitterswijk, C. A., & Karperien, M. (2011). Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Engineering Part A, 17(9–10), 1425–1436.PubMedCrossRefGoogle Scholar
  136. 136.
    Wu, L., Prins, H. J., Helder, M. N., van Blitterswijk, C. A., & Karperien, M. (2012). Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Engineering Part A, 18(15–16), 1542–1551.PubMedCrossRefGoogle Scholar
  137. 137.
    Petrovic, V., Zivkovic, P., Petrovic, D., & Stefanovic, V. (2012). Craniofacial bone tissue engineering. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 114(3), e1–e9.PubMedCrossRefGoogle Scholar
  138. 138.
    Toh, W. S., Spector, M., Lee, E. H., & Cao, T. (2011). Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage. Molecular Pharmaceutics, 8(4), 994–1001.PubMedCrossRefGoogle Scholar
  139. 139.
    Allen, K. D., & Athanasiou, K. A. (2008). Scaffold and growth factor selection in temporomandibular joint disc engineering. Journal of Dental Research, 87(2), 180–185.PubMedCrossRefGoogle Scholar
  140. 140.
    Almarza, A. J., & Athanasiou, K. A. (2004). Seeding techniques and scaffolding choice for tissue engineering of the temporomandibular joint disc. Tissue Engineering, 10(11–12), 1787–1795.PubMedCrossRefGoogle Scholar
  141. 141.
    Chung, C., & Burdick, J. A. (2008). Engineering cartilage tissue. Advanced Drug Delivery Reviews, 60(2), 243–262.PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    Mao, J. J., Giannobile, W. V., Helms, J. A., Hollister, S. J., Krebsbach, P. H., Longaker, M. T., et al. (2006). Craniofacial tissue engineering by stem cells. Journal of Dental Research, 85(11), 966–979.PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Nicodemus, G. D., Villanueva, I., & Bryant, S. J. (2007). Mechanical stimulation of TMJ condylar chondrocytes encapsulated in PEG hydrogels. Journal of Biomedical Materials Research, Part A, 83(2), 323–331.CrossRefGoogle Scholar
  144. 144.
    Toh, W. S., Lim, T. C., Kurisawa, M., & Spector, M. (2012). Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials, 33(15), 3835–3845.PubMedCrossRefGoogle Scholar
  145. 145.
    MacBarb, R. F., Chen, A. L., Hu, J. C., & Athanasiou, K. A. (2013). Engineering functional anisotropy in fibrocartilage neotissues. Biomaterials, 34(38), 9980–9989.PubMedCrossRefGoogle Scholar
  146. 146.
    Toh, W. S., & Loh, X. J. (2014). Advances in hydrogel delivery systems for tissue regeneration. Materials Science and Engineering: C, 45, 690–697.CrossRefGoogle Scholar
  147. 147.
    Detamore, M. S., & Athanasiou, K. A. (2003). Motivation, characterization, and strategy for tissue engineering the temporomandibular joint disc. Tissue Engineering, 9(6), 1065–1087.PubMedCrossRefGoogle Scholar
  148. 148.
    Moioli, E. K., Clark, P. A., Xin, X., Lal, S., & Mao, J. J. (2007). Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Advanced Drug Delivery Reviews, 59(4), 308–324.PubMedCentralPubMedCrossRefGoogle Scholar
  149. 149.
    Toh, W.S., Toh, Y.C., & Loh, X.J. (2015). Hydrogels for stem cell fate control and delivery in regenerative medicine. In: In-situ gelling polymers 187–214. Springer Singapore. doi: 10.1007/978-981-287-152-7_8
  150. 150.
    Hagandora, C. K., Gao, J., Wang, Y., & Almarza, A. J. (2013). Poly (glycerol sebacate): a novel scaffold material for temporomandibular joint disc engineering. Tissue Engineering Part A, 19(5–6), 729–737.PubMedCentralPubMedCrossRefGoogle Scholar
  151. 151.
    Allen, K. D., & Athanasiou, K. A. (2006). Tissue engineering of the TMJ disc: a review. Tissue Engineering, 12(5), 1183–1196.PubMedCrossRefGoogle Scholar
  152. 152.
    Brown, B. N., Chung, W. L., Almarza, A. J., Pavlick, M., Reppas, S., Ochs, M. W., & Badylak, S. F. (2012). An inductive, scaffold-based, regenerative medicine approach to reconstruction of the temporomandibular joint disk. Journal of Oral and Maxillofacial Surgery, 70(11), 2656–2668.PubMedCentralPubMedCrossRefGoogle Scholar
  153. 153.
    Dimitroulis, G. (2005). The use of dermis grafts after discectomy for internal derangement of the temporomandibular joint. Journal of Oral and Maxillofacial Surgery, 63(2), 173–178.PubMedCrossRefGoogle Scholar
  154. 154.
    Thyne, G. M., Yoon, J. H., Luyk, N. H., & McMillan, M. D. (1992). Temporalis muscle as a disc replacement in the temporomandibular joint of sheep. Journal of Oral and Maxillofacial Surgery, 50(9), 979–987.PubMedCrossRefGoogle Scholar
  155. 155.
    Schek, R. M., Taboas, J. M., Segvich, S. J., Hollister, S. J., & Krebsbach, P. H. (2004). Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Engineering, 10(9–10), 1376–1385.PubMedCrossRefGoogle Scholar
  156. 156.
    Alhadlaq, A., & Mao, J. J. (2005). Tissue-engineered osteochondral constructs in the shape of an articular condyle. The Journal of Bone and Joint Surgery, 87(5), 936–944.PubMedCrossRefGoogle Scholar
  157. 157.
    Lutolf, M. P., & Hubbell, J. A. (2005). Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, 23(1), 47–55.PubMedCrossRefGoogle Scholar
  158. 158.
    Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689.PubMedCrossRefGoogle Scholar
  159. 159.
    Lim, T. C., Toh, W. S., Wang, L. S., Kurisawa, M., & Spector, M. (2012). The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells. Biomaterials, 33(12), 3446–3455.PubMedCrossRefGoogle Scholar
  160. 160.
    Wang, L. S., Boulaire, J., Chan, P. P., Chung, J. E., & Kurisawa, M. (2010). The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials, 31(33), 8608–8616.PubMedCrossRefGoogle Scholar
  161. 161.
    Wang, L. S., Du, C., Toh, W. S., Wan, A. C., Gao, S. J., & Kurisawa, M. (2014). Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials, 35(7), 2207–2217.PubMedCrossRefGoogle Scholar
  162. 162.
    Almarza, A. J., & Athanasiou, K. A. (2006). Effects of hydrostatic pressure on TMJ disc cells. Tissue Engineering, 12(5), 1285–1294.PubMedCrossRefGoogle Scholar
  163. 163.
    Terraciano, V., Hwang, N., Moroni, L., Park, H. B., Zhang, Z., Mizrahi, J., et al. (2007). Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells, 25(11), 2730–2738.PubMedCrossRefGoogle Scholar
  164. 164.
    Steinmetz, N. J., & Bryant, S. J. (2012). Chondroitin sulfate and dynamic loading alter chondrogenesis of human MSCs in PEG hydrogels. Biotechnology and Bioengineering, 109(10), 2671–2682.PubMedCrossRefGoogle Scholar
  165. 165.
    Mangan, B., Hurtig, M. B., & Dickey, J. P. (2010). Application of robotic technology in biomechanics to study joint laxity. Journal of Medical Engineering & Technology, 34(7–8), 399–407.CrossRefGoogle Scholar
  166. 166.
    Poveda Roda, R., Bagán, J. V., Díaz Fernández, J. M., Hernández Bazán, S., & Jiménez Soriano, Y. (2007). Review of temporomandibular joint pathology: part I: classification, epidemiology and risk factors. Medicina Oral, Patología Oral y Cirugía Bucal, 12(4), 292–298.Google Scholar
  167. 167.
    Jeong, S. Y., Kim, D. H., Ha, J., Jin, H. J., Kwon, S. J., Chang, J. W., et al. (2013). Thrombospondin‐2 secreted by human umbilical cord blood‐derived mesenchymal stem cells promotes chondrogenic differentiation. Stem Cells, 31(10), 2136–2148.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shipin Zhang
    • 1
  • Adrian U. J. Yap
    • 1
    • 2
  • Wei Seong Toh
    • 1
    • 3
    Email author
  1. 1.Faculty of DentistryNational University of SingaporeSingaporeSingapore
  2. 2.Department of DentistryNg Teng Fong General HospitalSingaporeSingapore
  3. 3.Tissue Engineering Program, Life Sciences InstituteNational University of SingaporeSingaporeSingapore

Personalised recommendations