Stem Cell Reviews and Reports

, Volume 11, Issue 5, pp 743–751 | Cite as

Stem Cell Therapy for Myocardial Infarction 2001–2013 Revisited

  • Christoph Edlinger
  • Catharina Schreiber
  • Bernhard Wernly
  • Alexandra Anker
  • Katja Ruzicka
  • Christian Jung
  • Uta C. Hoppe
  • Michael Lichtenauer


Stem cell therapy for ischemic heart disease was an emerging concept in the early 2000s. First hopes were largely overshadowed by rather inconsistent results in human trials conducted in the middle of the decade. We aimed at investigating how the field of stem cell research expanded worldwide over the years using scientometric methods. We performed a PubMed inquiry and screened a total of 2609 publications dealing with stem cell therapy for myocardial infarction in the years 2001–2013. Density equalizing maps were used to visualize important centres of stem cell research worldwide. This systematic bibliometric study revealed an increasing research interest in the field of stem cell research in the context of ischemic heart disease over the last decade. Though some of the large human trials failed to show significant effects of stem cell therapy, especially basic science represents an ever growing field that evolved promising new concepts over the last couple of years. The scientific principle of protective paracrine mediators released from transplanted stem cells seems to bear great potential for future cell-free therapeutic use. However, further mechanistic insights are needed before transition from bench to bedside should be attempted, taking the lessons learned from previous studies into account.


Myocardial infarction Stem cells Basic research Clinical trials Density-equalizing maps Bibliometric 



We want to thank Kristen Kopp for her great support editing the manuscript.

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.


The authors received no specific funding for this work. The authors declare that there is no conflict of interests regarding the publication of this paper.


  1. 1.
    Velagaleti, R. S., Pencina, M. J., Murabito, J. M., Wang, T. J., Parikh, N. I., et al. (2008). Long-term trends in the incidence of heart failure after myocardial infarction. Circulation, 118, 2057–2062.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Penn, M. S., Francis, G. S., Ellis, S. G., Young, J. B., McCarthy, P. M., et al. (2002). Autologous cell transplantation for the treatment of damaged myocardium. Prog Cardiovasc Dis, 45, 21–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.CrossRefPubMedGoogle Scholar
  4. 4.
    Schachinger, V., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R., et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med, 355, 1210–1221.CrossRefPubMedGoogle Scholar
  5. 5.
    Assmus, B., Honold, J., Schachinger, V., Britten, M. B., Fischer-Rasokat, U., et al. (2006). Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med, 355, 1222–1232.CrossRefPubMedGoogle Scholar
  6. 6.
    Assmus, B., Schachinger, V., Teupe, C., Britten, M., Lehmann, R., et al. (2002). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 106, 3009–3017.CrossRefPubMedGoogle Scholar
  7. 7.
    Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet, 364, 141–148.CrossRefPubMedGoogle Scholar
  8. 8.
    Lunde, K., Solheim, S., Aakhus, S., Arnesen, H., Abdelnoor, M., et al. (2006). Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med, 355, 1199–1209.CrossRefPubMedGoogle Scholar
  9. 9.
    Leri, A., & Anversa, P. (2013). Stem cells: bone-marrow-derived cells and heart failure--the debate goes on. Nat Rev Cardiol, 10, 372–373.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Meyer, G. P., Wollert, K. C., Lotz, J., Pirr, J., Rager, U., et al. (2009). Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur Heart J, 30, 2978–2984.CrossRefPubMedGoogle Scholar
  11. 11.
    Nowbar, A. N., Howard, J. P., Finegold, J. A., Asaria, P., & Francis, D. P. (2014). 2014 global geographic analysis of mortality from ischaemic heart disease by country, age and income: statistics from World Health Organisation and United Nations. Int J Cardiol, 174, 293–298.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Schoffel, N., Vitzhum, K., Mache, S., Scutaru, C., Groneberg, D. A., et al. (2010). Critical analysis of publication procedures and evaluation regarding ankylosing spondylitis by density-equalizing mapping and scientometeric methods. Scand J Rheumatol, 39, 430–432.CrossRefPubMedGoogle Scholar
  13. 13.
    Vitzthum, K., Mache, S., Quarcoo, D., Scutaru, C., Groneberg, D. A., et al. (2009). Scoliosis: density-equalizing mapping and scientometric analysis. Scoliosis, 4, 15.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Borger, J. A., Neye, N., Scutaru, C., Kreiter, C., Puk, C., et al. (2008). Models of asthma: density-equalizing mapping and output benchmarking. J Occup Med Toxicol, 3(Suppl 1), S7.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Addicks, J. P., Uibel, S., Jensen, A. M., Bundschuh, M., Klingelhoefer, D., et al. (2014). MRSA: a density-equalizing mapping analysis of the global research architecture. Int J Environ Res Public Health, 11, 10215–10225.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Fricke, R., Uibel, S., Klingelhoefer, D., & Groneberg, D. A. (2013). Influenza: a scientometric and density-equalizing analysis. BMC Infect Dis, 13, 454.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Gastner, M. T., & Newman, M. E. (2004). From the cover: diffusion-based method for producing density-equalizing maps. Proc Natl Acad Sci U S A, 101, 7499–7504.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Lovett, D. A., Poots, A. J., Clements, J. T., Green, S. A., Samarasundera, E., et al. (2014). Using geographical information systems and cartograms as a health service quality improvement tool. Spat Spatiotemporal Epidemiol, 10, 67–74.CrossRefPubMedGoogle Scholar
  19. 19.
    Assmus, B., Leistner, D. M., Schachinger, V., Erbs, S., Elsasser, A., et al. (2014). Long-term clinical outcome after intracoronary application of bone marrow-derived mononuclear cells for acute myocardial infarction: migratory capacity of administered cells determines event-free survival. Eur Heart J, 35, 1275–1283.CrossRefPubMedGoogle Scholar
  20. 20.
    Gyongyosi, M., Wojakowski, W., Lemarchand, P., Lunde, K., Tendera, M., et al. (2015). Meta-analysis of cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res, 116, 1346–1360.CrossRefPubMedGoogle Scholar
  21. 21.
    Seeger, F. H., Tonn, T., Krzossok, N., Zeiher, A. M., & Dimmeler, S. (2007). Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J, 28, 766–772.CrossRefPubMedGoogle Scholar
  22. 22.
    Korf-Klingebiel, M., Kempf, T., Sauer, T., Brinkmann, E., Fischer, P., et al. (2008). Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J, 29, 2851–2858.CrossRefPubMedGoogle Scholar
  23. 23.
    Jung, C., Fischer, N., Fritzenwanger, M., Thude, H., Ferrari, M., et al. (2009). Endothelial progenitor cells in adolescents: impact of overweight, age, smoking, sport and cytokines in younger age. Clin Res Cardiol, 98, 179–188.CrossRefPubMedGoogle Scholar
  24. 24.
    Cohen, K. S., Cheng, S., Larson, M. G., Cupples, L. A., McCabe, E. L., et al. (2013). Circulating CD34(+) progenitor cell frequency is associated with clinical and genetic factors. Blood, 121, e50–56.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    du Pre, B. C., Doevendans, P. A., & van Laake, L. W. (2013). Stem cells for cardiac repair: an introduction. J Geriatr Cardiol, 10, 186–197.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Boyle, A. J., Schulman, S. P., Hare, J. M., & Oettgen, P. (2006). Is stem cell therapy ready for patients? Stem Cell Therapy for Cardiac Repair. Ready for the Next Step. Circulation, 114, 339–352.CrossRefPubMedGoogle Scholar
  27. 27.
    Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med, 7, 430–436.CrossRefPubMedGoogle Scholar
  28. 28.
    Lichtenauer, M., Mildner, M., Baumgartner, A., Hasun, M., Werba, G., et al. (2011). Intravenous and intramyocardial injection of apoptotic white blood cell suspensions prevents ventricular remodelling by increasing elastin expression in cardiac scar tissue after myocardial infarction. Basic Res Cardiol, 106, 645–655.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Zeng, B., Ren, X., Lin, G., Zhu, C., Chen, H., et al. (2008). Paracrine action of HO-1-modified mesenchymal stem cells mediates cardiac protection and functional improvement. Cell Biol Int, 32, 1256–1264.CrossRefPubMedGoogle Scholar
  30. 30.
    Kofidis, T., de Bruin, J. L., Yamane, T., Tanaka, M., Lebl, D. R., et al. (2005). Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation, 111, 2486–2493.CrossRefPubMedGoogle Scholar
  31. 31.
    Barile, L., Lionetti, V., Cervio, E., Matteucci, M., Gherghiceanu, M., et al. (2014). Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res, 103, 530–541.CrossRefPubMedGoogle Scholar
  32. 32.
    Ibrahim, A. G., Cheng, K., & Marban, E. (2014). Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2, 606–619.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S., Choo, A., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res, 4, 214–222.CrossRefPubMedGoogle Scholar
  34. 34.
    Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med, 11, 367–368.CrossRefPubMedGoogle Scholar
  35. 35.
    Perez-Ilzarbe, M., Agbulut, O., Pelacho, B., Ciorba, C., San Jose-Eneriz, E., et al. (2008). Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. Eur J Heart Fail, 10, 1065–1072.CrossRefPubMedGoogle Scholar
  36. 36.
    Dai, W., Hale, S. L., & Kloner, R. A. (2007). Role of a paracrine action of mesenchymal stem cells in the improvement of left ventricular function after coronary artery occlusion in rats. Regen Med, 2, 63–68.CrossRefPubMedGoogle Scholar
  37. 37.
    Niagara, M. I., Haider, H., Jiang, S., & Ashraf, M. (2007). Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ Res, 100, 545–555.CrossRefPubMedGoogle Scholar
  38. 38.
    Tang, Y. L., Zhao, Q., Qin, X., Shen, L., Cheng, L., et al. (2005). Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg, 80, 229–236. discussion 236–227.CrossRefPubMedGoogle Scholar
  39. 39.
    Uemura, R., Xu, M., Ahmad, N., & Ashraf, M. (2006). Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res, 98, 1414–1421.CrossRefPubMedGoogle Scholar
  40. 40.
    Lichtenauer, M., Mildner, M., Hoetzenecker, K., Zimmermann, M., Podesser, B. K., et al. (2011). Secretome of apoptotic peripheral blood cells (APOSEC) confers cytoprotection to cardiomyocytes and inhibits tissue remodelling after acute myocardial infarction: a preclinical study. Basic Res Cardiol, 106, 1283–1297.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Vicencio, J. M., Yellon, D. M., Sivaraman, V., Das, D., Boi-Doku, C., et al. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol, 65, 1525–1536.CrossRefPubMedGoogle Scholar
  42. 42.
    Maltais, S., Tremblay, J. P., Perrault, L. P., & Ly, H. Q. (2010). The paracrine effect: pivotal mechanism in cell-based cardiac repair. J Cardiovasc Transl Res, 3, 652–662.CrossRefPubMedGoogle Scholar
  43. 43.
    Pavo, N., Charwat, S., Nyolczas, N., Jakab, A., Murlasits, Z., et al. (2014). Cell therapy for human ischemic heart diseases: Critical review and summary of the clinical experiences. J Mol Cell Cardiol, 75C, 12–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christoph Edlinger
    • 1
  • Catharina Schreiber
    • 2
  • Bernhard Wernly
    • 1
  • Alexandra Anker
    • 1
  • Katja Ruzicka
    • 1
  • Christian Jung
    • 3
  • Uta C. Hoppe
    • 1
  • Michael Lichtenauer
    • 1
  1. 1.University Clinic of Internal Medicine II, Department of CardiologyParacelsus Medical University of SalzburgSalzburgAustria
  2. 2.University Clinic of Cardio-Thoracic SurgeryParacelsus Medical University of SalzburgSalzburgAustria
  3. 3.Universitätsherzzentrum Thüringen, Clinic of Internal Medicine I, Department of CardiologyFriedrich Schiller University JenaJenaGermany

Personalised recommendations