Advertisement

Stem Cell Reviews and Reports

, Volume 11, Issue 5, pp 752–760 | Cite as

Human Umbilical Cord Mesenchymal Stromal Cell Transplantation in Myocardial Ischemia (HUC-HEART Trial). A Study Protocol of a Phase 1/2, Controlled and Randomized Trial in Combination with Coronary Artery Bypass Grafting

  • Alp Can
  • Ahmet Tulga Ulus
  • Ozgur Cinar
  • Ferda Topal Celikkan
  • Erdal Simsek
  • Mesut Akyol
  • Ugur Canpolat
  • Murat Erturk
  • Fadil Kara
  • Osman Ilhan
Article

Abstract

Mesenchymal stem cells (MSCs), which may be obtained from the bone marrow, have been studied for more than a decade in the setting of coronary artery disease (CAD). Adipose tissue-derived MSCs have recently come into focus and are being tested in a series of clinical trials. MSC-like cells have also been derived from a variety of sources, including umbilical cord stroma, or HUC-MSCs. The HUC-HEART trail (ClinicalTrials.gov Identifier: NCT02323477) is a phase 1/2, controlled, multicenter, randomized clinical study of the intramyocardial delivery of allogeneic HUC-MSCs in patients with chronic ischemic cardiomyopathy. A total of 79 patients (ages 30–80) with left ventricle ejection fractions ranging between 25 and 45 % will be randomized in a 2:1:1 pattern in order to receive an intramyocardial injection of either HUC-MSCs or autologous bone marrow-derived mononuclear cells (BM-MNCs) in combination with coronary arterial bypass grafting (CABG) surgery. The control group of patients will receive no cells and undergo CABG alone. Human HUC-MSCs will be isolated, propagated and banked in accordance with a cGMP protocol, whereas the autologous BM-MNCs will be isolated via aspiration from the iliac crest and subsequently process in a closed-circuit cell purification system shortly before cell transplantation. The cell injections will be implemented in 10 peri-infarct areas. Baseline and post-transplantation outcome measures will be primarily utilized to test both the safety and the efficacy of the administered cells for up to 12 months.

Keywords

Umbilical cord MSC Bone marrow MNC Ischemic cardiomyopathy Regenerative medicine Stem cell therapy Clinical trial 

Notes

Acknowledgments

This project was supported by SANTEZ, Project # 0741-STZ-2014 (AC, ATU, OC) and the ATIGEN-CELL Technologies Cell and Gene Center (ME).

Conflict of Interest

One of the authors (ME) works as a scientist for stem cell manufacturing at an ATIGEN-CELL cell production facility. The remaining authors have no conflicts of interest to declare regarding the publication of this manuscript.

Supplementary material

12015_2015_9601_MOESM1_ESM.docx (54 kb)
Supplementary Table 1 (DOCX 54 kb)

References

  1. 1.
    Leri, A., Kajstura, J., Anversa, P., & Frishman, W. H. (2008). Myocardial regeneration and stem cell repair. Current Problems in Cardiology, 33, 91–153.CrossRefPubMedGoogle Scholar
  2. 2.
    Jackson, K. A., Majka, S. M., Wang, H., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. Journal of Clinical Investigation, 107, 1395–402.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A., & Anversa, P. (2001). Transplanted adult bone marrow cells repair myocardial infarcts in mice. Annals of the New York Academy of Sciences, 938, 221–9. discussion 229–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Fisher, S.A., Brunskill, S.J., Doree, C., Mathur, A., Taggart, D.P., & Martin-Rendon, E. (2014). Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. The Cochrane Collaboration., John Wiley & Sons, Ltd.Google Scholar
  6. 6.
    Leri, A., Kajstura, J., & Anversa, P. (2011). Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circulation Research, 109, 941–61.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Kocaefe, C., Balci, D., Hayta, B. B., & Can, A. (2010). Reprogramming of human umbilical cord stromal mesenchymal stem cells for myogenic differentiation and muscle repair. Stem Cell Reviews, 6, 512–22.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang, W., Liu, X. C., Yang, L., et al. (2013). Wharton’s jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction. Coronary Artery Disease, 24, 549–58.CrossRefPubMedGoogle Scholar
  9. 9.
    Wu, K. H., Mo, X. M., Zhou, B., et al. (2009). Cardiac potential of stem cells from whole human umbilical cord tissue. Journal of Cellular Biochemistry, 107, 926–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Kadivar, M., Khatami, S., Mortazavi, Y., Shokrgozar, M. A., Taghikhani, M., & Soleimani, M. (2006). In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 340, 639–47.CrossRefPubMedGoogle Scholar
  11. 11.
    Weiss, M. L., Anderson, C., Medicetty, S., et al. (2008). Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells, 26, 2865–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Hu, J., Yu, X., Wang, Z., et al. (2013). Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocrine Journal, 60, 347–57.CrossRefPubMedGoogle Scholar
  13. 13.
    Li, X., Hu, Y.D., Guo, Y., et al. (2014). Safety and Efficacy of Intracoronary Human Umbilical Cord-Derived Mesenchymal Stem Cell Treatment for Very Old Patients with Coronary Chronic Total Occlusion. Curr Pharm Des.Google Scholar
  14. 14.
    Liang, J., Gu, F., Wang, H., et al. (2010). Mesenchymal stem cell transplantation for diffuse alveolar hemorrhage in SLE. Nature Reviews. Rheumatology, 6, 486–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Liu, X., Zheng, P., Wang, X., et al. (2014). A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Research & Therapy, 5, 57.CrossRefGoogle Scholar
  16. 16.
    Shi, D., Wang, D., Li, X., et al. (2012). Allogeneic transplantation of umbilical cord-derived mesenchymal stem cells for diffuse alveolar hemorrhage in systemic lupus erythematosus. Clinical Rheumatology, 31, 841–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Shi, M., Zhang, Z., Xu, R., et al. (2012). Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Translational Medicine, 1, 725–31.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Sun, L., Wang, D., Liang, J., et al. (2010). Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis and Rheumatism, 62, 2467–75.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang, L., Li, J., Liu, H., et al. (2013). Pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. Journal of Gastroenterology and Hepatology, 28(Suppl 1), 85–92.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang, S., Cheng, H., Dai, G., et al. (2013). Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury. Brain Research, 1532, 76–84.CrossRefPubMedGoogle Scholar
  21. 21.
    Wu, K. H., Tsai, C., Wu, H. P., Sieber, M., Peng, C. T., & Chao, Y. H. (2013). Human application of ex vivo expanded umbilical cord-derived mesenchymal stem cells: enhance hematopoiesis after cord blood transplantation. Cell Transplantation, 22, 2041–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang, Z., Fu, J., Xu, X., et al. (2013). Safety and immunological responses to human mesenchymal stem cell therapy in difficult-to-treat HIV-1-infected patients. AIDS, 27, 1283–93.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Jin, J. L., Liu, Z., Lu, Z. J., et al. (2013). Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Current Neurovascular Research, 10, 11–20.CrossRefPubMedGoogle Scholar
  24. 24.
    Ma, N., Ladilov, Y., Moebius, J. M., et al. (2006). Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: Bone marrow vs. cord blood-derived cells. Cardiovascular Research, 71, 158–69.CrossRefPubMedGoogle Scholar
  25. 25.
    Tse, H. F., Yiu, K. H., & Lau, C. P. (2007). Bone marrow stem cell therapy for myocardial angiogenesis. Current Vascular Pharmacology, 5, 103–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Menasche, P. (2011). Cardiac cell therapy: lessons from clinical trials. Journal of Molecular and Cellular Cardiology, 50, 258–65.CrossRefPubMedGoogle Scholar
  27. 27.
    Li, T. S., Kubo, M., Ueda, K., Murakami, M., Mikamo, A., & Hamano, K. (2010). Impaired angiogenic potency of bone marrow cells from patients with advanced age, anemia, and renal failure. Journal of Thoracic and Cardiovascular Surgery, 139, 459–65.CrossRefPubMedGoogle Scholar
  28. 28.
    Kissel, C. K., Lehmann, R., Assmus, B., et al. (2007). Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. Journal of the American College of Cardiology, 49, 2341–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Sorrentino, S. A., Bahlmann, F. H., Besler, C., et al. (2007). Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation, 116, 163–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Assmus, B., Fischer-Rasokat, U., Honold, J., et al. (2007). Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry. Circulation Research, 100, 1234–41.CrossRefPubMedGoogle Scholar
  31. 31.
    Coskun, H., & Can, A. (2015). The assessment of the in vivo to in vitro cellular transition of human umbilical cord multipotent stromal cells. Placenta, 36, 232–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Cooper, K., SenMajumdar, A., & Viswanathan, C. (2010). Derivation, expansion and characterization of clinical grade mesenchymal stem cells from umbilical cord matrix using cord blood serum. International Journal of Stem Cells, 3, 119–28.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    (2013). European Pharmacopoeia. European Directorate for the Quality of Medicines & HealthCare (EDQM). Strasbourg, France.Google Scholar
  34. 34.
    Martins, J. P., Santos, J. M., de Almeida, J. M., et al. (2014). Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data. Stem Cell Research & Therapy, 5, 9.CrossRefGoogle Scholar
  35. 35.
    Chen, S. L., Fang, W. W., Ye, F., et al. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. American Journal of Cardiology, 94, 92–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Fisher, S. A., Doree, C., Brunskill, S. J., Mathur, A., & Martin-Rendon, E. (2013). Bone marrow stem cell treatment for ıschemic heart disease in patients with no option of revascularization: a systematic review and meta-analysis. PloS One, 8, e64669.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Kandala, J., Upadhyay, G. A., Pokushalov, E., Wu, S., Drachman, D. E., & Singh, J. P. (2013). Meta-analysis of stem cell therapy in chronic ischemic cardiomyopathy. American Journal of Cardiology, 112, 217–25.CrossRefPubMedGoogle Scholar
  38. 38.
    Friis, T., Haack-Sorensen, M., Mathiasen, A. B., et al. (2011). Mesenchymal stromal cell derived endothelial progenitor treatment in patients with refractory angina. Scandinavian Cardiovascular Journal, 45, 161–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Hare, J. M., Traverse, J. H., Henry, T. D., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–86.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Houtgraaf, J. H., den Dekker, W. K., van Dalen, B. M., et al. (2012). First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. Journal of the American College of Cardiology, 59, 539–40.CrossRefPubMedGoogle Scholar
  41. 41.
    Katritsis, D. G., Sotiropoulou, P., Giazitzoglou, E., Karvouni, E., & Papamichail, M. (2007). Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. Europace, 9, 167–71.CrossRefPubMedGoogle Scholar
  42. 42.
    Katritsis, D. G., Sotiropoulou, P. A., Karvouni, E., et al. (2005). Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheterization and Cardiovascular Interventions, 65, 321–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Mohyeddin-Bonab, M., Mohamad-Hassani, M. R., Alimoghaddam, K., et al. (2007). Autologous in vitro expanded mesenchymal stem cell therapy for human old myocardial infarction. Archives of Iranian Medicine, 10, 467–73.PubMedGoogle Scholar
  44. 44.
    Kinnaird, T., Stabile, E., Burnett, M. S., et al. (2004). Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 109, 1543–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Karahuseyinoglu, S., Cinar, O., Kilic, E., et al. (2007). Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells, 25, 319–31.CrossRefPubMedGoogle Scholar
  46. 46.
    Santos, J. M., Barcia, R. N., Simoes, S. I., et al. (2013). The role of human umbilical cord tissue-derived mesenchymal stromal cells (UCX(R)) in the treatment of inflammatory arthritis. Journal of Translational Medicine, 11, 18.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    La Rocca, G., Anzalone, R., Corrao, S., et al. (2009). Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry and Cell Biology, 131, 267–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Fong, C. Y., Chak, L. L., Biswas, A., et al. (2011). Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Reviews, 7, 1–16.CrossRefPubMedGoogle Scholar
  49. 49.
    Kadner, A., Zund, G., Maurus, C., et al. (2004). Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. European Journal of Cardio-Thoracic Surgery, 25, 635–41.CrossRefPubMedGoogle Scholar
  50. 50.
    Pereira, W. C., Khushnooma, I., Madkaikar, M., & Ghosh, K. (2008). Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation. Journal of Tissue Engineering and Regenerative Medicine, 2, 394–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Hollweck, T., Hartmann, I., Eblenkamp, M., et al. (2011). Cardiac differentiation of human Wharton’s Jelly stem cells – experimental comparison of protocols. The Open Tissue Engineering and Regenerative Medicine Journal, 4, 95–102.CrossRefGoogle Scholar
  52. 52.
    Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E., & Ringden, O. (2003). HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology, 31, 890–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Prasanna, S. J., Gopalakrishnan, D., Shankar, S. R., & Vasandan, A. B. (2010). Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PloS One, 5, e9016.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Anzalone, R., Corrao, S., Lo Iacono, M., et al. (2013). Isolation and characterization of CD276+/HLA-E+ human subendocardial mesenchymal stem cells from chronic heart failure patients: analysis of differentiative potential and immunomodulatory markers expression. Stem Cells and Development, 22, 1–17.CrossRefPubMedGoogle Scholar
  55. 55.
    Lopez, Y., Lutjemeier, B., Seshareddy, K., et al. (2013). Wharton’s jelly or bone marrow mesenchymal stromal cells improve cardiac function following myocardial infarction for more than 32 weeks in a rat model: a preliminary report. Current Stem Cell Research & Therapy, 8, 46–59.CrossRefGoogle Scholar
  56. 56.
    Santos Nascimento, D., Mosqueira, D., Sousa, L. M., et al. (2014). Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms. Stem Cell Research & Therapy, 5, 5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Alp Can
    • 1
  • Ahmet Tulga Ulus
    • 2
  • Ozgur Cinar
    • 1
  • Ferda Topal Celikkan
    • 1
  • Erdal Simsek
    • 3
  • Mesut Akyol
    • 4
  • Ugur Canpolat
    • 5
  • Murat Erturk
    • 6
  • Fadil Kara
    • 7
  • Osman Ilhan
    • 8
  1. 1.Department of Histology and Embryology, Laboratory for Stem Cells and Reproductive Cell BiologyAnkara University School of MedicineAnkaraTurkey
  2. 2.Department of Cardiovascular SurgeryHacettepe University School of MedicineAnkaraTurkey
  3. 3.Ministry of Health, Cardiovascular Surgery Division, AnkaraTurkiye Yuksek Ihtisas HospitalAnkaraTurkey
  4. 4.Department of BiostatisticsYildirim Beyazit UniversityAnkaraTurkey
  5. 5.Department of CardiologyHacettepe University School of MedicineAnkaraTurkey
  6. 6.ATIGEN-CELL TechnologyTrabzonTurkey
  7. 7.Ob-Gyn DivisionMinistry of Health Dr. Sami Ulus Maternity HospitalAnkaraTurkey
  8. 8.Department of HematologyAnkara University School of MedicineAnkaraTurkey

Personalised recommendations