Skip to main content
Log in

Wnt/β-Catenin and MEK-ERK Signaling are Required for Fibroblast-Derived Extracellular Matrix-Mediated Endoderm Differentiation of Embryonic Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Human embryonic stem cells (hESCs) have the potential to differentiate into all cells of the three germ layers, thus making them an attractive source of cells for use in regenerative medicine. The greatest challenge lies in regulating the differentiation of hESCs into specific cell lineages by both intrinsic and extrinsic factors. In this study we determined the effect of a fibroblast-derived extracellular matrix (fd-ECM) on hESCs differentiation. We demonstrate that growth of hESCs on fd-ECM results in hESCs losing their stemness and proliferation potential. As the stem cells differentiate they attain gene expression profiles similar to the primitive streak of the in vivo embryo. The activation of both the MEK-ERK and Wnt/β-catenin signaling pathways is required for the fd-ECM-mediated differentiation of hESCs towards the endoderm and involves integrins α1, α2, α3 and β1. This study illustrates the importance of the cellular microenvironment in directing stem cell fate and that the nature and composition of the extracellular matrix is a crucial determining factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Evans, M. J., & Kaufmann, M. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.

    Article  CAS  PubMed  Google Scholar 

  2. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  3. Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.

    Article  CAS  PubMed  Google Scholar 

  4. McNeish, J. (2004). Embryonic stem cells in drug discovery. Nature Reviews Drug Discovery, 3(1), 70–80.

    Article  CAS  PubMed  Google Scholar 

  5. Mehta, A., Bhaskar, V., Konala, R., Khanna, A., & Majumdar, A. S. (2008). Assessment of drug induced developmental toxicity using human embryonic stem cells. Cell Biology International, 32(11), 1412–1424.

    Article  CAS  PubMed  Google Scholar 

  6. Nichols, J., Zevnik, B., Anastassiadis, K., et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct 4. Cell, 95(3), 379–391.

    Article  CAS  PubMed  Google Scholar 

  7. Avilion, A. A., Nicolis, S. K., Pevny, L. H., Perez, L., Vivian, N., & Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes and Development, 17(1), 126–140.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Jaenisch, R., & Young, R. (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 132(4), 567–582.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Arnold, S. J., & Robertson, E. J. (2009). Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nature Reviews Molecular Cell Biology, 10(2), 91–103.

    Article  CAS  PubMed  Google Scholar 

  10. Evans, N. D., Gentleman, E., Chen, X., Roberts, C. J., Polak, J. M., & Stevens, M. M. (2010). Extracellular matrix-mediated osteogenic differentiation of murine embryonic stem cells. Biomaterials, 31(12), 3244–3252.

    Article  CAS  PubMed  Google Scholar 

  11. Oberwallner, B., Brodarac, A., Anic, P., et al. (2014). Human cardiac extracellular matrix supports myocardial lineage commitment of pluripotent stem cells. European Journal of Cardio-Thoracic Surgery. doi:10.1093/ejcts/ezu163. 1–10.

    PubMed  Google Scholar 

  12. Czyz, J., & Wobus, A. M. (2001). Embryonic stem cell differentiation: the role of extracellular factors. Differentiation, 68(4–5), 167–174.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, L., Mizutani, A., Kasai, T., et al. (2014). Mouse induced pluripotent stem cell microenvironment generates epithelial-mesenchymal transition in mouse lewis lung cancer cells. American Journal of Cancer Research, 4(1), 80–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Bissell, M. J., & Barcellos-Hoff, M. H. (1987). The influence of extracellular matrix on gene expression: is structure the message? Journal of Cell Science, 8, 327–343.

    Article  CAS  Google Scholar 

  15. Gentleman, E., Swain, R. J., Evans, N. D., et al. (2009). Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nature Materials, 8(9), 763–70.

    Article  CAS  PubMed  Google Scholar 

  16. Li, Y., Liu, M., Yan, Y., & Yang, S. T. (2014). Neural differentiation from pluripotent stem cells: the role of natural and synthetic extracellular matrix. World Journal of Stem Cells, 6(1), 11–23.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Turner, D. A., Trott, J., Hayward, P., Rue, P., & Arias, A. M. (2014). An interplay between extracellular signaling and the dynamics of the exit from pluripotency drives cell fate decisions in mouse ES cells. Biology Open, 3(7), 614–26.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wilschut, K. J., Haagsmanb, H. P., & Roelena, B. A. J. (2010). Extracellular matrix components direct porcine muscle stem cell behavior. Experimental Cell Research, 316(3), 341–352.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Z., Scannell, D. R., Eisen, M. B., & Tjian, R. (2011). Control of embryonic stem cell lineage commitment by core promoter factor, TAF3. Cell, 146(5), 720–731.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Irwin, E., Gupta, R., Dashti, D., & Healy, K. E. (2011). Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials, 32(29), 6912–6919.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cui, Y., Lu, C., Meng, D., et al. (2014). Collagen scaffolds modified with CNTF and BFGF promote facial nerve regeneration in minipigs. Biomaterials, 35(27), 7819–7827.

    Article  CAS  PubMed  Google Scholar 

  22. Giancotti, F. G., & Ruoslahti, E. (1999). Integrin signaling. Science, 285(5430), 1028–1032.

    Article  CAS  PubMed  Google Scholar 

  23. Li, L., Sun, L., Gao, F., et al. (2010). Stk40 links the pluripotency factor Oct4 to the Erk/MAPK pathway and controls extra-embryonic endoderm differentiation. Proceedings of the National Academy of Sciences of the United States of America, 107(4), 1402–1407.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Dzobo, K., Leaner, V. D., & Parker, M. I. (2012). Feedback regulation of the α2(1) collagen gene via the Mek–Erk signaling pathway. IUBMB Life, 64(1), 87–98.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, H., Chen, X., & Zheng, Y. (2013). The nuclear lamina regulates germline stem cell niche organization via modulation of EGFR signaling. Cell Stem Cell, 13(1), 73–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., & Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine, 10(1), 55–63.

    Article  CAS  PubMed  Google Scholar 

  27. Bikkavilli, R. K., & Malbon, C. C. (2009). Mitogen-activated protein kinases and Wnt/B-catenin signaling. Molecular conversations among signaling pathways. Communicative and Integrative Biology, 2(1), 46–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Nakanishi, M., Kurisaki, A., Hayashi, Y., et al. (2009). Directed induction of anterior and posterior primitive streak by Wnt from embryonic stem cells cultured in a chemically defined serum-free medium. The FASEB Journal, 23(1), 114–122.

    Article  CAS  PubMed  Google Scholar 

  29. Bone, H. K., Nelson, A. S., Goldring, C. E., Tosh, D., & Welham, M. J. (2011). A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3. Journal of Cell Science, 124(12), 1992–2000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Serebriiskii, I., Castelló-Cros, R., Lamb, A., Golemis, E. A., & Cukierman, E. (2008). Fibroblast-derived 3D matrix differentially regulates the growth and drug- responsiveness of human cancer cells. Matrix Biology, 27(6), 573–585.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Dzobo, K., Leaner, V. D., & Parker, M. I. (2014). Absence of feedback regulation in the synthesis of COL1A1. Life Sciences, 103(1), 25–33.

    Article  CAS  PubMed  Google Scholar 

  32. Jang, M., Lee, S. T., Kim, J. W., et al. (2014). Excitation propagation in three-dimensional engineered hearts using decellularised extracellular matrix. Biomaterials, 35, 7839–7850.

    Article  Google Scholar 

  33. Yoon, B. S., Yoo, S. J., Lee, J. E., You, S., Lee, H. T., & Yoon, H. S. (2006). Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation, 74(4), 149–159.

    Article  CAS  PubMed  Google Scholar 

  34. Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162(1), 156–159.

    Article  CAS  PubMed  Google Scholar 

  35. Crews, C. M., Alessandrini, A., & Erikson, R. L. (1992). The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science, 258(5081), 478–80.

    Article  CAS  PubMed  Google Scholar 

  36. Aparicio, I. M., Garcia-Herreros, M., Fair, T., & Lonergan, P. (2010). Identification and regulation of glycogen synthase kinase-3 during bovine embryo development. Reproduction, 140, 83–92.

    Article  CAS  PubMed  Google Scholar 

  37. Damien, C. J., & Parsons, J. R. (1991). Bone graft and bone graft substitutes: a review of current technology and applications. Journal of Applied Biomaterials, 2(3), 187–208.

    Article  CAS  PubMed  Google Scholar 

  38. Pera, M. F., & Tam, P. P. L. (2010). Extrinsic regulation of pluripotent stem cells. Nature Review Insight, 465(7299), 713–720.

    CAS  Google Scholar 

  39. Haque, M. A., Nagaoka, M., Hexing, B., & Akaike, T. (2010). Artificial extracellular matrix for embryonic stem cell cultures: a new frontier of nanobiomaterials. Science and Technology of Advanced Materials, 11, 014106 (9 pp).

    Article  Google Scholar 

  40. Wei, J., Han, J., Zhao, Y., et al. (2014). The importance of three-dimensional scaffold structure on stemness maintenance of mouse embryonic stem cells. Biomaterials, 35(27), 7724–7733.

    Article  CAS  PubMed  Google Scholar 

  41. Schenke-Layland, K., Angelis, E., Rhodes, K. E., Heydarkhan-Hagvall, S., Mikkola, H. K., & Maclellan, W. R. (2007). Collagen IV induces trophoectoderm differentiation of mouse embryonic stem cells. Stem Cells, 25(6), 1529–38.

    Article  CAS  PubMed  Google Scholar 

  42. Coraux, C., Hilmi, C., Rouleau, M., et al. (2003). Reconstituted skin from murine embryonic stem cells. Current Biology, 13(10), 849–53.

    Article  CAS  PubMed  Google Scholar 

  43. Bandi, S., Cheng, K., Joseph, B., & Gupta, S. (2012). Spontaneous origin from human embryonic stem cells of early developmental stage liver cells displaying conjoint meso-endodermal phenotype with hepatic functions. Journal of Cell Science, 125(5), 1274–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Greenlee, A. R., Kronenwetter-Koepel, T. A., Kaiser, S. J., & Liu, K. (2005). Comparison of Matrigel and gelatin substrata for feeder-free culture of undifferentiated mouse embryonic stem cells for toxicity testing. Toxicology in Vitro, 19(3), 389–397.

    Article  CAS  PubMed  Google Scholar 

  45. Palklin, S., & Vallier, L. (2013). The cell-cycle state of stem cells determines cell fate propensity. Cell, 155(1), 135–147.

    Article  Google Scholar 

  46. Zhou, X., Murphy, F. R., Gehdu, N., Zhang, J., Iredale, J. P., & Benyon, R. C. (2004). Engagement of αvβ3 integrin regulates proliferation and apoptosis of hepatic stellate cells. The Journal of Biological Chemistry, 279(23), 23996–24006.

    Article  CAS  PubMed  Google Scholar 

  47. Huang, M. L., Smith, R. A. A., Trieger, G. W., & Godula, K. (2014). Glycocalyx remodeling with proteoglycan mimetics promotes neural specification in embryonic stem cells. Journal of the American Chemical Society, 136(30), 10565–10568.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Georges-Labouesse, E., Messaddeq, N., Yehia, G., Cadalbert, L., Dierich, A., & Meur, M. L. (1996). Absence of integrin 6 leads to epidermolysis bullosa and neonatal death in mice. Nature Genetics, 13(3), 370–373.

    Article  CAS  PubMed  Google Scholar 

  49. Welser, J. V., Rooney, J. E., Cohen, N. C., et al. (2009). Myotendinous junction defects and reduced force transmission in mice that lack α7 integrin and utrophin. The American Journal of Pathology, 175(4), 1545–1554.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Hynes, R. O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 69, 11–25.

    Article  CAS  PubMed  Google Scholar 

  51. Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110(6), 673–687.

    Article  CAS  PubMed  Google Scholar 

  52. Giancotti, F. G. (2003). A structural view of integrin activation and signaling. Developmental Cell, 4(2), 149–151.

    Article  CAS  PubMed  Google Scholar 

  53. Brown, E. J. (2002). Integrin-associated proteins. Current Opinion in Cell Biology, 14(5), 603–607.

    Article  CAS  PubMed  Google Scholar 

  54. Bakre, M. M., Hoi, A., Mong, J. C. Y., Koh, Y. Y., Wong, K. Y., & Stanton, L. W. (2007). Generation of multipotential mesendodermal progenitors from mouse embryonic stem cells via sustained Wnt pathway activation. Journal of Biological Sciences, 282(43), 31703–31712.

    CAS  Google Scholar 

  55. Davidson, K. C., Adams, A. M., Goodson, J. M., et al. (2012). Wnt/β-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 4485–4490.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Georgopolous, N. T., Kirkwood, L. A., & Southgate, J. (2014). A novel bidirectional positive-feedback loop between Wnt-B-catenin and EGFR-ERK plays a role in context-specific modulation of epithelial tissue regeneration. Journal of Cell Science, 127(13), 2967–2982.

    Article  Google Scholar 

  57. Grossmann, T. N., Yeh, J. T., Bowman, B. R., Chu, Q., Moellering, R. E., & Verdine, G. L. (2012). Inhibiting the oncogenic Wnt signaling through direct targeting of β-catenin. Proceedings of the National Academy of Sciences of the United States of America, 109(44), 17942–17947.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Li, J., Wang, G., Wang, C., et al. (2007). MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation, 75(4), 299–307.

    Article  CAS  PubMed  Google Scholar 

  59. Burdon, T., Smith, A., & Savatier, P. (2002). Signalling, cell cycle and pluripotency in embryonic stem cells. Trends in Cell Biology, 12(9), 432–438.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the International Centre for Genetic Engineering and Biotechnology (ICGEB), the South African Medical Research Council and the University of Cape Town. The funders had no role in the conduct of the research or the preparation of the manuscript.

Conflicts of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Iqbal Parker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig S1

Densitometric quantification of western blot gels, showing stem cell markers, Oct4, Sox2 and Ssea4 downregulation in ESCs cultured on fd-ECM a After 4 days of incubation b After 8 days of incubation c After 16 days of incubation d After 24 days of incubation. Data are presented as mean ± standard deviation (GIF 308 kb)

High resolution image (TIFF 327 kb)

Supplemental Fig S2

a Experimental design of induced hESCs differentiation through the hanging drop method. b A representative image of hESCs BG01V cultured on feeder layer of MEFs c A representative image of the hanging drop method (GIF 304 kb)

High Resolution Image (TIFF 650 kb)

Supplemental Fig S3

Effect of different ECM coatings on hESCs differentiation a hESCs BG01V cultured on feeder layer of MEFs then differentiated by the hanging drop (HD) method and suspension culture. Images are for embryoid bodies day 2,4 and 8 b hESCs BG01V cultured on fd-ECM and treated as in (A). Images are for embryoid bodies day 2,4 and 8 c hESCs BG01V cultured on Matrigel and treated as in (A). Images are for embryoid bodies day 2,4 and 8 d hESCs BG01V cultured on collagen and treated as in (a). Images are for embryoid bodies day 2,4 and 8. Scale bar: 25 μm (GIF 359 kb)

High Resolution Image (TIFF 736 kb)

Supplemental Fig S4

a Western blot analysis of embryoid bodies samples after incubation for the indicated days using Oct4, Sox-2 and Ssea-4 antibodies. The levels of β-tubulin in the same sample were used as a loading control. (b to c) RT PCR analysis of OCT4, NANOG, AXIN2 and LEF1 expression in embryoid bodies from different ECM coatings. GAPDH was used as the normalizer. d Detection of integrin-binding sites on the fd-ECM. Integrin receptors were blocked and attached cells were quantified through the use of crystal violet staining. Quantification was done relative to cells that were not incubated with blocking antibodies which was taken as 100 % attachment. Data are presented as mean ± standard deviation, * p < 0.05 (GIF 220 kb)

High Resolution Image (TIFF 271 kb)

Supplemental Table S1

Molecular weights of proteins analyzed by western blot (DOC 76 kb)

Supplemental Table S2

Oligonucleotide primer sequences used for real time quantitative PCR (DOC 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzobo, K., Vogelsang, M. & Parker, M.I. Wnt/β-Catenin and MEK-ERK Signaling are Required for Fibroblast-Derived Extracellular Matrix-Mediated Endoderm Differentiation of Embryonic Stem Cells. Stem Cell Rev and Rep 11, 761–773 (2015). https://doi.org/10.1007/s12015-015-9598-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-015-9598-4

Keywords

Navigation