Stem Cell Reviews and Reports

, Volume 11, Issue 4, pp 645–651 | Cite as

Induced Pluripotent Stem Cells as a new Strategy for Osteogenesis and Bone Regeneration

  • Xiangxin LouEmail author


Induced pluripotent stem (iPS) cells, possess high proliferation and differentiation ability, are now considered an attractive option for osteogenic differentiation and bone regeneration. In fact, recent discoveries have demonstrated that iPS cells can be differentiated into osteoblasts, suggesting that iPS cells have the potential to advance future bone regenerative therapies. Herein, we provide an overview of the recent findings on osteogenic characteristics and differentiation potential of iPS cells. In addition, we discuss current methods for inducing their specification towards osteogenic phenotype as well as in vivo evidence supporting the therapeutic benefit of iPS-derived osteoblasts. Finally, we describe recent findings regarding the use of iPS-derived cells for osteogenic differentiation and bone regeneration, which have indicated that these pluripotent cells represent an ideal tool for regenerative cell therapies and might contribute to the development of future bone tissue engineering.


Induced pluripotent stem cells Osteogenic differentiation Osteoblast Bone regeneration 



This contribution is funded by the Natural Science Foundation Project of Shanghai, China (15ZR1400500) and the Fundamental Research Funds for the Central Universities by the Ministry of Education of China (2232013D3-13 and 15D110538).

Conflict of Interest

The authors declare no potential conflicts of interest.


  1. 1.
    Sabareeswaran, A., Basu, B., Shenoy, S. J., Jaffer, Z., Saha, N., & Stamboulis, A. (2013). Early osseointegration of a strontium containing glass ceramic inarabbit model. Biomaterials, 34(37), 9278–9286.PubMedCrossRefGoogle Scholar
  2. 2.
    O’Keefe, R. J., & Mao, J. (2011). Bone tissue engineering and regeneration: from discovery to the clinic-an overview introduction. Tissue Engineering, Part B-Reviews, 17(6), 389–392.CrossRefGoogle Scholar
  3. 3.
    Nawawi, N. A., Alqap, A. S. F., & Sopyan, I. (2011). Recent progress on hydroxyapatite-based dense biomaterials for load bearing bone substitutes. Recent Pat Mater Science, 4(1), 63–80.CrossRefGoogle Scholar
  4. 4.
    Tan, L., Yu, X., Wan, P., & Yang, K. (2013). Biodegradable materials for bone repairs: a review. Journal of Materials Science and Technology, 29(6), 503–513.CrossRefGoogle Scholar
  5. 5.
    Murphy, S. V., & Atala, A. (2013). Organ engineering combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. Bioessays, 35(3), 163–172.PubMedCrossRefGoogle Scholar
  6. 6.
    Martino, S., D’Angelo, F., Armentano, I., Maria Kenny, J., & Orlacchio, A. (2012). Stem cell-biomaterial interactions for regenerative medicine. Biotechnology Advances, 30(1), 338–351.PubMedCrossRefGoogle Scholar
  7. 7.
    Prabhakaran, M. P., Venugopal, J., Ghasemi-Mobarakeh, L., Kai. D., Jin, G., Ramakrishna. S., (2012). Stem Cells and Nanostructures for Advanced Tissue Regeneration. In: Biomedical Applications of Polymeric Nanofibers. Edited by Jayakumar R, Nair SV, vol. 246: 21–62.Google Scholar
  8. 8.
    Liu, H., Peng, H., Wu, Y., Zhang, C., Cai, Y., Xu, G., Li, Q., Chen, X., Ji, J., Zhang, Y., et al. (2013). The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials, 34(18), 4404–4417.PubMedCrossRefGoogle Scholar
  9. 9.
    Peng, H., Yin, Z., Liu, H., Chen, X., Feng, B., Yuan, H., Su, B., Ouyang, H., Zhang, Y. (2012). Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs. Nanotechnology, 23(48).Google Scholar
  10. 10.
    Yoshida, Y., & Yamanaka, S. (2011). iPS cells: a source of cardiac regeneration. Journal of Molecular and Cellular Cardiology, 50(2), 327–332.PubMedCrossRefGoogle Scholar
  11. 11.
    Stenderup, K., Justesen, J., Clausen, C., & Kassem, M. (2003). Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 33(6), 919–926.PubMedCrossRefGoogle Scholar
  12. 12.
    Wen, Y., Wang, F., Zhang, W., Li, Y., Yu, M., Nan, X., Chen, L., Yue, W., Xu, X., & Pei, X. (2012). Application of induced pluripotent stem cells in generation of a tissue-engineered tooth-like structure. Tissue Engineering Part A, 18(15–16), 1677–1685.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedCrossRefGoogle Scholar
  14. 14.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.PubMedCrossRefGoogle Scholar
  15. 15.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.PubMedCrossRefGoogle Scholar
  16. 16.
    Takahashi, K., & Yamanaka, S. (2013). Induced pluripotent stem cells in medicine and biology. Development, 140(12), 2457–2461.PubMedCrossRefGoogle Scholar
  17. 17.
    Yamanaka, S. (2012). Induced pluripotent stem cells: past, present, and future. Cell Stem Cell, 10(6), 678–684.PubMedCrossRefGoogle Scholar
  18. 18.
    Teng, S., Liu, C., Krettek, C., & Jagodzinski, M. (2014). The application of induced pluripotent stem cells for bone regeneration: current progress and prospects. Tissue Eng, Part B-Rev, 20(4), 328–339.CrossRefGoogle Scholar
  19. 19.
    Shen, H.-F., Yao, Z.-F., Xiao, G.-F., Jia, J.-S., Xiao, D., & Yao, K.-T. (2009). Induced pluripotent stem cells (iPS Cells): current status and future prospect. Progress in Biochemistry and Biophysics, 36(8), 950–960.CrossRefGoogle Scholar
  20. 20.
    Duan, X., Tu, Q., Zhang, J., Ye, J., Sommer, C., Mostoslavsky, G., Kaplan, D., Yang, P., & Chen, J. (2011). Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. Journal of Cellular Physiology, 226(1), 150–157.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Nelson, T. J., Martinez-Fernandez, A., & Terzic, A. (2010). Induced pluripotent stem cells: developmental biology to regenerative medicine. Nature Reviews Cardiology, 7(12), 700–710.PubMedGoogle Scholar
  22. 22.
    Iglesias-Garcia, O., Pelacho, B., & Prosper, F. (2013). Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling. Journal of Molecular and Cellular Cardiology, 62, 43–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Ardeshirylajimi, A., & Soleimani, M. (2015). Enhanced growth and osteogenic differentiation of induced pluripotent stem cells by extremely Low-frequency electromagnetic field. Cellular and Molecular Biology, 61(1), 36–41.PubMedGoogle Scholar
  24. 24.
    Wang, M., Deng, Y., Zhou, P., Luo, Z., Li, Q., Xie, B., Zhang, X., Chen, T., Pei, D., Tang, Z., et al. (2015). In vitro culture and directed osteogenic differentiation of human pluripotent stem cells on peptides-decorated two-dimensional microenvironment. ACS Applied Materials & Interfaces, 7(8), 4560–4572.CrossRefGoogle Scholar
  25. 25.
    Kawaguchi, J. (2006). Generation of osteoblasts and chondrocytes from embryonic stem cells. Methods in Molecular Biology (Clifton, NJ), 330, 135–148.Google Scholar
  26. 26.
    Grassel, S., Stockl, S., & Jenei-Lanzl, Z. (2012). Isolation, culture, and osteogenic/chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Methods in Molecular Biology (Clifton, NJ), 879, 203–267.CrossRefGoogle Scholar
  27. 27.
    Alfred, R., Taiani, J. T., Krawetz, R. J., Yamashita, A., Rancourt, D. E., & Kallos, M. S. (2011). Large-scale production of murine embryonic stem cell-derived osteoblasts and chondrocytes on microcarriers in serum-free media. Biomaterials, 32(26), 6006–6016.PubMedGoogle Scholar
  28. 28.
    Lavrentieva, A., Hatlapatka, T., Neumann, A., Weyand, B., & Kasper, C. (2013). Potential for osteogenic and chondrogenic differentiation of MSC. In B. Weyand, M. Dominici, R. Hass, R. Jacobs, & C. Kasper (Eds.), Mesenchymal stem cells: Basics and clinical application I (Vol. 129, pp. 73–88).CrossRefGoogle Scholar
  29. 29.
    Kumaran, S. T., Arun, K. V., Sudarsan, S., Talwar, A., & Srinivasan, N. (2010). Osteoblast response to commercially available demineralized bone matrices–an in-vitro study. Indian Journal of Dental Research : Official Publication of Indian Society for Dental Research, 21(1), 3–9.CrossRefGoogle Scholar
  30. 30.
    Hayashi, T., Misawa, H., Nakahara, H., Noguchi, H., Yoshida, A., Kobayashi, N., Tanaka, M., & Ozaki, T. (2012). Transplantation of osteogenically differentiated mouse iPS cells for bone repair. Cell Transplantation, 21(2–3), 591–600.PubMedCrossRefGoogle Scholar
  31. 31.
    Quarto, N., Li, S., Renda, A., & Longaker, M. T. (2012). Exogenous activation of BMP-2 signaling overcomes TGF beta-mediated inhibition of osteogenesis in marfan embryonic stem cells and marfan patient-specific induced pluripotent stem cells. Stem Cells, 30(12), 2709–2719.PubMedCrossRefGoogle Scholar
  32. 32.
    zur Nieden, N. I., Kempka, G., & Ahr, H. J. (2003). In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation, 71(1), 18–27.PubMedCrossRefGoogle Scholar
  33. 33.
    Rui, Y. F., Lui, P. P. Y., Ni, M., Chan, L. S., Lee, Y. W., & Chan, K. M. (2011). Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. Journal of Orthopaedic Research, 29(3), 390–396.PubMedCrossRefGoogle Scholar
  34. 34.
    Zachos, T. A., Shields, K. M., & Bertone, A. L. (2006). Gene-mediated osteogenic differentiation of stem cells by bone morphogenetic proteins-2 or-6. Journal of Orthopaedic Research, 24(6), 1279–1291.PubMedCrossRefGoogle Scholar
  35. 35.
    Song, I., Kim, B.-S., Kim, C.-S., & Im, G.-I. (2011). Effects of BMP-2 and vitamin D-3 on the osteogenic differentiation of adipose stem cells. Biochemical and Biophysical Research Communications, 408(1), 126–131.PubMedCrossRefGoogle Scholar
  36. 36.
    Luu, H. H., Song, W. X., Luo, X. J., Manning, D., Luo, J. Y., Deng, Z. L., Sharffl, K. A., Montag, A. G., Haydon, R. C., & He, T. C. (2007). Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. Journal of Orthopaedic Research, 25(5), 665–677.PubMedCrossRefGoogle Scholar
  37. 37.
    Kao, C.-L., Tai, L.-K., Chiou, S.-H., Chen, Y.-J., Lee, K.-H., Chou, S.-J., Chang, Y.-L., Chang, C.-M., Chen, S.-J., Ku, H.-H., et al. (2010). Resveratrol promotes osteogenic differentiation and protects against Dexamethasone damage in murine induced pluripotent stem cells. Stem Cells and Development, 19(2), 247–258.PubMedCrossRefGoogle Scholar
  38. 38.
    Okano, H., Nakamura, M., Yoshida, K., Okada, Y., Tsuji, O., Nori, S., Ikeda, E., Yamanaka, S., & Miura, K. (2013). Steps toward safe cell therapy using induced pluripotent stem cells. Circulation Research, 112(3), 523–533.PubMedCrossRefGoogle Scholar
  39. 39.
    Li, F., Niyibizi, C., (2012). Cells derived from murine induced pluripotent stem cells (iPSC) by treatment with members of TGF-beta family give rise to osteoblasts differentiation and form bone in vivo. Bmc Cell Biology, 13.Google Scholar
  40. 40.
    Bilousova, G., Jun, D. H., King, K. B., De Langhe, S., Chick, W. S., Torchia, E. C., Chow, K. S., Klemm, D. J., Roop, D. R., & Majka, S. M. (2011). Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells, 29(2), 206–216.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Tashiro, K., Inamura, M., Kawabata, K., Sakurai, F., Yamanishi, K., Hayakawa, T., & Mizuguchi, H. (2009). Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells, 27(8), 1802–1811.PubMedCrossRefGoogle Scholar
  42. 42.
    Stefani, G., & Slack, F. J. (2008). Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology, 9(3), 219–230.PubMedCrossRefGoogle Scholar
  43. 43.
    Li, Z., Hassan, M. Q., Volinia, S., van Wijnen, A. J., Stein, J. L., Croce, C. M., Lian, J. B., & Stein, G. S. (2008). A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proceedings of the National Academy of Sciences of the United States of America, 105(37), 13906–13911.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Li, Z., Hassan, M. Q., Jafferji, M., Aqeilan, R. I., Garzon, R., Croce, C. M., van Wijnen, A. J., Stein, J. L., Stein, G. S., & Lian, J. B. (2009). Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. Journal of Biological Chemistry, 284(23), 15676–15684.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Okamoto, H., Matsumi, Y., Hoshikawa, Y., Takubo, K., Ryoke, K., Shiota, G., (2012). Involvement of MicroRNAs in Regulation of Osteoblastic Differentiation in Mouse Induced Pluripotent Stem Cells. Plos One, 7(8).Google Scholar
  46. 46.
    Jin, G.-Z., Kim, T.-H., Kim, J.-H., Won, J.-E., Yoo, S.-Y., Choi, S.-J., Hyun, J. K., & Kim, H.-W. (2013). Bone tissue engineering of induced pluripotent stem cells cultured with macrochanneled polymer scaffold. Journal of Biomedical Materials Research. Part A, 101A(5), 1283–1291.CrossRefGoogle Scholar
  47. 47.
    Chen, X.-D., Dusevich, V., Feng, J. Q., Manolagas, S. C., & Jilka, R. L. (2007). Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. Journal of Bone and Mineral Research, 22(12), 1943–1956.PubMedCrossRefGoogle Scholar
  48. 48.
    Holzwarth, J. M., & Ma, P. X. (2011). Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials, 32(36), 9622–9629.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    D’Angelo, F., Armentano, I., Cacciotti, I., Tiribuzi, R., Quattrocelli, M., Del Gaudio, C., Fortunati, E., Saino, E., Caraffa, A., Cerulli, G. G., et al. (2012). Tuning multi/pluri-potent stem cell fate by electrospun poly(L-lactic acid)-calcium-deficient hydroxyapatite nanocomposite mats. Biomacromolecules, 13(5), 1350–1360.PubMedCrossRefGoogle Scholar
  50. 50.
    Kobayashi, T., Yamaguchi, T., Hamanaka, S., Kato-Itoh, M., Yamazaki, Y., Ibata, M., Sato, H., Lee, Y.-S., Usui, J.-i., Knisely, A. S., et al. (2010). Generation of Rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell, 142(5), 787–799.PubMedCrossRefGoogle Scholar
  51. 51.
    Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120(5), 408–416.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Park, S., & Im, G.-I. (2014). Embryonic stem cells and induced pluripotent stem cells for skeletal regeneration. Tissue English, Part B-Rev, 20(5), 381–391.CrossRefGoogle Scholar
  53. 53.
    Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., Tan, K. Y., Apostolou, E., Stadtfeld, M., Li, Y. S., Shioda, T., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28(8), 848–U130.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Nasu, A., Ikeya, M., Yamamoto, T., Watanabe, A., Jin, Y. H., Matsumoto, Y., Hayakawa, K., Amano, N., Sato, S., Osafune, K. et al, (2013). Genetically Matched Human iPS Cells Reveal that Propensity for Cartilage and Bone Differentiation Differs with Clones, not Cell Type of Origin. Plos One, 8(1).Google Scholar
  55. 55.
    Robinton, D. A., & Daley, G. Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481(7381), 295–305.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Feng, B., Ng, J. H., Heng, J. C. D., & Ng, H. H. (2009). Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell, 4(4), 301–312.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiChina
  2. 2.Key Lab of Eco-Textile, Ministry of EducationDonghua UniversityShanghaiChina

Personalised recommendations