Stem Cell Reviews and Reports

, Volume 11, Issue 4, pp 635–644 | Cite as

Increased In Vitro Osteopotential in SHED Associated with Higher IGF2 Expression When Compared with hASCs

  • Roberto Dalto FanganielloEmail author
  • Felipe Augusto Andre Ishiy
  • Gerson Shigeru Kobayashi
  • Lucas Alvizi
  • Daniele Yumi Sunaga
  • Maria Rita Passos-Bueno


Mesenchymal stem cell (MSC) osteogenic differentiation potential varies according to factors such as tissue source and cell population heterogeneity. Pre-selection of cell subpopulations harboring higher osteopotential is a promising strategy to achieve a thorough translation of MSC-based therapies to the clinic. Here, we searched for novel molecular markers predictive of osteopotential by comparing MSC populations from two sources harboring different osteogenic potentials. We show that MSCs from human deciduous teeth (SHED) have an intrinsically higher osteogenic potential when compared with MSCs from human adipose tissue (hASCs) under the same in vitro controlled induction system. Transcriptome profiling revealed IGF2 to be one of the top upregulated transcripts before and during early in vitro osteogenic differentiation. Further, exogenous IGF2 supplementation enhanced alkaline phosphatase activity and matrix mineralization, and inhibition of IGF2 lessened these parameters in SHED and hASCs, validating IGF2 as an osteogenic factor in these MSCs. Further, we found IGF2 to be biallelically expressed in SHED, but not in hASCs. We observed a 4 % methylation increase in the imprinting control region within the IGF2-H19 locus in SHED, and this is mainly due to 2 specific CpG sites. Thus, we suggest that IGF2 upregulation in SHED is due to loss of imprinting. This study unravels osteogenic properties in SHED, implying IGF2 as a potential biomarker of MSCs with higher osteopotential, and unveils IGF2 loss-of-imprinting in SHED.


SHED hASCs In vitro osteopotential IGF2 Imprinting Biallelic expression 



We would like to thank Constancia Gotto Urbani for secretarial assistance, Andressa Gois Morales and Simone Gomes Ferreira for technical support. We also thank Erika Yeh, PhD (University of California, San Francisco) and Luciane Portas Capelo, PhD (Federal University of Sao Paulo, Sao Jose dos Campos) for stimulating discussions. This work was supported by grants from the Brazillian Ministry of Health, Fundação de Amparo à Pesquisa do Estado de São Paulo (CEPID/FAPESP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Disclosure of Potential Conflict of Interest

No potential conflict of interest was disclosed.

Author Contributions

Roberto Dalto Fanganiello: conception and design, collection and assembly of data, data analysis and interpretation, manuscript writing

Felipe Augusto Andre Ishiy: collection and assembly of data, data analysis and interpretation, manuscript writing

Gerson Shigeru Kobayashi: data analysis and interpretation, manuscript writing

Lucas Alvizi: conception and design, collection and assembly of data, data analysis and interpretation, manuscript writing

Daniele Yumi Sunaga: conception and design, collection and assembly of data, data analysis and interpretation, manuscript writing

Maria Rita Passos-Bueno: conception and design, data analysis and interpretation, manuscript writing, financial support, administrative support

Supplementary material

12015_2015_9592_MOESM1_ESM.png (77 kb)
Supplementary Figure 1 Representative surface antigen profiling of SHED and hASCs labeled with antibodies against mesenchymal, endothelial and hematopoietic antigens. Grey histograms represent isotype controls and black histograms represent the conjugated antibody for each antigen. Mean expression rates are indicated above each graph and displayed as mean +/− SD. (PNG 76 kb)


  1. 1.
    Caplan, A. I., & Correa, D. (2011). The MSC: an injury drugstore. Cell Stem Cell, 9, 11–5.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Kean, T. J., Lin, P., Caplan, A. I., & Dennis, J. E. (2013). MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells International, 2013, 732742.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Krebsbach, P. H., Mankani, M. H., Satomura, K., Kuznetsov, S. A., & Robey, P. G. (1998). Repair of craniotomy defects using bone marrow stromal cells. Transplantation, 66, 1272–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Shayesteh, Y. S., Khojasteh, A., Soleimani, M., Alikhasi, M., Khoshzaban, A., & Ahmadbeigi, N. (2008). Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 106, 203–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Nolff, M. C., Gellrich, N. C., Hauschild, G., et al. (2009). Comparison of two beta-tricalcium phosphate composite grafts used for reconstruction of mandibular critical size bone defects. Veterinary and Comparative Orthopaedics and Traumatology, 22, 96–102.PubMedGoogle Scholar
  6. 6.
    Miura, M., Gronthos, S., Zhao, M., et al. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100, 5807–12.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Graziano, A., d’Aquino, R., Laino, G., et al. (2008). Human CD34+ stem cells produce bone nodules in vivo. Cell Proliferation, 41, 1–11.PubMedCrossRefGoogle Scholar
  8. 8.
    Yamaza, T., Kentaro, A., Chen, C., et al. (2010). Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Research & Therapy, 1, 5.CrossRefGoogle Scholar
  9. 9.
    Wang X, Sha XJ, Li GH, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Archives of oral biology 2012.Google Scholar
  10. 10.
    Seo, B. M., Sonoyama, W., Yamaza, T., et al. (2008). SHED repair critical-size calvarial defects in mice. Oral Diseases, 14, 428–34.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    de Mendonca, C. A., Bueno, D. F., Martins, M. T., et al. (2008). Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. The Journal of Craniofacial Surgery, 19, 204–10.Google Scholar
  12. 12.
    Levi, B., & Longaker, M. T. (2011). Concise review: adipose-derived stromal cells for skeletal regenerative medicine. Stem cells (Dayton, Ohio), 29, 576–82.CrossRefGoogle Scholar
  13. 13.
    Goh, B. C., Thirumala, S., Kilroy, G., Devireddy, R. V., & Gimble, J. M. (2007). Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability. Journal of Tissue Engineering and Regenerative Medicine, 1, 322–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Dragoo, J. L., Choi, J. Y., Lieberman, J. R., et al. (2003). Bone induction by BMP-2 transduced stem cells derived from human fat. Journal of Orthopaedic Research, 21, 622–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Hattori, H., Sato, M., Masuoka, K., et al. (2004). Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells, Tissues, Organs, 178, 2–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Lendeckel, S., Jodicke, A., Christophis, P., et al. (2004). Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. Journal of Cranio-Maxillo-Facial Surgery, 32, 370–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Mesimaki, K., Lindroos, B., Tornwall, J., et al. (2009). Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. International Journal of Oral and Maxillofacial Surgery, 38, 201–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Daley, G. Q. (2012). The promise and perils of stem cell therapeutics. Cell Stem Cell, 10, 740–9.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Levi, B., Peault, B., & James, A. W. (2014). Bone tissue engineering and regeneration. BioMed research international, 2014, 137529.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Halvorsen, Y. D., Franklin, D., Bond, A. L., et al. (2001). Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Engineering, 7, 729–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7, 211–28.PubMedCrossRefGoogle Scholar
  22. 22.
    Hattori, H., Masuoka, K., Sato, M., et al. (2006). Bone formation using human adipose tissue-derived stromal cells and a biodegradable scaffold. Journal of Biomedical Materials Research, Part B: Applied Biomaterials, 76, 230–9.CrossRefGoogle Scholar
  23. 23.
    Laino, G., Graziano, A., d’Aquino, R., et al. (2006). An approachable human adult stem cell source for hard-tissue engineering. Journal of Cellular Physiology, 206, 693–701.PubMedCrossRefGoogle Scholar
  24. 24.
    Anderson, P., Carrillo-Galvez, A. B., Garcia-Perez, A., Cobo, M., & Martin, F. (2013). CD105 (endoglin)-negative murine mesenchymal stromal cells define a new multipotent subpopulation with distinct differentiation and immunomodulatory capacities. PLoS One, 8, e76979.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Laino, G., d’Aquino, R., Graziano, A., et al. (2005). A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). Journal of Bone and Mineral Research, 20, 1394–402.PubMedCrossRefGoogle Scholar
  26. 26.
    Papaccio, G., Graziano, A., d’Aquino, R., et al. (2006). Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. Journal of Cellular Physiology, 208, 319–25.PubMedCrossRefGoogle Scholar
  27. 27.
    d’Aquino, R., Graziano, A., Sampaolesi, M., et al. (2007). Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death and Differentiation, 14, 1162–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Irizarry, R. A., Hobbs, B., Collin, F., et al. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4, 249–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8, 118–27.PubMedCrossRefGoogle Scholar
  30. 30.
    Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America, 98, 5116–21.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., & Golani, I. (2001). Controlling the false discovery rate in behavior genetics research. Behavioural Brain Research, 125, 279–84.PubMedCrossRefGoogle Scholar
  32. 32.
    Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002;3:RESEARCH0034.Google Scholar
  33. 33.
    Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Rohde, C., Zhang, Y., Reinhardt, R., & Jeltsch, A. (2010). BISMA–fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinformatics, 11, 230.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Langdahl, B. L., Kassem, M., Moller, M. K., & Eriksen, E. F. (1998). The effects of IGF-I and IGF-II on proliferation and differentiation of human osteoblasts and interactions with growth hormone. European Journal of Clinical Investigation, 28, 176–83.PubMedCrossRefGoogle Scholar
  36. 36.
    Boonen, S., Mohan, S., Dequeker, J., et al. (1999). Down-regulation of the serum stimulatory components of the insulin-like growth factor (IGF) system (IGF-I, IGF-II, IGF binding protein [BP]-3, and IGFBP-5) in age-related (type II) femoral neck osteoporosis. Journal of Bone and Mineral Research, 14, 2150–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Ulaner, G. A., Vu, T. H., Li, T., et al. (2003). Loss of imprinting of IGF2 and H19 in osteosarcoma is accompanied by reciprocal methylation changes of a CTCF-binding site. Human Molecular Genetics, 12, 535–49.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang, H., Niu, B., Hu, J. F., et al. (2011). Interruption of intrachromosomal looping by CCCTC binding factor decoy proteins abrogates genomic imprinting of human insulin-like growth factor II. The Journal of Cell Biology, 193, 475–87.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    van Bezooijen, R. L., Van der Bent, C., Papapoulos, S. E., & Lowik, C. W. (1999). Oestrogenic compounds modulate cytokine-induced nitric oxide production in mouse osteoblast-like cells. The Journal of Pharmacy and Pharmacology, 51, 1409–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Goswami, J., Hernandez-Santos, N., Zuniga, L. A., & Gaffen, S. L. (2009). A bone-protective role for IL-17 receptor signaling in ovariectomy-induced bone loss. European Journal of Immunology, 39, 2831–9.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Osta, B., Lavocat, F., Eljaafari, A., & Miossec, P. (2014). Effects of interleukin-17A on osteogenic differentiation of isolated human mesenchymal stem cells. Frontiers in Immunology, 5, 425.PubMedCentralPubMedGoogle Scholar
  42. 42.
    CA, C. (1996). The role of insulin-like growth factors and binding proteins in bone cell biology. In J. B. Bilezikian LGR & G. A. Rodan (Eds.), Principles of bone biology (pp. 607–18). San Diego: Academic.Google Scholar
  43. 43.
    Canalis, E. (1993). Insulin like growth factors and the local regulation of bone formation. Bone, 14, 273–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Subburaman Mohan DJB. IGF System Components and Their Role in Bone Metabolism. In: Rosenfeld RG, Roberts, Charles, ed. The IGF System. Contemporary Endocrinology: Humana Press; 1999:457–96.Google Scholar
  45. 45.
    Hardouin, S. N., Guo, R., Romeo, P. H., Nagy, A., & Aubin, J. E. (2011). Impaired mesenchymal stem cell differentiation and osteoclastogenesis in mice deficient for Igf2-P2 transcripts. Development, 138, 203–13.PubMedCrossRefGoogle Scholar
  46. 46.
    Twine, N. A., Chen, L., Pang, C. N., Wilkins, M. R., & Kassem, M. (2014). Identification of differentiation-stage specific markers that define the ex vivo osteoblastic phenotype. Bone, 67, 23–32.PubMedCrossRefGoogle Scholar
  47. 47.
    Vu, T. H., Nguyen, A. H., & Hoffman, A. R. (2010). Loss of IGF2 imprinting is associated with abrogation of long-range intrachromosomal interactions in human cancer cells. Human Molecular Genetics, 19, 901–19.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Ohlsson, R., Nystrom, A., Pfeifer-Ohlsson, S., et al. (1993). IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nature Genetics, 4, 94–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Ping, A. J., Reeve, A. E., Law, D. J., Young, M. R., Boehnke, M., & Feinberg, A. P. (1989). Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. American Journal of Human Genetics, 44, 720–3.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Davies, S. M. (1994). Developmental regulation of genomic imprinting of the IGF2 gene in human liver. Cancer Research, 54, 2560–2.PubMedGoogle Scholar
  51. 51.
    Kalscheuer, V. M., Mariman, E. C., Schepens, M. T., Rehder, H., & Ropers, H. H. (1993). The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nature Genetics, 5, 74–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Pham, N. V., Nguyen, M. T., Hu, J. F., Vu, T. H., & Hoffman, A. R. (1998). Dissociation of IGF2 and H19 imprinting in human brain. Brain Research, 810, 1–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Dai, Y. M., Hu, Y. L., Wang, Z. Q., & Li, J. (2007). [Loss of imprinting of IGF2 in cord blood of newborns of Chinese Han population]. Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi =. Chinese Journal of Medical Genetics, 24, 10–4.PubMedGoogle Scholar
  54. 54.
    Douc-Rasy, S., Barrois, M., Fogel, S., et al. (1996). High incidence of loss of heterozygosity and abnormal imprinting of H19 and IGF2 genes in invasive cervical carcinomas. Uncoupling of H19 and IGF2 expression and biallelic hypomethylation of H19. Oncogene, 12, 423–30.PubMedGoogle Scholar
  55. 55.
    Eslaminejad, M. B., Fani, N., & Shahhoseini, M. (2013). Epigenetic regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in culture. Cell Journal, 15, 1–10.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Teven, C. M., Liu, X., Hu, N., et al. (2011). Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells International, 2011, 201371.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Im, G. I., & Shin, K. J. (2015). Epigenetic approaches to regeneration of bone and cartilage from stem cells. Expert Opinion on Biological Therapy, 15, 181–93.PubMedCrossRefGoogle Scholar
  58. 58.
    Hemming, S., Cakouros, D., & Isenmann, S. (2014). EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells (Dayton, Ohio), 32, 802–15.CrossRefGoogle Scholar
  59. 59.
    Paino, F., La Noce, M., & Tirino, V. (2014). Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: evidence for HDAC2 involvement. Stem Cells (Dayton, Ohio), 32, 279–89.CrossRefGoogle Scholar
  60. 60.
    d’Aquino, R., De Rosa, A., Lanza, V., et al. (2009). Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. European Cells & Materials, 18, 75–83.Google Scholar
  61. 61.
    Giuliani, A., Manescu, A., Langer, M., et al. (2013). Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Translational Medicine, 2, 316–24.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Roberto Dalto Fanganiello
    • 1
    Email author
  • Felipe Augusto Andre Ishiy
    • 1
  • Gerson Shigeru Kobayashi
    • 1
  • Lucas Alvizi
    • 1
  • Daniele Yumi Sunaga
    • 1
  • Maria Rita Passos-Bueno
    • 1
  1. 1.Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloSao PauloBrazil

Personalised recommendations