Stem Cell-Based Therapy in Idiopathic Pulmonary Fibrosis

Abstract

Idiopathic pulmonary fibrosis is a progressive fibrosing disorder for which there is no cure and no pharmacological treatment capable of increasing in a meaningful way the survival rate. Lung transplantation remains the only possible treatment for patients with advanced disease, although the increase in 5-year survival is only 45 %. Some preclinical studies have generated promising results about the therapeutic potential of exogenous stem cells. However, two initial clinical trials involving the endobronchial or systemic delivery of autologous adipose tissue-derived or unrelated-donor, placenta-derived mesenchymal stem cells have not convincingly demonstrated that these treatments are acceptably safe. The results of other ongoing clinical trials may help to identify the best source and delivery route of mesenchymal stem cells and to estimate the risk of unwanted effects related to the mesenchymal nature of the transplanted cells. Considering that most of the therapeutic potential of these cells has been ascribed to paracrine signaling, the use of mesenchymal stem cell-derived secretome as an alternative to the transplantation of single cell suspension may circumvent many regulatory and clinical problems. Technical and safety concerns still limit the possibility of clinical applications of other promising interventions that are based on the use of human amnion stem cells, embryonic stem cells or induced pluripotent stem cells to replace or regenerate the dysfunctional alveolar epithelium. We summarize the current status of the field and identify major challenges and opportunities for the possible future integration of stem cell-based treatments into the currently recommended clinical management strategy for idiopathic pulmonary fibrosis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Khalil, N., Churg, A., Muller, N., & O’Connor, R. (2007). Environmental, inhaled and ingested causes of pulmonary fibrosis. Toxicologic Pathology, 35, 86–96.

    CAS  PubMed  Google Scholar 

  2. 2.

    Wilson, M. S., & Wynn, T. A. (2009). Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunology, 2, 103–121.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. 3.

    Xu, J.-F., Washko, G. R., Nakahira, K., et al. (2012). Statins and pulmonary fibrosis. The potential role of NLRP3 inflammasome activation. American Journal of Respiratory and Critical Care Medicine, 185, 547–556.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. 4.

    Raghu, G., Collard, H. R., Egan, J. J., et al. (2011). An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. American Journal of Respiratory and Critical Care Medicine, 183, 788–824.

    PubMed  Google Scholar 

  5. 5.

    Nalysnyk, L., Cid-Ruzafa, J., Rotella, P., & Esser, D. (2012). Incidence and prevalence of idiopathic pulmonary fibrosis: review of the literature. European Respiratory Review, 21, 355–361.

    PubMed  Google Scholar 

  6. 6.

    Ley, B., Collard, H. R., & King, T. E., Jr. (2011). Clinical course and prediction of survival in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 183, 431–440.

    PubMed  Google Scholar 

  7. 7.

    Hunninghake, G. W., & Schwarz, M. I. (2007). Does current knowledge explain the pathogenesis of idiopathic pulmonary fibrosis? A perspective. Proceedings of the American Thoracic Society, 4, 449–452.

    PubMed Central  PubMed  Google Scholar 

  8. 8.

    Moeller, A., Ask, K., Warburton, D., Gauldie, J., & Kolb, M. (2008). The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? The International Journal of Biochemistry & Cell Biology, 40, 362–382.

    CAS  Google Scholar 

  9. 9.

    Moore, B. B., & Hogaboam, C. M. (2008). Murine models of pulmonary fibrosis. American Journal of Physiology. Lung Cellular and Molecular Physiology, 294, L152–L160.

    CAS  PubMed  Google Scholar 

  10. 10.

    Scotton, C. J., & Chamners, R. C. (2010). Bleomycin revisited: towards a more representative model of IPF? American Journal of Physiology. Lung Cellular and Molecular Physiology, 299, L439–L441.

    CAS  PubMed  Google Scholar 

  11. 11.

    Degryse, A. L., Tanjore, H., Xu, X. C., Polosukhin, V. V., Jones, B. R., McMahon, F. B., Gleaves, L. A., Blackwell, T. S., & Lawson, W. E. (2010). Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. American Journal of Physiology. Lung Cellular and Molecular Physiology, 299, L442–L452.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. 12.

    Degryse, A. L., & Lawson, W. E. (2011). Progress toward improving animal models for IPF. The American Journal of the Medical Sciences, 341, 444–449.

    PubMed Central  PubMed  Google Scholar 

  13. 13.

    Raghu, G., Anstrom, K. J., King, T. E., Jr., Lasky, J. A., & Martinez, F. J. (2012). Prednisone, azathioprine, and N-acetylcisteine for pulmonary fibrosis. The New England Journal of Medicine, 366, 1968–1977.

    CAS  PubMed  Google Scholar 

  14. 14.

    Papiris, S. A., Manali, E. D., Kolilekas, L., et al. (2010). Clinical review: idiopathic pulmonary fibrosis acute exacerbations – unravelling Ariadne’s thread. Critical Care, 14, 246.

    PubMed Central  PubMed  Google Scholar 

  15. 15.

    Konishi, K., Gibson, K. F., Lindell, K. O., et al. (2009). Gene expression profiles of acute exacerbations of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 180, 167–175.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. 16.

    Wootton, S. C., Kim, D. S., Kondoh, Y., et al. (2011). Viral infection in acute exacerbation of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 183, 1698–1702.

    PubMed Central  PubMed  Google Scholar 

  17. 17.

    Friedman, S. L., Sheppard, D., Duffield, J. S., & Violette, S. (2013). Therapy for fibrotic diseases: nearing the starting line. Science Translational Medicine, 5, 167sr1.

    PubMed  Google Scholar 

  18. 18.

    Hunninghake, G. M. (2014). A new hope for idiopathic pulmonary fibrosis. The New England Journal of Medicine, 370, 2142–2143.

    CAS  PubMed  Google Scholar 

  19. 19.

    Shorr, A.F. (2014). Exciting IPF treatment news must be interpreted cautiously. Medscape, http://www.medscape.com/viewarticle/828543. Accessed 24 July 2014.

  20. 20.

    Raghu, G., & Selman, M. (2015). Nintedanib and pirfenidone. New antifibrotic treatments indicated for idiopathic pulmonary fibrosis offer hopes and raises questions. American Journal of Respiratory and Critical Care Medicine, 191, 252–254.

    PubMed  Google Scholar 

  21. 21.

    George, T. J., Arnaoutakis, G. J., & Shah, A. S. (2011). Lung transplant in idiopathic pulmonary fibrosis. Archives of Surgery, 146, 1204–1209.

    PubMed  Google Scholar 

  22. 22.

    Weiss, D. J. (2013). Stem cells, cell therapies, and bioengineering in lung biology and diseases. Comprehensive review of the recent literature 2010–2012. Annals of the American Thoracic Society, 10, S45–S97.

    PubMed Central  PubMed  Google Scholar 

  23. 23.

    Toonkel, R. L., Hare, J. M., Matthay, M. A., & Glassberg, M. K. (2013). Mesenchymal stem cells and idiopathic pulmonary fibrosis. Potential for clinical testing. American Journal of Respiratory and Critical Care Medicine, 188, 133–140.

    PubMed  Google Scholar 

  24. 24.

    Weiss, D. J., & Ortiz, L. A. (2013). Cell therapy trials for lung diseases: progress and cautions. American Journal of Respiratory and Critical Care Medicine, 188, 123–125.

    PubMed Central  PubMed  Google Scholar 

  25. 25.

    McNulty, K., & Janes, S. M. (2012). Stem cells and pulmonary fibrosis: cause or cure? Proceedings of the American Thoracic Society, 9, 164–171.

    CAS  PubMed  Google Scholar 

  26. 26.

    Wetsel, R. A., Wang, D., & Calame, D. G. (2011). Therapeutic potential of lung epithelial progenitor cells derived from embryonic and induced pluripotent stem cells. Annual Review of Medicine, 62, 95–105.

    CAS  PubMed  Google Scholar 

  27. 27.

    Lutolf, M. P., Gilbert, P. M., & Blau, H. M. (2009). Designing materials to direct stem-cell fate. Nature, 462, 433–441.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. 28.

    American Thoracic Society, & European Respiratory Society. (2002). American Thoracic Society/European Respiratory Society international multidisciplinary consensus classification of the idiopathic interstitial pneumonias. American Journal of Respiratory and Critical Care Medicine, 165, 277–304.

    Google Scholar 

  29. 29.

    Visscher, D. W., & Myers, J. L. (2006). Histologic spectrum of idiopathic interstitital pneumonias. Proceedings of the American Thoracic Society, 3, 322–329.

    PubMed  Google Scholar 

  30. 30.

    Barbas-Filho, J. V., Ferreira, M. A., Sesso, A., Kairalla, R. A., Carvalho, C. R. R., & Capelozzi, V. L. (2001). Evidence of type II pneumocyte apoptosis in the pathogenesis of idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia (UIP). Journal of Clinical Pathology, 54, 132–138.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. 31.

    Waisberg, D. R., Barbas-Filho, J. V., Parra, E. R., et al. (2010). Abnormal expression of telomerase/apoptosis limits type II alveolar epithelial cell replication in the early remodeling of usual interstitial pneumonia/idiopathic pulmonary fibrosis. Human Pathology, 41, 385–391.

    PubMed  Google Scholar 

  32. 32.

    Selman, M., & Pardo, A. (2006). Role of epithelial cells in idiopathic pulmonary fibrosis. From innocent targets to serial killers. Proceedings of the American Thoracic Society, 3, 364–372.

    CAS  PubMed  Google Scholar 

  33. 33.

    Katzenstein, A.-L., & Myers, J. L. (1998). Idiopathic pulmonary fibrosis. Clinical relevance of pathologic classification. State of the art. American Journal of Respiratory and Critical Care Medicine, 157, 1301–1315.

    CAS  PubMed  Google Scholar 

  34. 34.

    Seibold, M. A., Smith, R. W., Urbanek, C., et al. (2013). The idiopathic pulmonary fibrosis honeycomb cyst contains a mucociliary pseudostratified epithelium. PLoS One, 8, e58658.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. 35.

    Camelo, A., Dunmore, R., Sleeman, M. S., & Clarke, D. L. (2014). The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Frontiers in Pharmacology, 4, 173.

    PubMed Central  PubMed  Google Scholar 

  36. 36.

    Sakai, N., & Tager, A. M. (2013). Fibrosis of two: epithelial cell-fibroblast interactions in pulmonary fibrosis. Biochimica et Biophysica Acta, 1832, 911–921.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. 37.

    Garcia, C. K. (2011). Idiopathic pulmonary fibrosis: update on genetic discoveries. Proceedings of the American Thoracic Society, 8, 158–162.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. 38.

    Kropski, J. A., Lawson, W. E., Young, L. R., & Blackwell, T. S. (2013). Genetic studies provide clues on the pathogenesis of idiopathic pulmonary fibrosis. Disease Models & Mechanics, 6, 9–17.

    CAS  Google Scholar 

  39. 39.

    Steele, M. P., & Schwartz, D. A. (2013). Molecular mechanisms in progressive idiopathic pulmonary fibrosis. Annual Review of Medicine, 64, 265–276.

    CAS  PubMed  Google Scholar 

  40. 40.

    Armanios, M. (2013). Telomeres and age-related disease: how telomere biology informs clinical paradigms. The Journal of Clinical Investigation, 123, 996–1002.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. 41.

    Fingerlin, T. E., Murphy, E., Zhang, W., et al. (2013). Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nature Genetics, 45, 613–620.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. 42.

    Eickelberg, O., & Hunninghake, G. M. (2015). A first glimpse at the early origins of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 191, 366–368.

    PubMed  Google Scholar 

  43. 43.

    Adamson, Y. R., Young, L., & Bowden, D. H. (1988). Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis. The American Journal of Pathology, 130, 377–383.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. 44.

    Coxson, H. O., Hogg, J. C., Mayo, J. R., et al. (1997). Quantification of idiopathic pulmonary fibrosis using computed tomography and histology. American Journal of Respiratory and Critical Care Medicine, 155, 1649–1656.

    CAS  PubMed  Google Scholar 

  45. 45.

    Liu, T., Warburton, R. R., Guevara, O. E., et al. (2007). Lack of MK2 inhibits myofibroblast formation and exacerbates pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 37, 507–517.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. 46.

    Takeji, M., Moriyama, T., Oseto, S., et al. (2006). Smooth muscle α-actin deficiency in myofibroblasts leads to enhanced renal fibrosis. The Journal of Biological Chemistry, 281, 40193–40200.

    CAS  PubMed  Google Scholar 

  47. 47.

    Cieslik, K. A., Trial, J., Carlson, S., Taffet, G. E., & Entman, M. L. (2013). Aberrant differentiation of fibroblast progenitors contribute to fibrosis in the aged murine heart: role of elevated circulating insulin levels. The FASEB Journal, 27, 1761–1771.

    CAS  PubMed Central  Google Scholar 

  48. 48.

    Bianchetti, L., Barczyk, M., Cardoso, J., Schmidt, M., Bellini, A., & Mattoli, S. (2012). Extracellular matrix remodelling properties of human fibrocytes. Journal of Cellular and Molecular Medicine, 16, 483–495.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. 49.

    Mattoli, S., Bellini, A., & Schmidt, M. (2009). The role of a human hematopoietic mesenchymal progenitor in wound healing and fibrotic diseases and implications for therapy. Current Stem Cell Research & Therapy, 4, 266–280.

    CAS  Google Scholar 

  50. 50.

    Bellini, A., & Mattoli, S. (2010). Fibrocytes (reactive or reparative). In J. Polak (Ed.), Cell therapy for lung disease (pp. 237–252). London: Imperial College Press.

    Google Scholar 

  51. 51.

    Keeley, E. C., Mehrad, B., & Strieter, R. M. (2011). The role of fibrocytes in fibrotic diseases of the lungs and heart. Fibrogenesis & Tissue Repair, 4, 2.

    Google Scholar 

  52. 52.

    Ellson, C. D., Dunmore, R., Hogaboam, C. M., Sleeman, M. A., & Murray, L. A. (2014). Danger-associated molecular patterns and danger signals in idiopathic pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 51, 163–168.

    PubMed  Google Scholar 

  53. 53.

    Bianchetti, L., Marini, M. A., Isgrò, M., Bellini, A., Schmidt, M., & Mattoli, S. (2012). IL-33 promotes the migration and proliferation of circulating fibrocytes from patients with allergen-exacerbated asthma. Biochemical and Biophysical Research Communications, 426, 116–121.

    CAS  PubMed  Google Scholar 

  54. 54.

    Xia, H., Bodempudi, V., Benyumov, A., et al. (2014). Identification of a cell-of-origin for fibroblasts comprising the fibrotic reticulum in idiopathic pulmonary fibrosis. The American Journal of Pathology, 184, 1369–1383.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. 55.

    Lau, A. N., Goodwin, M., Kim, C. F., & Weiss, D. J. (2012). Stem cells and regenerative medicine in lung biology and diseases. Molecular Therapy, 20, 1116–1130.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. 56.

    Serrano-Mollar, A., Nacher, M., Gay-Jordi, G., Closa, D., Xaubet, A., & Bulbena, O. (2007). Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis. American Journal of Respiratory and Critical Care Medicine, 176, 1261–1268.

    CAS  PubMed  Google Scholar 

  57. 57.

    Garcia, O., Carraro, G., Navarro, S., et al. (2012). Cell-based therapies for lung disease. British Medical Bulletin, 101, 147–161.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. 58.

    Murphy, M. B., Moncivais, K., & Caplan, A. I. (2013). Mesenchymal stem cells: environmentally responsive therapeutic for regenerative medicine. Experimental & Molecular Medicine, 45, e54.

    Google Scholar 

  59. 59.

    Baer, P. C. (2014). Adipose-derived mesenchymal stromal/stem cells: an update on their phenotype in vivo and in vitro. World Journal of Stem Cells, 6, 256–265.

    PubMed Central  PubMed  Google Scholar 

  60. 60.

    Caruso, M., Evangelista, M., & Parolini, O. (2012). Human term placental cells: phenotype, properties and new avenues in regenerative medicine. International Journal of Molecular and Cellular Medicine, 1, 64–74.

    PubMed Central  PubMed  Google Scholar 

  61. 61.

    Cyranoski, D. (2012). Canada approves stem cell product. Nature Biotechnology, 30, 571.

    Google Scholar 

  62. 62.

    Lalu, M. M., McIntyre, L., Pugliese, C., et al. (2012). Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One, 7, e47559.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. 63.

    von Bahr, L., Batsis, I., Moll, G., et al. (2012). Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells, 30, 1575–1578.

    Google Scholar 

  64. 64.

    Yang, J., & Jia, Z. (2014). Cell-based therapy in lung regenerative medicine. Regenerative Medicine Research, 2, 7.

    PubMed Central  PubMed  Google Scholar 

  65. 65.

    Islam, M. N., Das, S. R., Emin, M. T., et al. (2012). Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nature Medicine, 18, 759–765.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. 66.

    Ortiz, L. A., Gambelli, F., McBride, C., et al. (2003). Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proceeding of the National Academy of Sciences of the United States of America, 100, 8407–8411.

    CAS  Google Scholar 

  67. 67.

    Rojas, M., Xu, J., Woods, C. R., et al. (2005). Bone marrow-derived mesenchymal stem cells in repair of the injured lung. American Journal of Respiratory Cell and Molecular Biology, 33, 145–152.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. 68.

    Zhao, F., Zhang, Y. F., Liu, Y. G., et al. (2008). Therapeutic effects of bone marrow-derived mesenchymal stem cells engraftment on bleomycin-induced lung injury in rats. Transplantation Proceedings, 40, 1700–1705.

    CAS  PubMed  Google Scholar 

  69. 69.

    Kumamoto, M., Nishiwaki, T., Matsuo, N., Kimura, H., & Matsushima, K. (2009). Minimally cultured bone marrow mesenchymal stem cells ameliorate fibrotic lung injury. European Respiratory Journal, 34, 740–748.

    CAS  PubMed  Google Scholar 

  70. 70.

    Lee, S. H., Jang, A. S., Kim, Y. E., et al. (2010). Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respiratory Research, 11, 16.

    PubMed Central  PubMed  Google Scholar 

  71. 71.

    Aguilar, S., Scotton, C. J., McNulty, K., et al. (2009). Bone marrow stem cells expressing keratinocyte growth factor via an inducible lentivirus protects against bleomycin induced pulmonary fibrosis. PLoS One, 4, e8013.

    PubMed Central  PubMed  Google Scholar 

  72. 72.

    Moodley, Y., Atienza, D., Manuelpillai, U., et al. (2009). Human umbilical cord mesenchymal stem cells reduce fibrosis in bleomycin-induced lung injury. American Journal of Pathology, 175, 303–313.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. 73.

    Saito, S., Nakayama, T., Hashimoto, N., et al. (2011). Mesenchymal stem cells stably transduced with a dominant-negative inhibitor of CCL2 greatly attenuated bleomycin-induced lung damage. American Journal of Pathology, 179, 1088–1094.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. 74.

    Lim, R., Miltonic, P., Murphy, S., Dickinson, H., Chan, S. T., & Jenkin, G. (2013). Human mesenchymal stem cells reduce lung injury in immunocompromised mice but not in immunocompetent mice. Respiration, 85, 332–341.

    CAS  PubMed  Google Scholar 

  75. 75.

    Gazdhar, A., Susuri, N., Hostettler, K., et al. (2013). HGF expressing stem cells in usual interstitial pneumonia originate from the bone marrow and are antifibrotic. PLoS One, 8, e65453.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. 76.

    Lee, S. H., Lee, E. J., Lee, S. Y., et al. (2014). The effect of adipose stem cell therapy on pulmonary fibrosis induced by repetitive intratracheal bleomycin in mice. Experimental Lung Research, 40, 117–125.

    CAS  PubMed  Google Scholar 

  77. 77.

    Moodley, Y., Ilancheran, S., Samuel, C., et al. (2010). Human amnion epithelial cell transplantation abrogates lung fibrosis and augments repair. American Journal of Respiratory and Critical Care Medicine, 182, 643–651.

    CAS  PubMed  Google Scholar 

  78. 78.

    Murphy, S., Lim, R., Dickinson, H., et al. (2011). Human amnion epithelial cells prevent bleomycin-induced lung injury and preserve lung function. Cell Transplantation, 20, 909–923.

    PubMed  Google Scholar 

  79. 79.

    Cargnoni, A., Gibelli, L., Tosini, A., et al. (2009). Transplantation of allogenic and xenogenic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplantation, 18, 405–422.

    PubMed  Google Scholar 

  80. 80.

    Wang, D., Morales, J. E., Calame, D. G., Alcom, J. L., & Wetsel, R. A. (2010). Transplantation of human embryonic stem cell-derived alveolar epithelial type II epithelial cells abrogates acute lung injury in mice. Molecular Therapy, 18, 625–634.

    PubMed Central  PubMed  Google Scholar 

  81. 81.

    Soh, B. S., Zheng, D., Yeo, J. S. L., et al. (2012). CD166(pos) subpopulation from differentiated human ES and iPS cells support repair of acute lung injury. Molecular Therapy, 20, 2335–2346.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. 82.

    Bauer, Y., Tedrow, J., de Bernard, S., et al. (2015). A novel genomic signature with translational significance for human idiopathic pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 52, 217–231.

    PubMed  Google Scholar 

  83. 83.

    Ortiz, L. A., Dutreil, M., Fattman, C., et al. (2007). Interleukin 1 receptor antagonist mediates the anti-inflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proceeding of the National Academy of Sciences of the United States of America, 104, 11002–11007.

    CAS  Google Scholar 

  84. 84.

    Yan, X., Liu, Y., Han, Q., et al. (2007). Injured microenvironment directly guides the differentiation of engrafted flk-1(+) mesenchymal stem cell in lung. Experimental Hematology, 35, 1466–1475.

    CAS  PubMed  Google Scholar 

  85. 85.

    Epperly, M. W., Guo, H., Gretton, J. E., & Greenberger, J. S. (2003). Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 29, 213–224.

    CAS  PubMed  Google Scholar 

  86. 86.

    Tzouvelekis, A., Paspaliaris, V., Koliakos, G., et al. (2013). A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. Journal of Translational Medicine, 11, 171.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. 87.

    Chambers, D. C., Enever, D., Ilic, N., et al. (2014). A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology, 19, 1013–1018.

    PubMed  Google Scholar 

  88. 88.

    Bourin, P., Bunnell, B. A., Casteilla, L., et al. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics (IFATS) and Science and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15, 641–648.

    PubMed Central  PubMed  Google Scholar 

  89. 89.

    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    CAS  PubMed  Google Scholar 

  90. 90.

    Yuan, B. Z., & Wang, J. (2014). The regulatory sciences for stem cell-based medicinal products. Frontiers of Medicine, 8, 190–200.

    PubMed  Google Scholar 

  91. 91.

    Brooke, G., Rossetti, T., Pelekanos, R., et al. (2009). Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. British Journal of Haematology, 144, 571–579.

    PubMed  Google Scholar 

  92. 92.

    Ilic, N., Brooke, G., Murray, P., et al. (2011). Manufacture of clinical grade human placenta-derived multipotent mesenchymal stromal cells. Methods in Molecular Biology, 698, 89–106.

    CAS  PubMed  Google Scholar 

  93. 93.

    De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25, 100–106.

    PubMed  Google Scholar 

  94. 94.

    Perin, L., Giuliani, S., Jin, D., et al. (2007). Renal differentiation of amniotic fluid stem cells. Cell Proliferation, 40, 936–948.

    CAS  PubMed  Google Scholar 

  95. 95.

    Carraro, G., Perin, L., Sedrakyan, S., et al. (2008). Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells, 26, 2902–2911.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. 96.

    Mirabella, T., Poggi, A., Scaranari, M., et al. (2011). Recruitment of host’s progenitor cells to sites of human amniotic fluid stem cells implantation. Biomaterials, 32, 4218–4227.

    PubMed  Google Scholar 

  97. 97.

    Angelini, A., Castellani, C., Ravara, B., et al. (2011). Stem-cell therapy in an experimental model of pulmonary hypertension and right heart failure: role of paracrine and neurohormonal milieu in the remodelling process. The Journal of Heart and Lung Transplantation, 30, 1281–1293.

    PubMed  Google Scholar 

  98. 98.

    Ilancheran, S., Michalska, A., Peh, G., Wallace, E. M., Pera, M., & Manuelpillai, U. (2007). Stem cells derived from human fetal membranes display multi-lineage differentiation potential. Biology of Reproduction, 77, 577–588.

    CAS  PubMed  Google Scholar 

  99. 99.

    Da Sacco, S., Sedrakyan, S., Boldrin, F., et al. (2010). Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. The Journal of Urology, 183, 1193–1200.

    PubMed Central  PubMed  Google Scholar 

  100. 100.

    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    CAS  PubMed  Google Scholar 

  101. 101.

    Wang, D., Haviland, D. L., Burns, A. R., Zsigmond, E., & Wetsel, R. A. (2007). A pure population of lung alveolar epithelial II cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 4449–4454.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. 102.

    Spitalieri, P., Quitadamo, M. C., Orlandi, A., et al. (2012). Rescue of murine silica-induced lung injury and fibrosis by human embryonic stem cells. European Respiratory Journal, 39, 446–457.

    CAS  PubMed  Google Scholar 

  103. 103.

    Roszell, B., Mondrinos, M. J., Seaton, A., et al. (2009). Efficient derivation of alveolar type II cells from embryonic stem cells for in vivo application. Tissue Engineering Part A, 15, 3351–3365.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. 104.

    Longmire, T. A., Ikonomou, L., Hawkins, F., et al. (2012). Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell, 10, 398–411.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. 105.

    Lin, Y. M., Zhang, A., Rippon, H. J., Bismarck, A., & Bishop, A. E. (2010). Tissue engineering of lung: the effect of extracellular matrix on the differentiation of embryonic stem cells to pneumocytes. Tissue Engineering Part A, 16, 1515–1526.

    CAS  PubMed  Google Scholar 

  106. 106.

    Wang, Y., Wong, L. B., & Mao, H. (2010). Induction of ciliated cells from avian embryonic stem cells using three-dimensional matrix. Tissue Engineering. Part C, Methods, 16, 929–936.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. 107.

    Baker, D. E., Harrison, N. J., Maltby, E., et al. (2007). Adaptation to culture of human embryonic stem cells and oncogenenesis in vivo. Nature Biotechnology, 25, 207–215.

    CAS  PubMed  Google Scholar 

  108. 108.

    Fehrenbach, F. (2012). Alveolar epithelial type II cells from embryonic stem cells: knights in shining armour? European Respiratory Journal, 39, 240–241.

    CAS  PubMed  Google Scholar 

  109. 109.

    Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    CAS  PubMed  Google Scholar 

  110. 110.

    Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.

    CAS  PubMed  Google Scholar 

  111. 111.

    Nishikawa, S., Goldstein, R. A., & Nierras, C. R. (2008). The promise of human induced pluripotent stem cells for research and therapy. Nature Reviews Molecular Cell Biology, 9, 725–729.

    CAS  PubMed  Google Scholar 

  112. 112.

    Green, M. D., Chen, A., Nostro, M. C., et al. (2011). Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nature Biotechnology, 29, 267–272.

    CAS  PubMed  Google Scholar 

  113. 113.

    Mou, H., Zhao, R., Sherwood, R., et al. (2012). Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell, 10, 385–397.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. 114.

    Ghaedi, M., Calle, E. A., Mendez, J. J., et al. (2013). Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. The Journal of Clinical Investigation, 123, 4950–4962.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. 115.

    Kiskinis, E., & Eggan, K. (2010). Progress toward the clinical application of patient-specific plutipotent stem cells. The Journal of Clinical Investigation, 120, 51–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. 116.

    Pei, D., Xu, J., Zhuang, Q., Tse, H. F., & Esteban, M. A. (2010). Induced pluripotent stem cell technology in regenerative medicine and biology. Advances in Biochemical Engineering/Biotechnology, 123, 127–141.

    CAS  PubMed  Google Scholar 

  117. 117.

    Barrilleaux, B., & Knoepfler, P. S. (2011). Inducing IPSCs to escape the dish. Cell Stem Cell, 9, 103–111.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. 118.

    Zhao, T., Zhang, Z.-N., Rong, Z., & Xu, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature, 474, 212–215.

    CAS  PubMed  Google Scholar 

  119. 119.

    Soldner, F., Hockemeyer, D., Beard, C., et al. (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136, 964–977.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. 120.

    Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., & Woltjen, K. (2009). Virus free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458, 771–775.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. 121.

    Woltjen, K., Michael, I. P., Mohseni, P., et al. (2009). piggiBac transposition reprograms fibroblasts to induced plutipotent stem cells. Nature, 458, 766–770.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. 122.

    Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hoch-Edlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science, 322, 945–949.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. 123.

    Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322, 949–953.

    CAS  PubMed  Google Scholar 

  124. 124.

    Zhou, H., Wu, S., Joo, J. Y., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384.

    CAS  PubMed  Google Scholar 

  125. 125.

    Gonzalez, F., Barragan Monasterio, M., Tiscornia, G., et al. (2009). Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proceedings of the National Academy of Sciences of the United States of America, 106, 8918–8922.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. 126.

    Kim, D., Kim, C. H., Moon, J. I., et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472–476.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. 127.

    Yu, J., Hu, K., Smuga-Otto, K., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. 128.

    European Medicines Agency, Committee for Advanced Therapies. (2010). Reflection paper on stem cell-based medicinal products. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/03/WC500079932.pdf. Accessed 23 September 2014.

  129. 129.

    George, B. (2011). Regulations and guidelines governing stem cell based products: clinical considerations. Perspectives in Clinical Research, 2, 94–99.

    PubMed Central  PubMed  Google Scholar 

  130. 130.

    Viswanathan, S., Keating, A., Deans, R., et al. (2014). Soliciting strategies for developing cell-based reference materials to advance mesenchymal stromal cell research and clinical translation. Stem Cells and Development, 23, 1157–1167.

    PubMed Central  PubMed  Google Scholar 

  131. 131.

    Collins, E., Gu, F., Qi, M., et al. (2014). Differential efficacy of human mesenchymal stem cells based on source of origin. The Journal of Immunology, 193, 4381–4390.

    CAS  PubMed  Google Scholar 

  132. 132.

    Schinköthe, T., Bloch, W., & Schmidt, A. (2008). In vitro secreting profile of human mesenchymal stem cells. Stem Cells and Development, 17, 199–206.

    PubMed  Google Scholar 

  133. 133.

    Lai, R. C., Chen, T. S., & Lim, S. K. (2011). Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regenerative Medicine, 6, 481–492.

    PubMed  Google Scholar 

  134. 134.

    Ranganath, S. H., Levy, O., Inamdar, M. S., & Karp, J. M. (2012). Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell, 10, 244–258.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. 135.

    Ionescu, L., Byrne, R. N., van Haaften, T., et al. (2012). Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. American Journal of Physiology. Lung Cellular and Molecular Physiology, 303, L967–L977.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. 136.

    Lai, R. C., Tan, S. S., Teh, B. J., et al. (2012). Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. International Journal of Proteomics, 2012, 971907.

    PubMed Central  PubMed  Google Scholar 

  137. 137.

    Kim, H. S., Choi, D. Y., Yun, S. J., et al. (2012). Proteomic analysis of microvesicles derived from human mesenchymal stem cells. Journal of Proteome Research, 11, 839–849.

    CAS  PubMed  Google Scholar 

  138. 138.

    Lee, C., Mitsialis, S. A., Aslam, M., et al. (2012). Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation, 126, 2601–2611.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. 139.

    Li, T., Yan, Y., Wang, B., et al. (2013). Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells and Development, 22, 845–854.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. 140.

    Zhou, Y., Xu, H., Xu, W., et al. (2013). Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Research Therapy, 4, 34.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. 141.

    Arslan, F., Lai, R. C., Smeets, M. B., et al. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10, 301–312.

    CAS  PubMed  Google Scholar 

  142. 142.

    Akyurekli, C., Le, Y., Richardson, R. B., Fergusson, D., Tay, J., & Allan, D. S. (2014). A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Reviews and Reports. doi:10.1007/s12015-014-9545-9.

    Google Scholar 

  143. 143.

    Lai, R. C., Arslan, F., Tan, S. S., et al. (2010). Derivation and characterization of human fetal MSCs: an alternative source for large-scale production of cardioprotective microparticles. Journal of Molecular and Cellular Cardiology, 48, 1215–1224.

    CAS  PubMed  Google Scholar 

  144. 144.

    Lai, R. C., Yeo, R. W. Y., Tan, K. H., & Lim, S. K. (2013). Exosomes for drug delivery – a novel application for the mesenchymal stem cell. Biotechnology Advances, 31, 543–551.

    CAS  PubMed  Google Scholar 

  145. 145.

    Ly, H. (2011). Telomere dynamics in induced pluripotent stem cells: potentials for human disease modeling. World Journal of Stem Cells, 3, 89–95.

    PubMed Central  PubMed  Google Scholar 

  146. 146.

    Mooney, D. J., & Vandenburgh, H. (2008). Cell delivery mechanisms for tissue repair. Cell Stem Cell, 2, 205–213.

    CAS  PubMed  Google Scholar 

  147. 147.

    Discher, D. E., Mooney, D. J., & Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science, 324, 1673–1677.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. 148.

    Wagner, D. E., Bonenfant, N. R., Parsons, C. S., et al. (2014). Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials, 35, 3281–3297.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. 149.

    Booth, A. J., Hadley, R., Cornett, A. M., et al. (2012). Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. American Journal of Respiratory and Critical Care Medicine, 186, 866–876.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. 150.

    Williams, K., Malarkey, D., Cohn, L., Patrick, D., Dye, J., & Toews, G. (2004). Identification of spontaneous feline idiopathic pulmonary fibrosis. Morphology, and ultrastructural evidence for a type II pneumocyte defect. Chest, 125, 2278–2288.

    PubMed  Google Scholar 

  151. 151.

    Roman, J., Brown, K. K., Olson, A., Corcoran, B. M., Williams, K. J., & on behalf of the ATS Comparative Biology of Lung Fibrosis Working Group. (2013). An official American Thoracic Society workshop report: Comparative pathobiology of fibrosing lung disorders in humans and domestic animals. Annals of the American Thoracic Society, 10, S224–S229.

    PubMed  Google Scholar 

  152. 152.

    Chaudhary, N. I., Schnapp, A., & Park, J. E. (2006). Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. American Journal of Respiratory and Critical Care Medicine, 173, 769–776.

    CAS  PubMed  Google Scholar 

  153. 153.

    Schaefer, C. J., Ruhrmund, D. W., Pan, L., Seiwert, S. D., & Kossen, K. (2011). Antifibrotic activities of pirfenidone in animal models. European Respiratory Review, 20, 85–97.

    CAS  PubMed  Google Scholar 

  154. 154.

    Churg, A., Wright, J. L., & Tazelaar, H. D. (2011). Acute exacerbations of fibrotic interstitial lung disease. Histopathology, 58, 525–530.

    PubMed  Google Scholar 

  155. 155.

    Song, J. J., & Ott, H. C. (2012). Bioartificial lung engineering. American Journal of Transplantation, 12, 283–288.

    CAS  PubMed  Google Scholar 

  156. 156.

    Gutierrez-Soto, A., Wertheim, J. A., Ott, H. C., & Gilbert, T. W. (2012). Perspectives on whole-organ assembly: moving toward transplantation on demand. The Journal of Clinical Investigation, 122, 3817–3823.

    Google Scholar 

  157. 157.

    De Miquel, M. P., Fuentes-Julián, S., Blázquez-Martínez, A., et al. (2012). Immunosuppressive properties of mesenchymal stem cells: advances and applications. Current Molecular Medicine, 12, 574–591.

    Google Scholar 

  158. 158.

    Wang, J., Liao, L., & Tan, J. (2011). Mesenchymal-stem-cell-based experimental and clinical trials: current status and open questions. Expert Opinion Biological Therapeutics, 11, 893–909.

    Google Scholar 

  159. 159.

    Silhan, L. L., Shah, P. D., Chambers, D. C., et al. (2014). Lung transplantation in telomerase mutation carriers with pulmonary fibrosis. European Respiratory Journal, 44, 178–187.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of Interest

SM is founding shareholder and board member of AVAIL GmbH. The other authors have no conflicts of interest to disclose in addition to their affiliations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sabrina Mattoli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barczyk, M., Schmidt, M. & Mattoli, S. Stem Cell-Based Therapy in Idiopathic Pulmonary Fibrosis. Stem Cell Rev and Rep 11, 598–620 (2015). https://doi.org/10.1007/s12015-015-9587-7

Download citation

Keywords

  • Embryonic stem cells
  • Exosome
  • Human amnion stem cells
  • Idiopathic pulmonary fibrosis
  • Induced pluripotent stem cells
  • Mesenchymal stem cell
  • Secretome
  • Stem cell therapy