Stem Cell Reviews and Reports

, Volume 11, Issue 4, pp 586–597 | Cite as

Mesenchymal Stem/Stromal Cells in Liver Fibrosis: Recent Findings, Old/New Caveats and Future Perspectives

  • Esteban J. Fiore
  • Guillermo MazzoliniEmail author
  • Jorge B. AquinoEmail author


Mesenchymal stem/stromal cells (MSCs) are progenitors which share plastic-adherence capacity and cell surface markers but have different properties according to their cell and tissue sources and to culture conditions applied. Many recent publications suggest that MSCs can differentiate into hepatic-like cells, which can be a consequence of either a positive selection of rare in vivo pluripotent cells or of the original plasticity of some cells contributing to MSC cultures. A possible role of MSCs in hereditary transmission of obesity and/or diabetes as well as properties of MSCs regarding immunomodulation, cell fusion and exosome release capacities are discussed according to recent literature. Limitations in methods used to track MSCs in vivo especially in the context of liver cirrhosis are addressed as well as strategies explored to enhance their migratory, survival and proliferation properties, which are known to be relevant for their future clinical use. Current knowledge regarding mechanisms involved in liver cirrhosis amelioration mediated by naïve and genetically modified MSCs as well as the effects of applying preconditioning and combined strategies to improve their therapeutic effects are evaluated. Finally, first reports of GMP guidelines and biosafety issues in MSCs applications are discussed.


Cirrhosis Mesenchymal stem cells Neural crest Hepatocyte-like cells IGF-I Biosafety Cell source Biodistribution Mechanisms 



The authors are supported in part by grants from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (PICT PRH 2007 N° 51; PICT 2008 00123; PICTO 2008 00122). EJF and JBA are also supported by grants from the Universidad Austral.


The authors indicate no potential conflicts of interest.


  1. 1.
    Bataller, R., & Brenner, D. A. (2005). Liver fibrosis. Journal of Clinical Investigation, 115, 209–218.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Iwaisako, K., Jiang, C., Zhang, M., et al. (2014). Origin of myofibroblasts in the fibrotic liver in mice. Proceedings of the National Academy of Sciences of the United States of America, 111, E3297–E3305.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Brenner, D. A. (2013). Reversibility of liver fibrosis. Gastroenterology and Hepatology, 9, 737–739.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Abdel Aziz, M. T., Atta, H. M., Mahfouz, S., et al. (2007). Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clinical Biochemistry, 40, 893–899.PubMedGoogle Scholar
  5. 5.
    Fang, B., Shi, M., Liao, L., Yang, S., Liu, Y., & Zhao, R. C. (2004). Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation, 78, 83–88.PubMedGoogle Scholar
  6. 6.
    Aquino, J. B., Bolontrade, M. F., Garcia, M. G., Podhajcer, O. L., & Mazzolini, G. (2010). Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma. Gene Therapy, 17, 692–708.PubMedGoogle Scholar
  7. 7.
    Berardis, S., Dwisthi Sattwika, P., Najimi, M., & Sokal, E. M. (2015). Use of mesenchymal stem cells to treat liver fibrosis: current situation and future prospects. World Journal of Gastroenterology, 21, 742–758.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.PubMedGoogle Scholar
  9. 9.
    Li, M., & Ikehara, S. (2013). Bone-marrow-derived mesenchymal stem cells for organ repair. Stem Cells International, 2013, 132642.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Bayo, J., Marrodan, M., Aquino, J.B., Silva, M., Garcia, M.G., Mazzolini, G. (2013). The therapeutic potential of bone marrow-derived mesenchymal stromal cells on hepatocellular carcinoma. Liver International.Google Scholar
  11. 11.
    Bakondi, B., Shimada, I. S., Perry, A., et al. (2009). CD133 identifies a human bone marrow stem/progenitor cell sub-population with a repertoire of secreted factors that protect against stroke. Molecular Therapy, 17, 1938–1947.PubMedCentralPubMedGoogle Scholar
  12. 12.
    John, N., Cinelli, P., Wegner, M., & Sommer, L. (2011). Transforming growth factor beta-mediated Sox10 suppression controls mesenchymal progenitor generation in neural crest stem cells. Stem Cells, 29, 689–699.PubMedGoogle Scholar
  13. 13.
    Wislet-Gendebien, S., Laudet, E., Neirinckx, V., et al. (2012). Mesenchymal stem cells and neural crest stem cells from adult bone marrow: characterization of their surprising similarities and differences. Cellular and Molecular Life Sciences, 69, 2593–2608.PubMedGoogle Scholar
  14. 14.
    Morikawa, S., Mabuchi, Y., Niibe, K., et al. (2009). Development of mesenchymal stem cells partially originate from the neural crest. Biochemical and Biophysical Research Communications, 379, 1114–1119.PubMedGoogle Scholar
  15. 15.
    Takashima, Y., Era, T., Nakao, K., et al. (2007). Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell, 129, 1377–1388.PubMedGoogle Scholar
  16. 16.
    Mendez-Ferrer, S., Michurina, T. V., Ferraro, F., et al. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466, 829–834.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Adameyko, I., Lallemend, F., Aquino, J. B., et al. (2009). Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell, 139, 366–379.PubMedGoogle Scholar
  18. 18.
    Isern, J., Garcia-Garcia, A., Martin, A. M., et al. (2014). The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. Elife, 3, e03696.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Kaukua, N., Shahidi, M. K., Konstantinidou, C., et al. (2014). Glial origin of mesenchymal stem cells in a tooth model system. Nature, 513, 551–554.PubMedGoogle Scholar
  20. 20.
    Bianco, P., Cao, X., Frenette, P. S., et al. (2013). The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nature Medicine, 19, 35–42.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Corselli, M., Chin, C. J., Parekh, C., et al. (2013). Perivascular support of human hematopoietic stem/progenitor cells. Blood, 121, 2891–2901.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Sacchetti, B., Funari, A., Michienzi, S., et al. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131, 324–336.PubMedGoogle Scholar
  23. 23.
    Bakondi, B., & Spees, J. L. (2010). Human CD133-derived bone marrow stromal cells establish ectopic hematopoietic microenvironments in immunodeficient mice. Biochemical and Biophysical Research Communications, 400, 212–218.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Rasini, V., Dominici, M., Kluba, T., et al. (2013). Mesenchymal stromal/stem cells markers in the human bone marrow. Cytotherapy, 15, 292–306.PubMedGoogle Scholar
  25. 25.
    Kuroda, Y., Kitada, M., Wakao, S., & Dezawa, M. (2011). Bone marrow mesenchymal cells: how do they contribute to tissue repair and are they really stem cells? Archivum Immunologiae et Therapiae Experimentalis (Warsz), 59, 369–378.Google Scholar
  26. 26.
    Le Lievre, C. S., & Le Douarin, N. M. (1975). Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. Journal of Embryology and Experimental Morphology, 34, 125–154.PubMedGoogle Scholar
  27. 27.
    Binato, R., de Souza, F. T., Lazzarotto-Silva, C., et al. (2013). Stability of human mesenchymal stem cells during in vitro culture: considerations for cell therapy. Cell Proliferation, 46, 10–22.PubMedGoogle Scholar
  28. 28.
    Foudah, D., Redondo, J., Caldara, C., Carini, F., Tredici, G., & Miloso, M. (2012). Expression of neural markers by undifferentiated rat mesenchymal stem cells. Journal of Biomedicine and Biotechnology, 2012, 820821.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Puglisi, M. A., Tesori, V., Lattanzi, W., et al. (2011). Therapeutic implications of mesenchymal stem cells in liver injury. Journal of Biomedicine and Biotechnology, 2011, 860578.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Ayatollahi, M., Soleimani, M., Tabei, S. Z., & Kabir, S. M. (2011). Hepatogenic differentiation of mesenchymal stem cells induced by insulin like growth factor-I. World Journal of Stem Cells, 3, 113–121.PubMedCentralPubMedGoogle Scholar
  31. 31.
    He, H., Liu, X., Peng, L., et al. (2013). Promotion of hepatic differentiation of bone marrow mesenchymal stem cells on decellularized cell-deposited extracellular matrix. BioMed Research International, 2013, 406871.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Piryaei, A., Valojerdi, M. R., Shahsavani, M., & Baharvand, H. (2011). Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis model. Stem Cell Reviews, 7, 103–118.PubMedGoogle Scholar
  33. 33.
    Pournasr, B., Mohamadnejad, M., Bagheri, M., et al. (2011). In vitro differentiation of human bone marrow mesenchymal stem cells into hepatocyte-like cells. Archives of Iranian Medicine, 14, 244–249.PubMedGoogle Scholar
  34. 34.
    Aurich, H., Sgodda, M., Kaltwasser, P., et al. (2009). Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut, 58, 570–581.PubMedGoogle Scholar
  35. 35.
    Banas, A., Teratani, T., Yamamoto, Y., et al. (2007). Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology, 46, 219–228.PubMedGoogle Scholar
  36. 36.
    Sun, J., Yuan, Y., Qin, H., et al. (2013). Serum from hepatectomized rats induces the differentiation of adipose tissue mesenchymal stem cells into hepatocyte-like cells and upregulates the expression of hepatocyte growth factor and interleukin-6 in vitro. International Journal of Molecular Medicine, 31, 667–675.PubMedGoogle Scholar
  37. 37.
    Cui, L., Zhou, X., Li, J., et al. (2012). Dynamic microRNA profiles of hepatic differentiated human umbilical cord lining-derived mesenchymal stem cells. PLoS One, 7, e44737.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Liang, X. J., Chen, X. J., Yang, D. H., Huang, S. M., Sun, G. D., & Chen, Y. P. (2012). Differentiation of human umbilical cord mesenchymal stem cells into hepatocyte-like cells by hTERT gene transfection in vitro. Cell Biology International, 36, 215–221.PubMedGoogle Scholar
  39. 39.
    Prasajak, P., & Leeanansaksiri, W. (2013). Developing a New Two-step protocol to generate functional hepatocytes from Wharton’s jelly-derived mesenchymal stem cells under hypoxic condition. Stem Cells International, 2013, 762196.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Bornstein, R., Macias, M. I., de la Torre, P., Grande, J., & Flores, A. I. (2012). Human decidua-derived mesenchymal stromal cells differentiate into hepatic-like cells and form functional three-dimensional structures. Cytotherapy, 14, 1182–1192.PubMedGoogle Scholar
  41. 41.
    Volarevic, V., Nurkovic, J., Arsenijevic, N., & Stojkovic, M. (2014). Concise review: therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis. Stem Cells, 32, 2818–2823.PubMedGoogle Scholar
  42. 42.
    Meier, R. P., Muller, Y. D., Morel, P., Gonelle-Gispert, C., & Buhler, L. H. (2013). Transplantation of mesenchymal stem cells for the treatment of liver diseases, is there enough evidence? Stem Cell Research, 11, 1348–1364.PubMedGoogle Scholar
  43. 43.
    Kuroda, Y., Kitada, M., Wakao, S., et al. (2010). Unique multipotent cells in adult human mesenchymal cell populations. Proceedings of the National Academy of Sciences of the United States of America, 107, 8639–8643.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Ogura, F., Wakao, S., Kuroda, Y., et al. (2014). Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells and Development, 23, 717–728.PubMedGoogle Scholar
  45. 45.
    Bugianesi, E., Leone, N., Vanni, E., et al. (2002). Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology, 123, 134–140.PubMedGoogle Scholar
  46. 46.
    Barreyro, F.J., Holod, S., Finocchietto, P.V., et al. (2014). The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver International.Google Scholar
  47. 47.
    Kirchner, S., Kieu, T., Chow, C., Casey, S., & Blumberg, B. (2010). Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Molecular Endocrinology, 24, 526–539.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Yanik, S. C., Baker, A. H., Mann, K. K., & Schlezinger, J. J. (2011). Organotins are potent activators of PPARgamma and adipocyte differentiation in bone marrow multipotent mesenchymal stromal cells. Toxicological Sciences, 122, 476–488.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Thayer, K. A., Heindel, J. J., Bucher, J. R., & Gallo, M. A. (2012). Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environmental Health Perspectives, 120, 779–789.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Chamorro-Garcia, R., Sahu, M., Abbey, R. J., Laude, J., Pham, N., & Blumberg, B. (2013). Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice. Environmental Health Perspectives, 121, 359–366.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Cui, L., Shi, Y., Han, Y., & Fan, D. (2014). Immunological basis of stem cell therapy in liver diseases. Expert Review of Clinical Immunology, 10, 1185–1196.PubMedGoogle Scholar
  52. 52.
    Du Rocher, B., Mencalha, A. L., Gomes, B. E., & Abdelhay, E. (2012). Mesenchymal stromal cells impair the differentiation of CD14(++) CD16(−) CD64(+) classical monocytes into CD14(++) CD16(+) CD64(++) activate monocytes. Cytotherapy, 14, 12–25.PubMedGoogle Scholar
  53. 53.
    Zhang, Y., Cai, W., Huang, Q., et al. (2014). Mesenchymal stem cells alleviate bacteria-induced liver injury in mice by inducing regulatory dendritic cells. Hepatology, 59, 671–682.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Oh, J.Y., Ko, J.H., Lee, H.J., et al. (2013). Mesenchymal stem/stromal cells inhibit the NLRP3 inflammasome by decreasing mitochondrial reactive oxygen species. Stem Cells.Google Scholar
  55. 55.
    Gomez-Aristizabal, A., Ng, C., Ng, J., & Davies, J. E. (2012). Effects of two mesenchymal cell populations on hepatocytes and lymphocytes. Liver Transplantation, 18, 1384–1394.PubMedGoogle Scholar
  56. 56.
    Han, Z., Jing, Y., Zhang, S., Liu, Y., Shi, Y., & Wei, L. (2012). The role of immunosuppression of mesenchymal stem cells in tissue repair and tumor growth. Cell & Bioscience, 2, 8.Google Scholar
  57. 57.
    Murphy, M. B., Moncivais, K., & Caplan, A. I. (2013). Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Experimental and Molecular Medicine, 45, e54.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Prockop, D. J., & Oh, J. Y. (2012). Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Molecular Therapy, 20, 14–20.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Chiesa, S., Morbelli, S., Morando, S., et al. (2011). Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 108, 17384–17389.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Sanchez-Abarca, L. I., Alvarez-Laderas, I., Diez Campelo, M., et al. (2013). Uptake and delivery of antigens by mesenchymal stromal cells. Cytotherapy, 15, 673–678.PubMedGoogle Scholar
  61. 61.
    Stagg, J., Pommey, S., Eliopoulos, N., & Galipeau, J. (2006). Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood, 107, 2570–2577.PubMedGoogle Scholar
  62. 62.
    Krampera, M., Galipeau, J., Shi, Y., Tarte, K., & Sensebe, L. (2013). Immunological characterization of multipotent mesenchymal stromal cells–The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy, 15, 1054–1061.PubMedGoogle Scholar
  63. 63.
    Acquistapace, A., Bru, T., Lesault, P. F., et al. (2011). Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells, 29, 812–824.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Johansson, C. B., Youssef, S., Koleckar, K., et al. (2008). Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nature Cell Biology, 10, 575–583.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Shao, C. H., Chen, S. L., Dong, T. F., et al. (2014). Transplantation of bone marrow-derived mesenchymal stem cells after regional hepatic irradiation ameliorates thioacetamide-induced liver fibrosis in rats. Journal of Surgical Research, 186, 408–416.PubMedGoogle Scholar
  66. 66.
    Kim, S. J., Moon, G. J., Cho, Y. H., et al. (2012). Circulating mesenchymal stem cells microparticles in patients with cerebrovascular disease. PLoS One, 7, e37036.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Ma, J., Cai, W., Zhang, Y., et al. (2013). Innate immune cell-derived microparticles facilitate hepatocarcinoma metastasis by transferring integrin alpha(M)beta(2) to tumor cells. Journal of Immunology, 191, 3453–3461.Google Scholar
  68. 68.
    Masyuk, A. I., Masyuk, T. V., & Larusso, N. F. (2013). Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. Journal of Hepatology, 59, 621–625.PubMedGoogle Scholar
  69. 69.
    Bruno, S., Grange, C., Deregibus, M. C., et al. (2009). Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. Journal of the American Society of Nephrology, 20, 1053–1067.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Herrera, M. B., Fonsato, V., Gatti, S., et al. (2010). Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. Journal of Cellular and Molecular Medicine, 14, 1605–1618.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Lin, C. S., Xin, Z. C., Dai, J., & Lue, T. F. (2013). Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histology and Histopathology, 28, 1109–1116.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Reagan, M. R., & Kaplan, D. L. (2011). Concise review: mesenchymal stem cell tumor-homing: detection methods in disease model systems. Stem Cells, 29, 920–927.PubMedGoogle Scholar
  73. 73.
    Coronel, M. F., Musolino, P. L., & Villar, M. J. (2006). Selective migration and engraftment of bone marrow mesenchymal stem cells in rat lumbar dorsal root ganglia after sciatic nerve constriction. Neuroscience Letters, 405, 5–9.PubMedGoogle Scholar
  74. 74.
    Salguero Palacios, R., Roderfeld, M., Hemmann, S., et al. (2008). Activation of hepatic stellate cells is associated with cytokine expression in thioacetamide-induced hepatic fibrosis in mice. Laboratory Investigation, 88, 1192–1203.PubMedGoogle Scholar
  75. 75.
    Ren, H., Zhao, Q., Cheng, T., et al. (2010). No contribution of umbilical cord mesenchymal stromal cells to capillarization and venularization of hepatic sinusoids accompanied by hepatic differentiation in carbon tetrachloride-induced mouse liver fibrosis. Cytotherapy, 12, 371–383.PubMedGoogle Scholar
  76. 76.
    Fiore, E.J., Bayo, J., Garcia, M.G., et al. (2014). Mesenchymal stromal cells engineered to produce IGF-I by recombinant adenovirus ameliorate liver fibrosis in mice. Stem Cells and Development.Google Scholar
  77. 77.
    Hong, H. S., Lee, J., Lee, E., et al. (2009). A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nature Medicine, 15, 425–435.PubMedGoogle Scholar
  78. 78.
    Novo, E., Busletta, C., Bonzo, L. V., et al. (2011). Intracellular reactive oxygen species are required for directional migration of resident and bone marrow-derived hepatic pro-fibrogenic cells. Journal of Hepatology, 54, 964–974.PubMedGoogle Scholar
  79. 79.
    Marquez-Curtis, L. A., & Janowska-Wieczorek, A. (2013). Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BioMed Research International, 2013, 561098.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Xie, J., Wang, W., Si, J. W., et al. (2013). Notch signaling regulates CXCR4 expression and the migration of mesenchymal stem cells. Cellular Immunology, 281, 68–75.PubMedGoogle Scholar
  81. 81.
    Lu, M. H., Li, C. Z., Hu, C. J., et al. (2012). microRNA-27b suppresses mouse MSC migration to the liver by targeting SDF-1alphain vitro. Biochemical and Biophysical Research Communications, 421, 389–395.PubMedGoogle Scholar
  82. 82.
    Marquez-Curtis, L. A., Gul-Uludag, H., Xu, P., Chen, J., & Janowska-Wieczorek, A. (2013). CXCR4 transfection of cord blood mesenchymal stromal cells with the use of cationic liposome enhances their migration toward stromal cell-derived factor-1. Cytotherapy, 15, 840–849.PubMedGoogle Scholar
  83. 83.
    Eggenhofer, E., Benseler, V., Kroemer, A., et al. (2012). Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Frontiers in Immunology, 3, 297.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Li, Q., Zhou, X., Shi, Y., et al. (2013). In vivo tracking and comparison of the therapeutic effects of MSCs and HSCs for liver injury. PLoS One, 8, e62363.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Kuo, T.K., Hung, S.P., Chuang, C.H., et al. (2008). Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology, 134, 2111–21, 21 e1-3.Google Scholar
  86. 86.
    Hamedi-Asl, P., Halabian, R., Bahmani, P., et al. (2012). Adenovirus-mediated expression of the HO-1 protein within MSCs decreased cytotoxicity and inhibited apoptosis induced by oxidative stresses. Cell Stress & Chaperones, 17, 181–190.Google Scholar
  87. 87.
    Mohammadzadeh, M., Halabian, R., Gharehbaghian, A., et al. (2012). Nrf-2 overexpression in mesenchymal stem cells reduces oxidative stress-induced apoptosis and cytotoxicity. Cell Stress & Chaperones, 17, 553–565.Google Scholar
  88. 88.
    Taghi, G. M., Ghasem Kashani Maryam, H., Taghi, L., Leili, H., & Leyla, M. (2012). Characterization of in vitro cultured bone marrow and adipose tissue-derived mesenchymal stem cells and their ability to express neurotrophic factors. Cell Biology International, 36, 1239–1249.PubMedGoogle Scholar
  89. 89.
    Helledie, T., Dombrowski, C., Rai, B., et al. (2012). Heparan sulfate enhances the self-renewal and therapeutic potential of mesenchymal stem cells from human adult bone marrow. Stem Cells and Development, 21, 1897–1910.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Estrada, J. C., Albo, C., Benguria, A., et al. (2012). Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death and Differentiation, 19, 743–755.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Masoud, M. S., Anwar, S. S., Afzal, M. Z., Mehmood, A., Khan, S. N., & Riazuddin, S. (2012). Pre-conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment. Journal of Translational Medicine, 10, 243.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Ahmadbeigi, N., Soleimani, M., Babaeijandaghi, F., et al. (2012). The aggregate nature of human mesenchymal stromal cells in native bone marrow. Cytotherapy, 14, 917–924.PubMedGoogle Scholar
  93. 93.
    Seki, A., Sakai, Y., Komura, T., et al. (2013). Adipose tissue-derived stem cells as a regenerative therapy for a mouse steatohepatitis-induced cirrhosis model. Hepatology, 58, 1133–1142.PubMedGoogle Scholar
  94. 94.
    Zhang, Z., Lin, H., Shi, M., et al. (2012). Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. Journal of Gastroenterology and Hepatology, 27(Suppl 2), 112–120.PubMedGoogle Scholar
  95. 95.
    Forbes, S. J., & Newsome, P. N. (2012). New horizons for stem cell therapy in liver disease. Journal of Hepatology, 56, 496–499.PubMedGoogle Scholar
  96. 96.
    Li, T., Yan, Y., Wang, B., et al. (2013). Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells and Development, 22, 845–854.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Usunier, B., Benderitter, M., Tamarat, R., & Chapel, A. (2014). Management of fibrosis: the mesenchymal stromal cells breakthrough. Stem Cells International, 2014, 340257.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Li, T., Zhu, J., Ma, K., et al. (2013). Autologous bone marrow-derived mesenchymal stem cell transplantation promotes liver regeneration after portal vein embolization in cirrhotic rats. Journal of Surgical Research, 184, 1161–1173.PubMedGoogle Scholar
  99. 99.
    Parekkadan, B., van Poll, D., Megeed, Z., et al. (2007). Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochemical and Biophysical Research Communications, 363, 247–252.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Zhang, D., Jiang, M., & Miao, D. (2011). Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One, 6, e16789.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Cho, K. A., Woo, S. Y., Seoh, J. Y., Han, H. S., & Ryu, K. H. (2012). Mesenchymal stem cells restore CCl4-induced liver injury by an antioxidative process. Cell Biology International, 36, 1267–1274.PubMedGoogle Scholar
  102. 102.
    Nasir, G. A., Mohsin, S., Khan, M., et al. (2013). Mesenchymal stem cells and Interleukin-6 attenuate liver fibrosis in mice. Journal of Translational Medicine, 11, 78.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Jung, J., Choi, J. H., Lee, Y., et al. (2013). Human placenta-derived mesenchymal stem cells promote hepatic regeneration in CCl4 -injured rat liver model via increased autophagic mechanism. Stem Cells, 31, 1584–1596.PubMedGoogle Scholar
  104. 104.
    Chagoya de Sanchez, V., Martinez-Perez, L., Hernandez-Munoz, R., & Velasco-Loyden, G. (2012). Recovery of the cell cycle inhibition in CCl(4)-induced cirrhosis by the adenosine derivative IFC-305. International Journal of Hepatology, 2012, 212530.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Wang, H., Zhao, T., Xu, F., et al. (2014). How important is differentiation in the therapeutic effect of mesenchymal stromal cells in liver disease? Cytotherapy, 16, 309–318.PubMedGoogle Scholar
  106. 106.
    Madsen, D. H., Leonard, D., Masedunskas, A., et al. (2013). M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. Journal of Cell Biology, 202, 951–966.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Bernardo, M. E., & Fibbe, W. E. (2013). Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell, 13, 392–402.PubMedGoogle Scholar
  108. 108.
    Li, Y., Wen, X., Spataro, B. C., Hu, K., Dai, C., & Liu, Y. (2006). Hepatocyte growth factor is a downstream effector that mediates the antifibrotic action of peroxisome proliferator-activated receptor-gamma agonists. Journal of the American Society of Nephrology, 17, 54–65.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Wang, P. P., Xie, D. Y., Liang, X. J., et al. (2012). HGF and direct mesenchymal stem cells contact synergize to inhibit hepatic stellate cells activation through TLR4/NF-kB pathway. PLoS One, 7, e43408.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Di Nicola, M., Carlo-Stella, C., Magni, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.PubMedGoogle Scholar
  111. 111.
    Yen, B. L., Yen, M. L., Hsu, P. J., et al. (2013). Multipotent human mesenchymal stromal cells mediate expansion of myeloid-derived suppressor cells via hepatocyte growth factor/c-Met and STAT3. Stem Cell Reports, 1, 139–151.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Atorrasagasti, C., Peixoto, E., Aquino, J. B., et al. (2013). Lack of the matricellular protein SPARC (secreted protein, acidic and rich in cysteine) attenuates liver fibrogenesis in mice. PLoS One, 8, e54962.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Bonefeld, K., & Moller, S. (2011). Insulin-like growth factor-I and the liver. Liver International, 31, 911–919.PubMedGoogle Scholar
  114. 114.
    Lee, M. W., Kim, D. S., Yoo, K. H., et al. (2013). Human bone marrow-derived mesenchymal stem cell gene expression patterns vary with culture conditions. Blood Research, 48, 107–114.PubMedCentralPubMedGoogle Scholar
  115. 115.
    Kim, M. D., Kim, S. S., Cha, H. Y., et al. (2014). Therapeutic effect of hepatocyte growth factor-secreting mesenchymal stem cells in a rat model of liver fibrosis. Experimental and Molecular Medicine, 46, e110.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Tutau, F., Rodriguez-Ortigosa, C., Puche, J. E., et al. (2009). Enhanced actions of insulin-like growth factor-I and interferon-alpha co-administration in experimental cirrhosis. Liver International, 29, 37–46.PubMedGoogle Scholar
  117. 117.
    Ali, G., Mohsin, S., Khan, M., et al. (2012). Nitric oxide augments mesenchymal stem cell ability to repair liver fibrosis. Journal of Translational Medicine, 10, 75.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Jang, Y. O., Kim, Y. J., Baik, S. K., et al. (2014). Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: a pilot study. Liver International, 34, 33–41.PubMedGoogle Scholar
  119. 119.
    Lanzoni, G., Oikawa, T., Wang, Y., et al. (2013). Concise review: clinical programs of stem cell therapies for liver and pancreas. Stem Cells, 31, 2047–2060.PubMedGoogle Scholar
  120. 120.
    Ren, G., Chen, X., Dong, F., et al. (2012). Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Translational Medicine, 1, 51–58.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Shi, M., Zhang, Z., Xu, R., et al. (2012). Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Translational Medicine, 1, 725–731.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Wang, L., Li, J., Liu, H., et al. (2013). Pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. Journal of Gastroenterology and Hepatology, 28(Suppl 1), 85–92.PubMedGoogle Scholar
  123. 123.
    Sensebe, L., Gadelorge, M., & Fleury-Cappellesso, S. (2013). Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Research & Therapy, 4, 66.Google Scholar
  124. 124.
    Barkholt, L., Flory, E., Jekerle, V., et al. (2013). Risk of tumorigenicity in mesenchymal stromal cell-based therapies–bridging scientific observations and regulatory viewpoints. Cytotherapy, 15, 753–759.PubMedGoogle Scholar
  125. 125.
    Pan, Q., Fouraschen, S. M., de Ruiter, P. E., et al. (2014). Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Experimental Biology and Medicine (Maywood, N.J.), 239, 105–115.Google Scholar
  126. 126.
    Prockop, D. J., Brenner, M., Fibbe, W. E., et al. (2010). Defining the risks of mesenchymal stromal cell therapy. Cytotherapy, 12, 576–578.PubMedGoogle Scholar
  127. 127.
    Tarte, K., Gaillard, J., Lataillade, J. J., et al. (2010). Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood, 115, 1549–1553.PubMedGoogle Scholar
  128. 128.
    Prockop, D. J., & Keating, A. (2012). Relearning the lessons of genomic stability of human cells during expansion in culture: implications for clinical research. Stem Cells, 30, 1051–1052.PubMedGoogle Scholar
  129. 129.
    Estrada, J. C., Torres, Y., Benguria, A., et al. (2013). Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy. Cell Death & Disease, 4, e691.Google Scholar
  130. 130.
    Hanley, P. J., Mei, Z., da Graca, C.-H. M., et al. (2013). Manufacturing mesenchymal stromal cells for phase I clinical trials. Cytotherapy, 15, 416–422.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Chase, L. G., Yang, S., Zachar, V., et al. (2012). Development and characterization of a clinically compliant xeno-free culture medium in good manufacturing practice for human multipotent mesenchymal stem cells. Stem Cells Translational Medicine, 1, 750–758.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Chieregato, K., Castegnaro, S., Madeo, D., Astori, G., Pegoraro, M., & Rodeghiero, F. (2011). Epidermal growth factor, basic fibroblast growth factor and platelet-derived growth factor-bb can substitute for fetal bovine serum and compete with human platelet-rich plasma in the ex vivo expansion of mesenchymal stromal cells derived from adipose tissue. Cytotherapy, 13, 933–943.PubMedGoogle Scholar
  133. 133.
    de Lima, P. K., de Santis, G. C., Orellana, M. D., Palma, P. V., Brassesco, M. S., & Covas, D. T. (2012). Cryopreservation of umbilical cord mesenchymal cells in xenofree conditions. Cytotherapy, 14, 694–700.Google Scholar
  134. 134.
    Julavijitphong, S., Wichitwiengrat, S., Tirawanchai, N., Ruangvutilert, P., Vantanasiri, C., & Phermthai, T. (2014). A xeno-free culture method that enhances Wharton’s jelly mesenchymal stromal cell culture efficiency over traditional animal serum-supplemented cultures. Cytotherapy, 16, 683–691.PubMedGoogle Scholar
  135. 135.
    Presson, A. P., Kim, N., Xiaofei, Y., Chen, I. S., & Kim, S. (2011). Methodology and software to detect viral integration site hot-spots. BMC Bioinformatics, 12, 367.PubMedCentralPubMedGoogle Scholar
  136. 136.
    DeMatteo, R. P., Raper, S. E., Ahn, M., et al. (1995). Gene transfer to the thymus. A means of abrogating the immune response to recombinant adenovirus. Annals of Surgery, 222, 229–239. discussion 39–42.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Treacy, O., Ryan, A. E., Heinzl, T., et al. (2012). Adenoviral transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation. PLoS One, 7, e42662.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Gene Therapy Laboratory, Liver Unit, School of MedicineAustral UniversityDerqui-PilarArgentina
  2. 2.CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)Buenos AiresArgentina

Personalised recommendations